TOPICAL REVIEW

Printed and organic diodes: devices, circuits and applications

To cite this article: Thomas M Kraft et al 2017 Flex. Print. Electron. 2 033001

View the article online for updates and enhancements.
Printed and organic diodes: devices, circuits and applications

Thomas M Kraft, Paul R Berger and Donald Lupo

Abstract

We review the history and current state of the art of diodes fabricated with organic semiconductors and other printable materials. In particular, we look at the integration of printed diodes into circuits and systems for applications, with particular emphasis on rectification, energy harvesting, and negative differential resistance (e.g. tunnel diodes). An overview of solution processed and printable organic and inorganic materials utilised in diodes is provided with an in depth analysis of their physics of operation. Furthermore, it is explained how the diverse array in which printed diodes can be implemented demonstrates their potential in the printed electronics industry.

1. Introduction

The foreseen advantages of organic semiconductor materials rely on the possibility to fabricate electronic components and circuits using cost-effective manufacturing processes. A large number of devices have been demonstrated, such as organic field-effect transistors (OFET) [1–14], photovoltaics (OPV) [15–20] and light-emitting diodes (OLED) [21]. These topics have been extensively reported in the literature. There has been less emphasis on purely electronic diodes, but these are important not only for a better understanding of the device physics of OPV and OLED devices [22, 23], but also for their use as components in a variety of circuits.

In this review we will focus on rectifying diodes and will not address OPV [19, 24–27] or OLED [28, 29] in any detail; for these topics the reader is recommended to consult some of the excellent reviews which have appeared recently. In section 2 we discuss the basic architectures for organic and printed diodes, specifically Schottky, metal–insulator–metal (MIM) and doped p–n junction devices and review the development in understanding of how these devices work. In section 3 we review the classes of materials that have been used, including both evaporated and solution processed organic semiconductors as well as solution processed inorganic materials. In section 4 we review the progress in increasing the switching speed of organic and printed diodes and investigate the factors currently limiting high-speed operation. This section also includes the achievements in integration of organic and printed diodes into functional circuits for applications such as rectification, RF energy harvesting and thin-film-diode (TFD) display backplanes. In section 5 we review a recent special case of solution processed diodes, namely tunnel diodes.

In order to adequately cover novel progress in the field but keep the scope of this review manageable, we have chosen to discuss diodes that are based on organic semiconductors and/or are fabricated using solution processing. For example, organic diodes made by vacuum evaporation are included, as are metal oxide devices fabricated from solution, but we do not include metal oxide devices made using the vacuum processes that are seeing substantial commercialisation, e.g. in TFT display backplanes [30, 31].

2. Organic diode architectures

The diode is a quintessential component used in electronics to control the unidirectional flow of current. A key component of a diode is a junction that allows current to flow in one direction but not in another. The most common diodes in conventional electronics are based on p–n homo- or heterojunctions; the physics of such diodes is well described and part of a basic education in solid state physics [32], therefore will not be described further here.

Another common type of diode in the conventional electronic industry is a Schottky diode, which consists of a layer of p or n type semiconductor situated between two contacts, one of which is Ohmic and
Figure 1. Energy level alignment diagram between a metal and a p-type semiconductor (a) before contact, (b) after contact. E_{vac} is the vacuum energy level, ϕ_M is the metal work function, $E_{F,M}$ is the metal Fermi energy, $E_{F,SC}$ is the semiconductor Fermi energy, χ is the semiconductor electron affinity, E_C is the semiconductor conduction band edge, E_V is the semiconductor valence band edge, ϕ_V is the Schottky barrier energy and W is the depletion region. Reproduced with permission from [33].

one of which blocks charge injection in one bias but not in the other [32]. Figure 1 below shows a sketch of a Schottky contact between metal and p type semiconductor [33]. On the left side of the figure, the metal and semiconductor are isolated from each other. When they are brought together in equilibrium, the Fermi levels align. As long as the work function of the metal and the Fermi level of the semiconductor are not the same, this alignment includes movement of charges in the region close to the interface and leads to band bending. In the case of a metal work function smaller than the distance from the semiconductor Fermi level to the vacuum, this leads to a depletion region close to the interface. Under forward bias holes can move more or less unhindered from the semiconductor into the metal, while under reverse bias there is a significant barrier to hole injection from the metal, leading to rectifying behaviour of the diode.

Many solution processed organic diodes are single layer devices due to the difficulty of multilayer solution coating or printing, and are based on a semiconductor with primarily electron or hole conduction properties. For this reason, the Schottky model is commonly used in describing solution processed diodes. However, at least for organic diodes this model may be questionable. This begins with the differences in energy level structure and charge transport in organic semiconductors [34]. Energy states in organic semiconductors are far less localised than in conventional semiconductors and it is common to use the terms ‘highest occupied molecular orbital’ (HOMO) and ‘lowest unoccupied molecular orbital’ (LUMO) instead of valence and conduction band, respectively. Charge transport is also not ballistic but dominated by hopping from one semi-localised energy state to another. In addition, most of the time (we will discuss doped semiconductor devices below) organic semiconductors are used in an undoped, quasi-intrinsic state, and the terms ‘p type’ and ‘n type’ refer to relative charge carrier mobility and not to carrier concentration as in conventional semiconductors. Using typical estimates of intrinsic charge carrier densities in organic materials [33] a simple Schottky model would predict a depletion region of several μm, compared to typical diode thicknesses from a few 10 s to a few 100 s of nm.

Therefore it may be more suitable to speak of most organic diodes as MIM diodes. At equilibrium, there is no band bending at the Schottky contact and some band bending at the Ohmic contact due to hole injection [35]. In forward bias (figure 2(a)) the hole is easily injected from the anode ($x = 0$) and extracted by the cathode ($x = L$). In reverse bias, shown in figure 2(b), the hole would have to be injected over the significant Schottky barrier from the cathode into the semiconductor and very little current flows.

