\[V_{DD} - \frac{V_{OUT}}{R_L} = \frac{I_Q - f(V_{GS}, V_{OUT})}{R_L} \]

DC

Operating Point

\[\frac{V_{DD} - V_{OUT}}{R_L} = I_Q \left(V_{GS}, V_{OUT} \right) \]

Don't forget

\[C_{GS} = \left[\frac{\partial Q}{\partial V_{GS}} \right]_{Q \text{ point}} \]

1st Order

Linear Eqn.

\[0 = g_m V_{in} + V_{OUT} \left(\frac{1}{R_L} + \frac{1}{R_D} \right) + C_L V_{OUT} \]

Zero & First Order

Solve both (sequentially), then combine back for total answer.

Nonlinear!

Solve for

Either triode or active eqn.

Usually not 2.5V, but close varies with temp.

Nonlinear Diff. Eqn.

\[V_{DD} - \frac{V_{OUT}}{R_L} = f(V_{GS}, V_{in}, V_{OUT} + \frac{dV_{OUT}}{dt}) + C_L \frac{dV_{OUT}}{dt} \]

\[= I_Q + V_{in} \frac{df}{dV_{GS}} + V_{OUT} \frac{df}{dV_{DS}} + C_L \frac{dV_{OUT}}{dt} \]

Out of Nonlinear Functions, worry about region of validity!

Add \(V_{in}(t) \) use Taylor expansion, take time varying \(V_{in}(t), V_{OUT}(t) \) out of nonlinear functions, worry about region of validity!