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They also recall their experience with science based problems that require combining
mathematical manipulations with applications of scientific principles. For example,
correct application of the gas laws is needed to solve the following problem;

A balloon is filled with 1200 ml of H, at a pressure of 740.mm of Hg and a temperature of
30°C. The balloon is allowed to ascend 1 mile, where the pressure is 640 mm of Hg and
the temperature 7°C. Calculate the volume of the balloon at a height of 1 mile.

This perception that engineering is only “applied science and mathematics” is rein-
forced by traditional engineering curricula, which emphasize science and mathematics
courses during the first two years and specialized applications of science and mathe-
matics in what are typically called “engineering science” courses.! This emphasis con-
tinues in many upper division engineering courses. Whatever the particular field of
mathematics or science used in these types of problems, they tend to have four fea-
tures in common.

First, the problems are well-posed in a very compact form. By well-posed we
mean that the statement of the problem is complete, unambiguous, and free from in-
ternal contradictions. If it didn’t have these features, the students would complain vig-
orously and the teacher would apologize profusely for presenting a poorly stated
problem.

Second, the solutions to each problem are unique and compact. There generally is
a single correct answer available, that is, a number, a set of numbers, or symbols. In fact,
many textbooks publish the answers to the odd-numbered problems in the back of the
book. .

Third, these problems. have a readily identifiable closure. It is easy to recognize
when the answer has been obtained (not necessarily the correct one).

Fourth, these problems require application of very specialized areas of knowl-
edge and there is little doubt what the subject is for each problem. Clearly a problem
at the end of Chapter 4 in the calculus book is going to require application of the con-
cepts addressed in that chapter. Some end-of-chapter problem sets are even coded so
that the student knows which section of the chapter to focus on. A problem in Chap-
ter 4 is not going to require you to apply the material covered in Chapter 7. And you
can bet that a problem in your calculus book is not going to require knowledge of
physics to get the solution.

Solving problems that have some or all of these four characteristics is an impor-
tant part of engineering education. It develops and strengthens specific analytical
skills that are essential in most engineering design situations. However, most real-
world engineering design problems do not share these characteristics. In particular,
many real engineering design problems are poorly posed, do not have a unique solu-
tion or a readily identifiable closure, and almost always will require integration of

_m=E=n01=m science courses deal with applications of scientific principles and mathematical con-
cepts for analyzing a wide variety of engineering problems such as: motion of objects, current in electric cir-
cuits, deflection of beams, temperature in fluids, and efficiency of engines.
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Figure 1-1. Conternplating Engineering Design
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Sec. 1.4, Definition of Engineering Design
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Figure 1-3. Benefits of Understanding Engincering Design

ated with design problems, but it will help you adapt to this new environment and
function effectively in it.

1.4. DEFINITION OF ENGINEERING DESIGN

Sotving Real Everyday Problems

Engineering design is a more advanced version of a problem solving technique that
many people use routinely. The general procedure for solving real everyday problems
is straightforward: A problem is encountered, information about the problem is ob-
tained, alternate solutions are formulated, and the best alternative is adopted. Some
problems are so straightforward and solutions 50 obvious that people soive those
problems without being consciously aware of the specific steps in the process. For ex-
ample, a serious problem confronts a child whose pants get caught in his/her bicycle
chain. Three ways in which the child may resolve this dilemma are: rolling up the
pants cuff, installing a chain guard, or securing the pants with a rubber band. The ap-
proach a child uses depends on many factors, including his or her familiarity with the
bike, available materials, experience with the problem, and creativity. What works
best for Johnny may not work best for Susie. What works best today may not work
best six months from now. Whatever the solution, the child progresses through a de-
sign process without hesitation. When the problem is more complex (as most engi-
neering problems are), an organized and methodical approach is needed.

Engineering design is a methodical approach to solving a particular class of large
and complex problems. How can we distinguish engineering design from other kinds
of problem solving activities and from other kinds of design? A few moments of re-
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Sec. 1.5. A Motdel of the Engineering Design Process

nts at some of the analytical tools engineers use in their design activi-
ics, and engineering sciences.” Finaily, the ABET defini-
“the establishment of objectives and
and evaluation.” As a whole, the

definition also hi
ties; “basic sciences, mathemat:
tion identifies some elements of the design process;
criteria, synthesis, analysis, construction, testing,
ABET definition serves as a guide from which to start. The ABET definition gives the
design engineer the freedom and responsibility to determine what is appropriate and
necessary to create a design and solve a problem. There are no absolute rules for what
to do, when to do it, or how to do it; only experience and blurred, soft, marshy “rules of

thumb.” Engineering design is a swamp.