Blom et al have studied the physics of single-carrier organic MIM diodes in some detail, to a large extent as a means for better understanding of OLEDs and OPV devices [35–37]. As seen in figure 2 above, the bands in the intrinsic semiconductor are tilted at equilibrium with a built-in voltage equal to the difference in electrode work functions, due to the alignment of the Fermi levels of the electrodes. If one contact is Ohmic and one is rectifying, there will be a small or no barrier for injection of charge carriers (in organics, usually holes) in forward bias. The Schottky contact is chosen so that the barrier both for electron injection in forward bias and hole injection in reverse bias is too large for significant current to flow. In the common operational region of organic MIM diodes, drift current dominates, and a net (positive) space charge is built up within the device, which leads to an electric field within the semiconductor [35]. This space charge limits the current that can flow, i.e. the I–V behaviour is dominated by space charge limited current (SCLC).
In the SCLC limit, the current is given by the expression of Mott and Gurney [38]:

\[
J = \frac{9}{8} \varepsilon \mu \frac{(V - V_{bi})^2}{L^2},
\]

(1)

where \(V_{bi} \) is the built-in voltage defined by the electrode work function difference. The SCLC limit only applies when the applied voltage is larger than the built-in voltage. Below this, the electric field is opposite in sign to the applied voltage, and current is dominated by diffusion due to the hole gradient, which is much larger than the negative drift current from the electric field. In the past, the Shockley diode equation has been applied to describe this region of operation:

\[
J = J_0 \left[\exp \left(\frac{qV}{nkT} \right) - 1 \right],
\]

(2)

where \(J_0 \) is an empirical analogue to the reverse saturation current in ideal p–n junction diodes and \(n \) is the ideality factor. However, this model was developed to apply to p–n junction diodes, where the ideality factor is related to recombination of injected minority carriers and may not be suitable for MIM single-carrier diodes.

De Bruyn et al studied the current–voltage characteristics of hole-only MIM organic diodes below SCLC [35] in detail based on Schottky’s model of diffusion current at metal–semiconductor interfaces [39]. The model needs to be modified from the original theory, which described a contact between metal and doped semiconductor and diffusion of majority carriers to match Fermi levels. In MIM diodes, there are no dopants to induce band bending at the Schottky contact, so that the treatment of the diffusion current needs to consider the entire semiconductor thickness. Within this model, they found the following expression for the current density in the region below the built-in voltage:

\[
J = \frac{q\mu_p N_c (\varphi_p - V)}{L} \left[\exp \left(\frac{qV}{nkT} \right) - 1 \right].
\]

(3)

Almost the same equation was derived earlier by Nguyen et al [40] in their analysis of two-carrier OLED devices. However, implicit in this equation is the assumption that the built-in voltage is equal to the difference in electrode work functions. This is not entirely accurate because of hole injection at the Ohmic contact (see figure 2(b)) where there is some hole injection from the electrode leading to a small accumulation region and band bending in the semiconductor, which reduces the built-in voltage. De Bruyn et al approximated this by maintaining a straight line band diagram with an added energy shift \(b \) characterising the reduction in built-in voltage. As a result, equation (3) is simply modified by replacing \(\phi_p \) by \(\phi_p - b \) for \(V_{bi} \) and describes the \(I–V \) behaviour up to \(\phi_p - b \), above which equation (1) holds. They found also that this modification to the Schottky formalism explained the typical non-ideality factor of 1.2 seen in the sub-SCLS region of organic MIM diodes.

Wetzelaer and Blom [37] later also considered the case of a symmetrical (non-rectifying) hole only MIM device with two Ohmic contacts. Due to the band bending and diffusion of charge described above, an Ohmic current is seen even if the semiconductor is completely free of inherent charge carriers, and the current density below the built-in voltage is given by

\[
J = \frac{4\pi \sqrt{\varepsilon \mu V}}{qL}.
\]

(4)

They recommended using the \(I–V \) characteristics in this region as a method to determine the charge carrier mobility of the material, as changes in mobility due to charge carrier density are not yet significant.

MIM diodes based on polymers represent a very simple structure, which is easily fabricated by large-area, high volume printing technologies, as high lateral resolution is not needed. However, printing a diode in laboratory ambient air is very different than spin
coating organic materials in a glove box and evaporating clean metal contacts. Since the nature of the metal–semiconductor contact is crucial for performance of the devices, it is not surprising that printed diodes may show behaviour that a simple application of literature values for semiconductor energy levels and electrode work functions would not predict. Lilja et al. \[41, 42\] fabricated MIM diodes in a particularly simple process, starting with wet-etched patterned Cu on PET as substrate and gravure printing the air-stable amorphous organic hole transporting semiconductor poly(triarylamine) (PTAA) and a top electrode of a silver-flake ink. Based on literature values of the work functions of Ag and Cu of 4.3 and 4.7 eV, respectively, and a HOMO level of PTAA of 5.1 eV, two Schottky contacts with different energy barriers could be expected. However, \(I-V\) measurements showed SCLC at low voltages, rectification ratios up to \(10^5\), and also that Ag was clearly the anode and Cu the cathode. Furthermore, the rectification ratio varied between \(10^5\) if the copper was sputter deposited before patterning and \(10^3\) for thermally evaporated Cu, and the onset of SCLC was 0.2 V for evaporated and ca 2 V for sputtered copper. Kelvin probe measurements showed that the Ag was heavily oxidised and had an effective work function of ca 5.1 eV due to the large amount of Ag\(_2\)O in the electrode. Impedance spectroscopy and XPS analysis of the Cu/PET layer shed more light on the Cu/PET/PTAA interface; in both cases nm scale layers of Cu(I) oxide and organic material were found, but the layers were significantly thicker on the sputtered Cu/PET films. Based on this, it was proposed \[42\] that the double layer of two materials of different dielectric constant changes the effective energetics of the metal–semiconductor interface, This causes Cu to act as an effective cathode and blocks hole injection in reverse bias. In forward bias, the build-up of charge at the interface generates a field that allows effective tunneling of holes through the interlayer for collection by the Cu electrode (see figure 3).

An impressive example of the importance of interfaces in organic MIM diodes was reported by Cölle et al. \[43\]. They made electron-only devices with a number of different polymers (even including insulating polystyrene) and the small molecule OLED material Alq\(_3\). In about a third of the devices, multiple conductive states were observed leading to substantially different \(I-V\) curves. It was possible to switch between the state by applying suitable voltage pulses, so that the devices could be operated as non-volatile memory cells. The key to the memory effect was identified as the oxide layer between the organic and the aluminium electrode.

Most solution processed or printed diodes are based on vertical structures in order to be more printing compatible by reducing the demands on lateral resolution. A different and novel approach was reported by Anthopoulos et al. \[44–46\] which they termed adhesion lithography. In this approach one metal is deposited, then coated with a self-adsorbed monolayer (SAM). Subsequently, a second metal which adheres poorly to the SAM is deposited. An adhesive tape is then applied to the substrate and peeled off; this removes the second metal from the area coated by the SAM and leaves the second metal elsewhere, with a ca 15 nm gap between the two metals. Using this technique and a solution processable ZnO semiconductor, they demonstrated fabrication of diodes operating at
up to 13.56 MHz. Printed metal oxide diodes have also been reported in vertical configurations, but we will discuss these in the section on switching and applications.

