4.9 GRAPHICAL ANALYSIS

Although formal graphical methods are of little practical value in the analysis and design of most transistor circuits, it is illustrative to portray graphically the operation of a simple transistor amplifier circuit. Consider the circuit of Fig. 4.34, which we have already analyzed in Example 4.9. A graphical analysis of the operation of this circuit can be performed as follows: First, we have to determine the dc bias point. Toward that end we set $v_t = 0$ and use the technique illustrated in Fig. 4.35 to determine the dc base current I_B. Thus, we have already employed this technique in the analysis of diode circuits in Chapter 3. We next move to the i_C-v_{CE} characteristics, shown in Fig. 4.36. Observe that each of these characteristic curves is obtained by setting the base current I_B to a constant value, varying v_{CE}, and measuring the corresponding i_C. This family of i_C-v_{CE} characteristic curves should be contrasted to that shown in Fig. 4.15; the latter was obtained by setting v_{BE} constant.

Having determined the base bias current I_B, we know that the operating point will lie on the i_C-v_{CE} curve corresponding to this value of base current (the curve for $I_B = I_B$). Where it lies on the curve will be determined by the collector circuit. Specifically, the collector circuit imposes the constraint

$$v_{CE} = V_{CC} - i_C R_C$$

which can be rewritten as

$$i_C = \frac{V_{CC}}{R_C} - \frac{1}{R_C} v_{CE}$$

which represents a linear relationship between v_{CE} and i_C. This relationship can be represented by a straight line, as shown in Fig. 4.36. Since R_C can be considered the amplifier load, the straight line of slope $-1/R_C$ is known as the load line. The dc bias point, or quiescent point, Q will be at the intersection of the load line and the i_C-v_{CE} curve corresponding to the base current I_B. The coordinates of point Q give the dc collector current I_C and the dc collector-to-emitter voltage V_{CE}. Observe that for amplifier operation, Q should be in the active region and furthermore should be located so as to allow for a reasonable signal swing as the input signal v_t is applied. This will become clearer shortly.

The situation when v_t is applied is illustrated in Fig. 4.37. Consider first Fig. 4.37(a), which shows a signal v_t having a triangular waveform being superimposed on the dc voltage V_{NN}. Corresponding to each instantaneous value of $V_{NN} + v_t(t)$, one can draw a straight line with slope $-1/R_C$. Such an "instantaneous load line" intersects the i_C-v_{CE} curve at a point whose coordinates give the total instantaneous values of i_C and v_{CE} corresponding to the

Fig. 4.35 Graphical construction for the determination of the dc base current in the circuit of Fig. 4.34.

Fig. 4.36 Graphical construction for determining the dc collector current I_C and the collector-to-emitter voltage V_{CE} in the circuit of Fig. 4.34.

5 The term load line is also employed for the straight line in Fig. 4.35.
Finally, we note that in addition to its low and fixed (i.e., independent of bias current) gain, the enhancement-load amplifier has another drawback: Its signal swing is rather limited, since \(V_{DS} \) cannot rise above \(V_{DS} = V_1 \).

NMOS Amplifier with Depletion Load. Using a depletion load results in an amplifier with performance superior to that of the enhancement-load circuit. The depletion-load amplifier is shown in Fig. 5.53(a). Neglecting, for the moment, the body effect in the load transistor \(Q_2 \), we can use the graphical construction illustrated in Fig. 5.53(b) to obtain the amplifier transfer characteristic sketched in Fig. 5.53(c). As shown, the characteristic is steep, indicating a high voltage gain in region III, which is obtained when both \(Q_1 \) and \(Q_2 \) are operating in saturation.

For operation in region III of the transfer characteristic, the small-signal equivalent circuit in Fig. 5.54 applies. Here we have included the controlled source \(g_{m2} V_{DS2} \) that models the body effect in \(Q_2 \). Apart from this, the only other parameter representing \(Q_2 \) is its output resistance \(r_{o2} \). Analysis of the circuit in Fig. 5.54 is straightforward and can be shown to yield the following gain expression:

\[
A_v = \frac{V_1}{V_2} = -g_{m1} \left[\frac{1}{g_{m2}} \right] V_{DS2}
\]

(5.83)

Unfortunately, it is usually the case that \(\frac{1}{g_{m2}} \) is much smaller than \(r_{o1} \) and \(r_{o2} \), resulting in the gain being approximately given by

\[
A_v \approx -\frac{g_{m1}}{g_{m2}} = -\frac{g_{m1}}{g_{m2}}
\]

Thus,

\[
A_v = \frac{-g_{m1}}{g_{m2}} \frac{1}{\sqrt{\frac{W}{L} \frac{1}{X}}}
\]

(5.84)

Comparison of Eq. (5.84) with the gain expression for the enhancement-load amplifier (Eq. 5.82) reveals that the gain of the depletion-load amplifier is a factor of \(\frac{1 + X}{X} \) greater.

Since \(X \) is typically 0.1 to 0.3, the gain increases by a factor of 3 to 10. This is, nevertheless, quite a bit lower than the expected gain of the CMOS amplifier.
The Feedback-Type Converter

Figure 10.35 shows a simple A/D converter that employs a comparator, an up-down counter, and a D/A converter. The comparator circuit provides an output that assumes one of two distinct values: positive when the difference input signal is positive, and negative when the difference input signal is negative. We shall study comparator circuits in Chapter 12. An up-down counter is simply a counter that can count either up or down depending on the binary level applied at its up-down control terminal. Because the A/D converter of Fig. 10.35 employs a DAC in its feedback loop it is usually called a feedback-type A/D converter. It operates as follows: With a 0 count in the counter, the D/A converter output, v_{out}, will be zero and the output of the comparator will be high, instructing the counter to count the clock pulses in the up direction. As the count increases, the output of the DAC rises. The process continues until the DAC output reaches the value of the analog input signal, at which point the comparator switches and stops the counter. The counter output will then be the digital equivalent of the input analog voltage.

Operation of the converter of Fig. 10.35 is slow if it starts from zero. This converter however, tracks incremental changes in the input signal quite rapidly.

The Dual-Slope A/D Converter

A very popular high-resolution (12- to 14-bit) (but slow) A/D conversion scheme is illustrated in Fig. 10.36. To see how it operates, refer to Fig. 10.36 and assume that the analog input signal v_a is negative. Prior to the start of the conversion cycle, switch S_1 is closed, thus discharging capacitor C and setting $v_t = 0$. The conversion cycle begins with opening S_1 and connecting the integrator input through switch S_2 to the analog input signal. Since v_a is negative, a current $I = v_a/R$ will flow through R in the direction away from the integrator. Thus v_t rises linearly with a slope of $I/C = v_a/RC$, as indicated in Fig. 10.36(b). Simultaneously, the counter is enabled and it counts the pulses from a fixed-frequency clock. This phase of the conversion process continues for a fixed duration T_1. It ends when the counter accumulates a fixed count denoted n_{ref}. Usually, for N-bit converter, $n_{ref} = 2^N$. Denoting the peak voltage at the output of the integrator V_{peak}, we

Fig. 10.36 The dual-slope A/D conversion method. Note that v_a is assumed to be negative.