The Centrality of Design

In spite of the difficulties we encounter when trying to reduce the complexities of en-
gineering design to simple, universally agreed upon definitions and models, the cen-
tratity of design to the engincering profession is unchallenged. Design is the culmina-
tion of all engineering activities, embodying engineering analysis and other
engineering activities as tools to achieve design objectives.

1.5. A MODEL OF THE ENGINEERING DESIGN PROCESS

Just as the ABET statement is only one of many definitions of engineering design,
there are many approaches to describing how design is done. Some of these descrip-
tions have been formalized into simplified step-by-step “models” of the design
process. While no one model is universally accepted by the engineering community, it
is helpful to organize our discussion using one model. In doing so, we recognize that
there are many other approaches that are just as useful.

In this section we briefly outline a nine-step model of the engineering design
process. Before discussing each of the nine steps in this model, a few general com-
t, it is important to recognize that any model is a simplified de-
d reality. The value of a model lies in its ability to help
us organize our thoughts and gain insight into important aspects of reality. So keep in
mind while we discuss these nine steps that actual designs do not necessarily evolive in
a linear, orderly progression from step one through step nine. Not every step will be
used to the same extent in every design, and some steps may be performed out of
order.

We defer more detailed discussion of each step to later sections in the book. In
fact, some of the steps are¢ the topics of entire chapters. The nine steps and the parts of
the book in which they are further eiaborated are summarized in Table 1-1. The fact
that the sequence of topics presented in the book doesn’t match up exactly with the
nine steps in our design process model reinforces the non-sequential nature of the
model.

Many engineering designs are performed by teams of engineers and nol every
team member participates in every step of the process. Some team members may he
specialists in one or more of the nine steps. In many situations, design engingers un-
consciously blend some of these steps together. Also, each step may be revisited sev-

menis are in order. Firs
scription of a more complicate
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TABLE 1-1. RELATION BETWEEN DESIGN FROCESS MODEL AND ORGANIZATION
OF THIS BOOK

Steps in Design Process Model

Location of Detailed Discussjon

1. Recognizing the need Chapter 2: Problem Formulation

2. Defiring the problem Chapter 2: Problem Formulation

3. Planning the Pproject Chapter 7: Project Planning

4. Gathering information Chapter 3: Information and Communication
5 Oo:RwE&E:w alternative approaches Chapter 6: Concept Generation

6. Evaluating the alternatives Chapier 8: Engineering Economics

7. Selecting the preferred alternative Chapter 9: Decision Making

8. Oo.:.::._mnwz..m the design Chapter 3% Information and Communication
9. Implementing the preferred design Section 1.7: Life Cycle of Engincering Designs

cral times during the evolution of a design. However, even experienced engincers will
regularly step back from their immersion jn design details and rely on such a mode] to
assure themselves that they haven’t overlooked key elements in their search for a de-
sign solution. The map of the design swamp shown in Figure 1-4 depicts the relation-
ships among the nine steps,

Note the absence of a “STOP” activity in the Design Swamp. Does the design
Process continue without end? Possibly. It continues as long as the need continues,
and it ends only when the cost of continuing the design process exceeds the value of
an improved design. The decision to stop the design process is difficuit and requires
careful thought, It may be made by the engineer or the client, or it may be 2 result of a
schedule constraing. This is what we mean when we say design is an open-ended
process; there frequentiy is no readily identifiable closure point,

The automobile, for €xample, is a solution to the need for transportation, and
automobile design has evolved continuously since jts invention. From a longer range
perspective, automobiles evolved from horse drawn wagons or from anc
carts. In any case, automobile design contipues to evolve because no automobile js
petfect and because the needs themselves change. Even the best-selling automobiles
are redesigned regularly because a need exists for new or different features such as
pollution control equipment, airbags, and anti-lock brakes,

s dissatisfaction with a current situation. Consider

the hypothetical conversation between Jane, a design engineer for an amomotive en-
gineering company, and Sandra, her immediate supervisor.

Sandra; “Jane, we need You 1o design a stronger bumper for oyr new passenger car,”

Jane: “Why do we need a stronger bumper?”

Sec. 1.5.

A Mode} of the Engineering Design Process

Figure 1-4. A Map of the Design Swamp
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