The diodes discussed above are all generally MIM diodes and best modelled accordingly; this accounts for the vast majority of organic and printed rectifying diodes. However, a p–n or p–i–n structure is also fundamentally possible in organics, and in particular Leo et al have reported extensively on this [47], especially for applications in OLEDs and OPV. They have also reported rectifying diodes based on such structures. As the conductivity of a semiconductor depends linearly on both the charge carrier mobility and charge carrier concentration, doping of organic semiconductors, which have significantly lower mobility than conventional crystalline semiconductors, can strongly reduce resistive losses and transit time in the diode. Furthermore, heavy doping can cause an Ohmic or quasi-Ohmic contact between many different electrode materials and the doped semiconductor due to the very narrow depletion layer at the contact. This has been proven to be useful in designing OLEDs that do not depend on highly oxidisable electrode materials such as Ca [47]. On the other hand, this approach is difficult to apply to solution processed or printed devices, so this technique has thus far largely been limited to devices prepared by vacuum evaporation.

Kleeman et al [48] applied the p–i–n structure to rectifying diodes, using a heterojunction stack of p-doped pentacene, intrinsic pentacene, and n-doped C60. In addition to optimising the doping of the p and n layers, the thickness of the intrinsic layer, over which the main voltage drop in the device occurs, was optimised to find the best value to deliver large rectification (aided by a thicker layer) and shorter transit time (aided by a thinner layer). The same group also studied reverse-bias breakdown behaviour in such p–i–n diodes [49, 50] and found strong evidence that the reverse breakdown was due to Zener tunnelling between HOMO and LUMO of the p- and n-doped parts of the stack through a depletion layer defined primarily by the thickness of the intrinsic layer. The thickness dependence of breakdown voltage, coupled with a weak temperature dependence, was seen as strong evidence that the mechanism is tunnelling and not avalanche breakdown. Furthermore, the breakdown voltage could be tuned over a wide range, from ca. –6 to –18 V by controlling both the order of deposition of the stack (n–i–p versus p–i–n) and the thickness of the intrinsic layer.

3. Semiconductor materials for diodes

In this section, we review both evaporated and solution processed organic semiconductors as well as solution processed inorganic materials used in diodes. Like other printed electronics, solution processed diodes have the potential to provide low cost and flexible alternatives to traditional diodes through printed fabrication. For example, the printing of a uniform polymer film can be performed in a number of different ways and these vary between those used for small scale tests in the lab and those used for high volume production. Common film forming techniques in the lab include spin coating, doctor blading and casting. For high volume processing it is possible to use coating techniques such as slot-die, gravure, knife-over-edge, off-set and spray coating [51]. In particular, printing techniques such as gravure, flexographic, screen, and inkjet can offer enhanced processing detail.

We have provided a review of some of the organic compounds and solution processed inorganic materials used in a variety of diodes. The materials and their processing conditions are summarised in table 1 with the organic materials structures illustrated in figure 4.

3.1. Organic materials for diodes

The unique electronic properties of conjugated organic compounds (molecules and polymers) allow them to be used for various electronic applications which include xerography, multi-element sensors, batteries, and organic electronics. Organic electronics can be fabricated with conjugated polymers or small molecules to fabricate a number of organic devices (i.e. FET, OLED, and OPVs), with their use in such devices enabled by the semiconducting electronic characteristic of the conjugated materials. A detailed description of conjugated organic molecules and polymers is readily found in recent literature and out of the context of this review.

With their inherent benefit for use in printing, conjugated polymers are of particular interest as they have enhanced solution processability over small molecules whose films are normally best achieved via vacuum processing (i.e. thermal sublimation). Semiconducting polymers have an unsaturated carbon based backbone with alternating single and double bonds [66]. Each carbon atom has one electron in a p-orbital that is not involved in the σ-bond. The p-orbitals between adjacent carbon atoms overlap to create a π-system. These overlapping p-orbitals form a delocalised π-electron cloud along the backbone of the polymer. The molecular energy levels of the σ-band (HOMO) and the π*-band (LUMO) provide a critical characteristic of the polymer. The energy difference between the HOMO and LUMO is known as the band gap, which is responsible for various characteristics including absorption, photoluminescence, and photo-induced charge transfer.

The electronic transport properties of a conjugated polymer are affected by several intrinsic and extrinsic properties. Intrinsic molecular level properties include ionisation potentials, electron affinity, coulomb correlations, and, as previously mentioned,
Table 1. Semiconducting materials and processing methods for organic and printed diodes.

<table>
<thead>
<tr>
<th>Semiconductor layer</th>
<th>Material type</th>
<th>Processing method</th>
<th>Example of application</th>
<th>Example of device architecture</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,4′-bis[N-(1-naphthyl)-N-phenyl-amino]biphenyl [α-NPB] pentacene</td>
<td>Organic</td>
<td>Evaporated</td>
<td>Organic diode</td>
<td>Glass/ITO/α-NPB/Al</td>
<td>Haldi et al [52]</td>
</tr>
<tr>
<td>C$_{60}$-polystyrene (95:5)</td>
<td>Organic</td>
<td>Evaporated</td>
<td>50 MHz rectifier organic diode</td>
<td>Glass/ITO/pentacene/Al</td>
<td>Steudel et al [53]</td>
</tr>
<tr>
<td>Poly(3-hexithiophene) [P3HT]</td>
<td>Organic</td>
<td>Spin coated</td>
<td>Schottky diode</td>
<td>Au/C$_{60}$/PS/Al</td>
<td>Haldi et al [52]</td>
</tr>
<tr>
<td>Poly[2-methoxy-5-(2′-ethyl-hexyloxy)-1,4-phenylenevinylene] [MEH-PPV]</td>
<td>Organic</td>
<td>Spin coated</td>
<td>Polymer diode</td>
<td>PC/IZO/(PEDOT:PSS)/P3HT/Al</td>
<td>Lin et al [54]</td>
</tr>
<tr>
<td>N,N′-bis(m-tolyl)-N,N′-diphenyl-1,1′-biphenyl-4,4′-diamine [poly-TPD]</td>
<td>Organic</td>
<td>Spin coated</td>
<td>Tunnel diode (with TiO$_2$ layer)</td>
<td>Glass/ITO/TiO$_2$/MEH-PPV/Al</td>
<td>Yoon et al [55]</td>
</tr>
<tr>
<td>Poly[2-methoxy-5-(2′-ethyl-hexyloxy)-1,4-phenylenevinylene] [MEH-PPV]</td>
<td>Organic</td>
<td>Spin coated</td>
<td>Polymer diode</td>
<td>Glass/ITO/poly-TDP/Al</td>
<td>Haldi et al [52]</td>
</tr>
<tr>
<td>Poly[bis(4-phenyl)[2,4,6-trimethylphenyl]amine] a.k.a. poly (triarylamine) [PTAA]</td>
<td>Organic</td>
<td>Gravure printing</td>
<td>13.36 and 10 MHz rectifying organic diodes</td>
<td>PET/Cu/PTAA/Ag and PET/Ag/AgO$_2$/PTAA/Cu</td>
<td>Li et al [56, 57]</td>
</tr>
<tr>
<td>Pentacene and ZnO</td>
<td>Hybrid</td>
<td>ZnO (dip-coated) pentacene (evaporated)</td>
<td>p–n junction diode</td>
<td>Glass/ITO/ZnO/pentacene/Au</td>
<td>Haldi et al [52]</td>
</tr>
<tr>
<td>PQT-12 and ZnO</td>
<td>Hybrid</td>
<td>ZnO (dip-coated) pentacene (spin coated)</td>
<td>p–n junction diode</td>
<td>Glass/ITO/ZnO/PQT-12/Au</td>
<td>Sun et al [63]</td>
</tr>
<tr>
<td>P3HT and pentacene</td>
<td>Organic</td>
<td>P3HT (spin coated) pentacene (evaporated)</td>
<td>Schottky diode</td>
<td>Au/P3HT/pentacene/Al</td>
<td>Sun et al [63]</td>
</tr>
<tr>
<td>Zinc oxide (ZnO)</td>
<td>Inorganic</td>
<td>Spin coated</td>
<td>Inorganic Schottky diode</td>
<td>Au/ZnO/Al</td>
<td>Semple et al [45, 46]</td>
</tr>
<tr>
<td>ZnO and Ga$_2$O$_3$</td>
<td>Inorganic</td>
<td>Spin coated</td>
<td>Resonant tunnelling diode</td>
<td>Glass/Al/ZnO/Ga$_2$O$_3$/ZnO/Ga$_2$O$_3$/ZnO/Al</td>
<td>Labram et al [64]</td>
</tr>
<tr>
<td>Sb-doped Si and NbSi$_2$ microparticles in photoresist binder (SU8 2010)</td>
<td>Hybrid</td>
<td>Screen printing</td>
<td>1.6 GHz diode</td>
<td>PET/Al/SU8:Sb-Si/SU8:NbSi$_2$/carbon paste/Ag</td>
<td>Sani et al [65]</td>
</tr>
</tbody>
</table>
the HOMO–LUMO π-bands. The HOMO–LUMO band gap energy can also be described as the energy difference between the valence band and the conduction band \(E_G = E_V - E_C \). The energy associated with the valence band is equivalent to the ionisation potential and the energy of the conduction band is equivalent to the electron affinity. Extrinsic properties that have an effect on a polymer’s transport properties include crystallinity, morphology, disorder, intermolecular interactions, and impurities. These properties can be controlled by carefully engineering the polymer’s structure.

3.2. Inorganic materials for diodes

The use of solution processable inorganic semiconductors have not only provided a route for printable inorganic diodes but have found a use in numerous printed electronic devices, including OPVs [67–69], and FETs [70]. Solution processed inorganic films can be made with metal oxide semiconductors which can be prepared via a sol–gel precursor solution or dispersed in solvent. An example of a commonly used solgel, is for the formation of a thin zinc oxide (ZnO) film used in many device applications. The solgel can be deposited using spin coating and then annealed at 300 °C in air to form zinc oxide. An example of the ZnO sol–gel solution is comprised of zinc acetate \((\text{Zn}(\text{O}_2\text{CCH}_3)_2)\) dissolved in 2-methoxyethanol:ethanolamine (96:4) [71]. The major disadvantage to the use of this particular solgel is the high annealing temperature necessary to form the oxide film. Another alternative was utilised by Semple et al in which a 0.25 M precursor solution was prepared by dissolving zinc oxide hydrate in ammonium hydroxide (50% aqueous) [46]. This was then deposited by spin coating and annealed at 180 °C for 20 min to form the diodes ZnO film. Furthermore, in a recent study by Labram et al ZnO was utilised in conjunction with Ga_2O_3 to prepare resonant tunnelling diodes (RTD) [64]. Similar to the previously explained ZnO layer, which was spin coated from a ZnO hydrate precursor solution, the Ga_2O_3 layers were spin coated from a gallium nitrate hydrate solution. The Ga(NO_3)_xH_2O was dissolved in water (12 mg ml\(^{-1}\)), spin coated in air, and annealed at 200 °C for 30 min. For a solution processable ZnO layer that is compatible with low-Tg plastic substrates the high temperature annealing step should be circumvented. To accomplish this for future device fabrication, a metal oxide nanoparticle dispersion could be utilised. Like zinc oxide, solution deposition has been used for other metal oxide films for various electronic applications. This includes, but is not limited to, molybdenum trioxide [72] and tungsten trioxide [73] solutions, which were both used with low temperature annealing in organic photovoltaics.

Other components of the diode architecture have been printed, in addition to the semiconducting diode layers, including the top electrode. A summary of printed conductive inks used as the top electrode of diodes is found in table 2.

4. Circuits and switching

Circuits based on diodes leverage the rectifying properties of diodes. Most literature on printed/organic diode
Based circuits focuses on conversion of an AC to a DC voltage for the purpose of generating a DC signal or for harvesting of AC energy, though at the end we will briefly look at a potential application in display backplanes.

Much of the initial work on rectifier circuits was performed when interest in fully printed radio frequency identification (RFID) tags was very high. As a result, the key task was to convert the oscillating electromagnetic field into a dc voltage for the purpose of driving on-board circuitry. For this purpose, the rectification ratio should be good but it is not as critical a parameter as the switching speed, i.e. the speed with which the diodes in the circuit can react to a change in incoming signal. Far beyond the maximum switching speed, the diode operates only as a geometric capacitor and cannot rectify a signal.

Various rectifier circuits have been reported. The simplest consists only of a diode in series with a smoothing capacitor in parallel with a load resistance and is called a half-wave rectifier figure 5(a), since only one half of the incoming signal is passed through. Many of the reported results on rectifiers have been obtained with this simple circuit. A full-wave rectifier is shown in figure 5(b), which is significantly more complex, and in figure 5(c) a double half-wave rectifier is shown, which can extract energy from both the positive and negative branches of the input AC signal but is still relatively simple to fabricate. Rectifiers fabricated from transistors are also reported in the literature but are beyond the scope of this review.

A simple upper limit expression for the switching speed of a diode in a simple rectifier circuit relates the switching speed to the transit time for charge carriers to traverse the semiconductor layer, given by

$$f_{\text{max}} = \frac{1}{\tau_T} = \frac{\mu(V_{\text{IN}} - V_{\text{DC}})}{d^2}, \quad (5)$$

where μ is the charge carrier mobility and d is the semiconductor layer thickness. However, Steudel et al [53] argued that this approach, based on a small signal analysis is too simplistic in the case of high input and output voltages, and proposed an alternative model. In their analysis, the maximum frequency is based on the relationship between the charges needed by the load in one cycle and the charges delivered by the diode in one charging cycle and given by

$$\frac{V_{\text{DC}}}{R_1} \left(\frac{2\pi}{\omega} \int_{t_1}^{t_2} I_{\text{diode-forward}} \, dt \right), \quad (6)$$

where SCLC is assumed. While this approach appears to work well for the evaporated pentacene diodes reported in [53], it is less clear whether this works as well for printed (and thus thicker) diodes based on lower mobility materials. However, neither of these upper limit estimates consider the additional effect of the capacitance of the printed diode itself, which can be significant and, for large area, thin diodes at high frequencies, be comparable to the effect of transit time.

The performance of a rectifier circuit depends on a number of factors, such as the effectiveness of switching at the target frequency, the load into which the

Table 2. Printed electrodes used in diode fabrication.

<table>
<thead>
<tr>
<th>Material</th>
<th>Function</th>
<th>Printing method</th>
<th>Device structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silver flake ink[56, 58]</td>
<td>Top electrode (bottom electrode: Cu on PET)</td>
<td>Gravure printed</td>
<td>PET/Cu/PTAA/Ag</td>
</tr>
<tr>
<td>Carbon and Ag paste[65]</td>
<td>Top electrode</td>
<td>Screen printed</td>
<td>PET/AI/Sb-Sb-Si/SU8:NbSi2/carbon paste/Ag</td>
</tr>
</tbody>
</table>

Figure 5. Rectifier circuits. (a) Half-wave; (b) full-wave; (c) double-half-wave.
signal is fed, and losses in the circuit e.g. from series resistance in the diode, which can be significant for low-mobility, undoped materials. A common figure is the 3 dB point, which is the frequency at which the dc output is reduced 3 dB from the maximum signal, but for a full performance assessment the maximum output is also needed. It is frequently challenging to compare different literature reports because the reporting of conditions is often incomplete. Table 3 below shows some results for rectifiers at or close to the HF RFID frequency of 13.56 MHz for which sufficient data was available for a comparison.

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>Input voltage (V)</th>
<th>Output load (Ω)</th>
<th>Output voltage (V)</th>
<th>Rectifier type</th>
<th>SC material</th>
<th>Fabrication method</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>18</td>
<td>50 k</td>
<td>11</td>
<td>H-W, diode</td>
<td>Pentacene</td>
<td>Vacuum</td>
<td>[53]</td>
</tr>
<tr>
<td>14</td>
<td>5</td>
<td>1 M</td>
<td>2</td>
<td>H-W, diode</td>
<td>CuPc</td>
<td>Vacuum</td>
<td>[74]</td>
</tr>
<tr>
<td>13.56</td>
<td>10</td>
<td>1 M</td>
<td>4</td>
<td>H-W, diode</td>
<td>PQT-12</td>
<td>Spin-coating</td>
<td>[54]</td>
</tr>
<tr>
<td>13.56</td>
<td>10</td>
<td>1 M</td>
<td>3.5</td>
<td>H-W, diode</td>
<td>PTAA</td>
<td>Printing</td>
<td>[59]</td>
</tr>
<tr>
<td>13.56</td>
<td>11</td>
<td>1 M</td>
<td>14.9</td>
<td>Double H-W, diode</td>
<td>Pentacene</td>
<td>Vacuum</td>
<td>[75]</td>
</tr>
</tbody>
</table>

The choice of rectifier circuit for a given application needs to consider the specific non-ideal properties of printed and organic diodes. Heljo et al [39] investigated both half-wave and full-wave printed rectifiers based on PTAA. Although the full-wave configuration could in principle harvest more energy from the incoming AC signal than the half-wave, the voltage drop over the diodes led to a reduced overall output from the full-wave circuit. However, the output signal was smoother with a full-wave rectifier so that for applications requiring low ripple the full-wave might still be a good option.

While much earlier work on RF rectifiers was aimed at fully printed HF RFID tags, optimism for fully printed RFID tags has faded significantly, though there is still strong interest in printed NFC tags [76]. On the other hand, RF is a potential source of energy for powering distributed energy autonomous sensors. Lehtimäki et al [77] demonstrated an energy harvesting system consisting of a printed rectifier and aqueous supercapacitors: the system was charged by a commercial 13.56 MHz RFID reader, and was able to run a low power ASIC for close to 11 h on the energy harvested by the rectifier and stored in the supercapacitors.

An issue with RF harvesting is that much of the RF energy available is at relatively high frequencies, in the GHz or slightly below range, e.g. cell phone systems, UHF RFID and Wifi. This has traditionally presented a severe challenge for printed diodes, but there has been significant progress recently. The first report of an organic diode rectifying at close to 1 GHz was from Steudel et al [78]. They reported rectification up to 869 MHz (approximately the 3 dB point) in a half-wave rectifier made of evaporated pentacene on a flexible substrate. However, there were no printing or solution processing steps in this circuit. Kleeman et al [48] reported a half-wave rectifier from the pentacene/C60 p–i–n diode discussed in section 2. Based on the published figures the 3 dB point was around 100 MHz but significant rectification was observed up to the measurement limit of 300 MHz, with the authors extrapolating to expectations of ability to rectify up to 1 GHz.

The first report of a printed rectifier operation above 1 GHz, to our knowledge, was by Sani et al in 2014 [65]. The diodes consisted of layers of ground up Si wafers dispersed in SU8 photopolymer followed by ground up conductive NbSi2, also dispersed in SU8, situated between Al/Al2O3 and carbon/Ag electrodes. It is not possible from the paper to determine the power harvesting efficiency or what kind of rectifier circuit or load resistor was used, the 3 dB point appeared to be close to 1.6 GHz. The authors were able to use the RF signal from a mobile phone during a call (carrier frequency 1.8 GHz) to switch a small electrochromic display element, but quantitative information is difficult to extract from the report. Still, this is the first definitive demonstration of effective rectification above 1 GHz in a fully printed rectifier. More recently, the same group [79] reported a simpler manufacturing method based on the lamination of a free-standing composite film of Si microparticles, glycerine and nanofibrillated cellulose between an Al Schottky
contact and a Ni coated carbon Ohmic contact. They were able to demonstrate a cut-off frequency of 1.8 GHz and studied the maximum power point for energy harvesting using a variable load resistance.

Solution processed metal oxides are also promising materials for high-speed diodes, as they exhibit high charge carrier mobility, and processing temperatures, while not ready for sensitive polymers such as PET, have reached levels compatible with polyimide. Georgiadou et al [46, 80] measured the frequency response of the nanogap ZnO diodes discussed in section 2 and found no loss in dc output at all up to the measurement limit of 20 MHz. Based on the geometry of the devices and the mobility of the material, switching frequencies

Figure 7. (a) Photograph and (b) schematic of a gravure printed organic charge pump. Reprinted from [60]. Copyright 2014, with permission from Elsevier.

Figure 8. Pulsed voltage multiplier. (a) Output at each stage, (b) output as function of input voltage. Reproduced from [85]. © IOP Publishing Ltd. All rights reserved.
well into the GHz range are expected. However, detailed descriptions of rectifier circuit and performance or of energy harvesting have not been published.

While standard rectifiers are useful circuits for creating a relatively low DC voltage or for harvesting energy from an RF field, the situation also arises in which very little current is needed to drive a high input impedance device, but a voltage higher than the input AC voltage is needed. In this case a charge pump circuit can be implemented as a voltage multiplier. The first organic diode based charge pump was reported by Mutlu et al. [81], who fabricated a single stage charge pump based on drop cast P3HT with electrodes patterned by photolithography and shadow mask. The DC output was not larger than the AC input, but an improvement over the expectation of a simple rectifier circuit was achieved. However the DC output began to decrease already after ca 1 kHz. The following year, Heljo et al. [82] reported a two stage charge pump based on gravure printed PTAA diodes and inkjet printed capacitors, which yielded 18 V DC from a 10 V AC input up to ca 1 MHz and just over 10 V DC at 13.56 MHz. Park et al. [83] reported a fully printed rectenna including charge pump circuit operating at 13.56 MHz in 2012, using ZnO as semiconductor. They integrated this into a 1 bit RFID transponder as well [84] At very high load resistance they were able to obtain over 40 V DC from a 20 V AC input, but the output voltage dropped rapidly with load resistance figure 6. This is a general issue with printed charge pumps, which are designed to deliver voltage rather than current.

Heljo et al. [60] reported a fully gravure printed two stage charge pump in 2013. A pre-patterned backplane of Cu on PET formed the diode cathode, capacitor bottom electrode, and interconnects. PTAA and PMMA were gravure printed as diode semiconductor and capacitor dielectric, respective, and a silver-flake ink was printed as diode anode and capacitor top electrode. The circuit and a photo of the charge pump are shown in figure 7. While the performance was not quite as good at 13.56 MHz and 1 MΩ load as the circuit prepared by heterogenous integration of gravure printed diodes and inkjet printed capacitors, the fabrication process for this monolithically integrated circuit was much simpler. Nonetheless, the input voltage was almost doubled at low frequency, and the output of 8.4 V DC for a 10 V AC input at 13.56 was significantly better than could be achieved with a simple rectifier circuit. For a 10 MΩ load ca 12 V DC could be extracted from a 10 V AC input at 13.56 MHz.

The charge pump circuits described above are useful for converting an AC voltage to a higher DC voltage. However, for circuits operating from a DC power which need only a short pulse at higher voltage, another approach is needed. Recently, Ng et al. [85]
reported a fully inkjet printed pulsed voltage multiplier comprising a transistor based pulse generator and a PTAA diode based voltage multiplier. With this configuration they were able to demonstrate multiplication of the generated pulse (see figure 8).

A very different application from AC/DC converters and voltage pumps is the area of display backplanes. While the standard approach for high resolution active matrix displays is the use of thin-film transistors (TFTs), TFTs offer the potential for lower cost manufacturing due to the simpler architecture. This was a significant field of activity in the 1990s [86] and MIMs were used for some time in mobile phone displays. The subject arose more recently again as Amorphyx announced TFT backplane technology based on amorphous metal films [87]. The simplicity of printed organic MIM diodes makes the TFT approach attractive for cost-sensitive applications, e.g. in signage, where extremely high resolution is not needed. In the case of a TFT backplane, especially for e-paper type displays in signage, fast switching is not needed, in contrast to RF rectification. On the other hand, the rectification ratio, which must be relatively modest for RF rectification, is critical to avoid crosstalk in the display. There have not been many reports of printed TFTs for display backplanes, but Lilja et al [88] and Virtanen et al [89] reported a circuit, driving scheme and simple implementation of a backplane for an electrophoretic display (figure 9).

5. Tunnel diodes

A particular subset of diodes with unique properties that can translate to potentially impactful low-energy hybrid transistor/diode circuits are called tunnel diodes. As revealed in Leo Esaki’s Nobel prize winning work [90], quantum mechanical tunnelling through a thin barrier with quantum selection rules imposed by the allowed density-of-states (DOS) and carrier populations of the multilayer system, leads to negative differential resistance (NDR). The manifestation of NDR in a diode is when the I–V characteristics resembles a capital letter ‘N’, whereby it first rises in current with increasing voltage bias, figure 10(a), but then falls in current with additional voltage bias, shown between figures 10(b) and (c), called the ‘NDR region’, before finally rising again as conventional diffusion current becomes exponentially significant (see figure 10(d)). There are many circuit topologies that span memory [91–93], logic [94], and mixed-signal [95] that can be enhanced by these hybrid tunnel diode/transistor circuits, reducing device count, lowering parasitic delays and dropping power consumption (see figure 11 as TSRAM example). Indeed, since quantum tunnelling is significantly faster than conventional drift or diffusion currents, inorganic tunnel diodes have reached oscillation frequencies in excess of 2 THz [96]. For a more comprehensive discussion of NDR devices and circuits, please see Berger and Ramesh [97]. But, most reports of diodes with NDR properties are relegated to the inorganic semiconductor community. Treated here is a brief review of some diodes that manifest NDR and fall within the category of having been printed, or could easily be seen as print compatible in the near future.

One of the first reports of NDR behaviour with organic molecules was reported by Reed and Tour [98], where a thin gold wire was stretched until it finally broke, leaving a nanometre sized gap in between. Then the ‘break wire’ was immersed in a solution with conducting molecules whose terminations were thiol units, which have a significant chemical affinity for gold bonding. Thus, if all went well, a single molecule would bridge the break wire gap, but sometimes two or three molecules. When the voltage bias was swept upwards, the measured current exhibited NDR. And the measured NDR had a peak-to-valley current ratio (PVCR) exceeding 2, although higher PVCR is permitted. As shown, a quantum tunnelling current superimposed on the normal diode diffusion current creates a rise in current at low voltages (a), followed by a peak at (b) where the tunnelling probability peaks due to energy level overlaps, and then followed by the NDR between (b) and (c). The normal diffusion current raises the current again at (d). The PVCR is a unitless metric derived by dividing the current at (b) by the current at (c).

Figure 10. As shown, a quantum tunnelling current superimposed upon the normal diode diffusion current creates a rise in current at low voltages (a), followed by a peak at (b) where the tunnelling probability peaks due to energy level overlaps, and then followed by the NDR between (b) and (c). The normal diffusion current raises the current again at (d). The PVCR is a unitless metric derived by dividing the current at (b) by the current at (c).
in order to form the second critical latch state. These early ‘break wire’ molecular diodes only spiked up and then back down, therefore they were unsuitable for hybrid transistor/tunnel diode circuits.

But in 2005, the first report of a potentially printable organic tunnel diode was made using a single thin metal-oxide tunnelling barrier between the anode and a relatively thick organic semiconductor [55], shown in figure 13. Since the metal-oxide tunnelling barrier defines the majority of the NDR, the thickness of the organic semiconductor becomes less relevant, and thus relaxes the constraint on thickness, rendering it printable in the future. In this early report, the shape of the I–V characteristic was indeed a capital letter ‘N’, and it even showed latching and storage of a single bit through a breadboarded circuit with an NMOS transistor. The metal oxide tunnelling barrier was comprised of TiO$_2$ metal oxide, synthesised by evaporation of pure Ti metal, followed by oxygen plasma oxidation, as shown in figure 13(b). In order for NDR to manifest itself, it is not only quantum mechanical tunnelling, but the boundary constraints imposed on the tunnelling selection rules through the allowed and disallowed energy states. A well defined quantised energy state(s) allows better NDR performance. It was speculated that a reported oxygen vacancy defect level created an energy level in the TiO$_2$ forbidden energy gap, below its conduction band, acted as a ‘keyhole’ through which carriers tunnelled into the DOS in the organic semiconductor’s LUMO [99]. In this report, room temperature NDR was measured up to 53, was repeatable over many devices, and there was not any significant hysteresis with forward and backward sweeps, as shown in figure 14. However, one deviation from a traditional Esaki tunnel diode was that the peak tunnelling current density did not increase exponentially as the metal-oxide tunnelling barrier was thinned linearly from 2 to 10 nm. So, it was postulated that the tunnelling occurred through this extended oxygen vacancy defect through a successive capture and reemission.

It should be noted that reports of memristors using TiO$_2$ with oxygen vacancies might bare some resemblance [100, 101] to Yoon et al [55]. In a memristor, oxygen vacancies are embedded in half the TiO$_2$ active region cube. By the application of an external bias, the charged oxygen vacancies diffuse across the TiO$_2$, which is sometimes 40 nm thick. Essentially the
oxygen vacancies act as dopants, altering the TiO₂ cube’s resistivity from a low conducting state, to a high conducting state. And when the bias is reversed, the charged oxygen vacancies are repelled, rendering the TiO₂ cube more resistive. Thus, a memristor lacks a true NDR region, but simply switches between two resistive states spanning the I–V origin, cycling between a steep slope for low resistance, and a shallow slope for high resistance. Most recent memristor reports eliminated the Langmuir–Blodgett films and now are synthesised entirely from metal-oxides, like TiO₂, sandwiched between electrodes, such as platinum. Therefore, this class of devices is wholly distinct from the organic/inorganic tunnelling diodes. But, it could be possible that some memristor-like behaviour could be superimposed onto the NDR if the TiO₂ used in Yoon’s work was not saturated with oxygen vacancies.

An alternate approach to achieving NDR with printable diodes was presented by Labram et al. This particular example emulated a RTD, which is another NDR generating diode put forth by Tsu and Esaki that creates its NDR by the alignment of bulk carriers with a quantum confined energy state in a thin crystalline semiconductor, sandwiched between two quantum mechanically thin energy barriers. The barriers must be thick enough to confine the electron wave function within the central semiconductor, but thin enough to allow a high probability for electron tunnelling through the barriers. Labram et al’s approach was to use spin-cast layers of ZnO from precursor form for the semiconductor elements. These were subsequently sintered at temperatures ≤200 °C to promote crystallinity. One type of NDR diode reported here used 2 nm thick spin-cast ZnO with 2 nm thick Ga₂O₃ barriers. For the Ga₂O₃ barriers, they were also added from spin-cast materials applied in precursor form and annealed for conversion to a crystalline, or semi-crystalline, form. These diodes did display some NDR behaviour, albeit quite noisy and somewhat irregular. Having both the quantum well and quantum barriers synthesised by spin casting, which leads to non-uniform thicknesses, as evidenced by their high resolution transmission electron microscope image, leads to a smearing of the energy levels that will shift the NDR peak voltage and its PVCR performance both within a diode and between adjacent diodes.

A more promising printable NDR diode was also presented by Labram et al that replaced the Ga₂O₃ barriers with self-assembled monolayers (SAM). The SAM layers should be more consistent in morphology and thickness, thus leading to enhanced NDR behaviour over the Ga₂O₃ barriers. Here the modified I–V characteristics presented lacked appreciable noise and illustrated repeatable NDR across multiple sweeps of a single diode. This could be a promising approach to realise printable NDR devices, but the crystallinity of the spin-cast ZnO quantum well will still present some challenges by smearing the confined energy state from the thickness uniformity and the variable crystallinity of the quantum well of spin-cast and sintered films.

Figure 13. Polymer material and device structure with its associated energy band diagram used in this study to demonstrate robust, bulk and large area polymer tunnel diodes. (a) The structure of MEH-PPV. (b) The flat band energy level diagram for the polymer tunnel diode. (c) The ITO/TiO₂/MEH-PPV/Al device structure consists of a polymer thin film ∼250 nm thick between an aluminium cathode and a transparent conducting anode, ITO coated with a thin TiO₂ layer (2–20 nm). The active area of all the devices studied was 0.19 cm². Reprinted with permission from [53]. Copyright 2005, AIP Publishing LLC.
Returning to the earlier report of an organic diode with a single thin TiO$_2$ tunnelling barrier, Heljo et al [104] modified the earlier fabrication process flow, keeping the intrinsic tunnel diode topology, but extending the synthesis of the thin metal oxide tunnel barriers through anodic oxidation. In this work, the organic semiconductor MEH-PPV was replaced with PDY-232, which was simply easier to process, but has commensurate electronic properties. Shown in figure 15, is the NDR characteristics of this diode with strong NDR, albeit with some noise. A PVCR up to 3.6 was recorded at room temperature, but the peak voltage increased to about −12 volts. Some hysteresis was measured, perhaps emblematic.
of partial memristor-like behaviour, as the TiO$_2$ may not be saturated with oxygen vacancies via anodic oxidation.

A preliminary report by Guttman et al at the 2015 Fall MRS Meeting [105] and recently greatly expanding upon [106], has shown great efficacy for these tunnel diodes to technology transfer to atomic layer deposition (ALD) for the synthesis of the TiO$_2$ tunnelling barriers [105, 107]. Here oxygen vacancies were created by ALD deposition conditions by not using conventional deposition recipes, leading to slightly non-stoichiometric TiO$_2$ with some oxygen vacancies. As can be seen in figure 16, Guttman et al demonstrated polymer tunnel diodes with high room temperature NDR using an ALD deposited tunneling layer deposited between 250 °C and 350 °C. A Picosun SUNALE R-150B ALD reactor fitted with a titanium tetrachloride (TiCl$_4$) precursor and H$_2$O oxidiser was used for the TiO$_2$ deposition. A critical relationship between deposition temperature, oxygen vacancy concentration and room temperature NDR was presented. This report also shows how the diode’s multilayer bands, especially the TiO$_2$ tunnelling barrier, align with the DOS of the LUMO of the PDY-132 organic semiconductor, as calculated by density functional theory. Interestingly, TiO$_2$ undergoes a phase change between 200 °C and 300 °C, resulting in an obvious change in the microstructure of the crystals. According to literature, the films deposited near 300 °C are more than likely mixed phase between anatase and rutile while the rutile phase exists in TiO$_2$ films for ALD temperatures above 350 °C. For a TiO$_2$ deposition temperature of 350 °C, the peak NDR voltage position (V_{peak}) and associated peak current density (J_{peak}) were \sim4.13 V and \sim0.23 A cm$^{-2}$, respectively, with a PVCR as high as 4.89 while operating at room temperature. And for a TiO$_2$ deposition temperature of 250 °C, the minimum cracking temperatures of the TiCl$_4$ precursor to release the Ti atom, V_{peak} and associated J_{peak} were \sim4.3 V and \sim0.14 A cm$^{-2}$, respectively, with a PVCR of 1.69 at room temperature. The key advantages of the ALD process used in fabrication of PTDs are increased repeatability and manufacturability, and now with reduced temperature depositions possible, their compatibility with flexible substrates is greatly enhanced. This shows great promise for further scale up to printable hybrid circuits.

6. Conclusion

Although transistors have received more attention in the literature, diodes are extremely important active...
devices with a wide range of applications. Solution processed and organic diodes can be fabricated from a wide range of organic and inorganic materials, as reviewed in this article. The physics of operation has been significantly better understood over the last 20 years or so, with the majority of devices well described by a MIM model but some devices also operating as p–i–n junction diodes. Progress in switching speeds has been significant, with even low-mobility materials operating well into radio frequencies and recent promising results in the GHz range. Progress has also been made in fabrication of reliable solution processed tunnel diodes for novel circuits. Applications for solution processed and organic diodes have included RFID, energy harvesting, voltage multiplication and display backplanes. Future progress will result from an integration of new materials combined with new fabrication processes and architectures. Diodes are far from dead!

Acknowledgments

Dr Thomas Kraft is thankful for his postdoctoral research fellowship received from the Tampere University of Technology Foundation. Professor Paul Berger thanks Tekes for funding through the FiDiPro Project PAUL (decision number 2014/6/14) and acknowledges funding from the European Research Council (ECCS-1002240 and ECCS-1609299).

ORCID iDs

Thomas M Kraft https://orcid.org/0000-0001-6017-0579
Paul R Berger https://orcid.org/0000-0002-2656-2349
Donald Lupo https://orcid.org/0000-0003-1686-5300

References

IOP Publishing
Flex. Print. Electron. 2 (2017) 033001
T M Kraft et al

[53] Lilja K 2011 Performance, Interfacial Properties and Applications of Printed Organic Diodes (Tampere: Tampere University of Technology)

[67] Huang H-C and Hsieh T-E 2010 Highly stable precursor solution containing ZnO nanoparticles for the preparation of ZnO thin film transistors Nanotechnology 21 295707

[70] Chen L, Xie C and Chen Y 2014 Optimization of the power conversion efficiency of room temperature-fabricated polymer solar cells utilizing solution processed tungsten oxide and conjugated polyethylene as electrode interlayer Adv. Funct. Mater. 24 3986–95

[85] Ng T N et al 2016 Pulsed voltage multiplier based on printed organic devices Flex Print Electron. 1 015002

[93] Anisha R, Park S-Y and Berger P R 2011 90 nm 32 × 32 bit tunneling SRAM memory array with 0.5 ns write access time, 1 ns read access time and 0.5 Volt operation IEEE Trans. Circuits Syst. I 58 2432–45

[98] Chen J, Reed M A, Rawlett A M and Tour J M 1999 Large on-off ratios and negative differential resistance in a molecular electronic device Science 286 1530–2

[101] Williams R 2008 How we found the missing memristor IEEE Spectr. 45 28–35

[105] Guttmann J, Chambers C, Heinonen P, Lupo D and Berger P R 2015 Fabrication and defect properties of ultra-thin TiOx interfacial layers for hybrid tunnel diodes MRS Fall Meeting (Boston, MA)
