# SECRETS to a TERRIFIC TECHNICAL TALK

# THINGS *ANYBODY* CAN DO (and should)

Betty Lise Anderson The Ohio State University

# ORGANIZATION (of this talk)

- λ Planning
- λ Preparing
- λ Presenting
- λ VISUAL AIDS!!!
- λ Conclusions

#### A TALK IS NOT A PAPER

- λ Cannot cover everything
- λ Cannot go into the same detail
- λ Make hard decisions about content
- λ Time required is roughly the same
  - » For a paper, time is in the writing and editing
  - » For a talk, time is in the planning and practicing!

#### HEARING vs. READING

#### λ HEARING

- » Linear
- » Hear everything once
- » Depend on speaker to make organization clear
- » Speaker must repeat key points

#### λ READING

- » Skip around
- » Can reread hard parts
- » Depend on headings to make organization clear
- » Reader finds key points in abstract, conclusions

http://audience.workbookproject.com/2008/08/permission-culture-pressescape/

http://www.itsessential.ca/itsessential/display\_page.asp?page\_id=32&print=1

## Hearing vs. Reading cont.

#### λ HEARING

- » Once lost, listener cannot recover
- » Pace set by speaker
- People may zone if you're dull or confusing, but they'll try to recover at your Conclusions

#### **λ READING**

- » If lost, go back an reread hard parts (or pitch article)
- » Pace set by reader
- » Some people skim, or read only abstract, or conclusions, or only look at the pictures...



# Speaker controls the flow of information

- λ Not like a paper, where reader controls it
- λ Therefore,ORGANIZATION andPLANNING are key



# Don't ask "What am I going to talk about?"

#### ASK WHY?

- λ Inform or instruct (e.g., at a conference)
- λ Persuade or sell (dissertation defense)
- λ Arouse interest (hire me!)
- λ Inspire or initiate action(fund me!)
- λ Evaluate, interpret, clarify
- λ Gather ideas/lead discussion
- λ Entertain



# EVALUATE YOUR AUDIENCE

- λ Technical? Students? Lay people?
- λ More informed or less informed than you?
- λ Why are they there?What do they want?



#### Where? When?



- What kind of a room?Big, small, loud, hot, dark, hard to find...
- Audio visual equipment? What do you need, and what is your backup?
- λ Stage? Microphone? Should you bring a pointer?
- λ Early in day? End of day? Right after

#### Check it out in advance

- λ Make sure projector works and has a spare bulb
- λ Learn how to use microphone
- λ If using a computer, make sure it works
  - » ... and have a backup!
- Decide where you'll stand, what kind of pointer you'll use, where you'll set your stuff



## Now, gather information



# How should you organize?

- λ According to the material
  - » In order of discovery?
  - » In order of cost?
  - » In order of difficulty?

- λ According to the audience
  - » Start with simple case
  - » Build up complexity
  - » Relate materials to what they already know

#### COMBINATION

### WRITE AN OUTLINE

- λ Is everything in it necessary? Is everything in it important?
- Will the audience understand each idea, or does it need a background slide to explain it?
- Will anything you've included raise questions you're not prepared to answer?
- λ Have you made and repeated your key points?
- $\lambda$  Will it fit into the time allowed?



#### EVERY TALK SHOULD HAVE

- λ Title slide
- λ Organization slide
- λ Good stuff in the middle
- λ Conclusions slide

#### Title slide

- λ Should contain:
  - » Title of talk
  - » Authors and coauthors
  - » Organization
  - » Sponsors

- λ When presenting:
  - » Read or paraphrase the title
  - » Pronounce everybody's name
  - » Say who you are
  - » Thank sponsor (if applicable)

# SECRETS to a TERRIFIC TECHNICAL TALK

# THINGS ANYBODY CAN DO (and should)

Betty Lise Anderson The Ohio State University

# Next make an organization slide

- λ Organization of your talk
- λ Helps audience figure out what your scope is
  - » Theoretical?
  - » Experimental?
  - » Speculative?
- λ Give you a chance to say your key point for first time

### **ORGANIZATION**

- λ Why use lasers in fiber optics?
- λ Review of LED's, lasers, and light bulbs
- λ Theory showing lasers are brighter
- λ Experimental data
- λ Conclusions

My key point

## ALWAYS Start with big picture

- λ Explain the problem you're trying to solve
- λ Explain how it fits into big scheme of things
- λ Approach you took and why



# Are they lost yet?

- Remember: if you jump right into your results without the big picture, you've lost your audience
- λ Once you've lost them, you won't get them back until your final slide.
- $\lambda$  If then.



## Repeat your key points

- λ Tell 'em what you're going to tell 'em, tell 'em, then tell 'em what you told 'em.
- λ State key points at beginning and end and any chance you get in the middle
- λ Use short, internal summaries:
  - "I've just shown that the equations predict a laser is brighter than a light bulb; now I will present the experimental data ..."

## Make your visuals

More on this later...

### PRACTICE YOUR TALK



- $\lambda$  Do it out loud.
- $\lambda$  With the visuals.
- $\lambda$  Time it.

λ Decide what to cut out.

## Practice it again.

- $\lambda$  And again.
- $\lambda$  Wait a day or two.
- λ Practice it again.
- λ Practice it again the night before you give it.
- $\lambda$  Time it every time.



# The worst mistakes (and most common)

- $\lambda$  No big picture.
- λ Crappy slides.
- $\lambda$  Too long.
- λ Didn't practice.
- λ Can't follow.
- λ Didn't reiterate key points

### VISUAL AIDS



This is the problem.

#### **SOLUTIONS:**

- λ USE THE HORIZONTAL FORMAT!!!!
- λ USE LARGE TYPE
- λ LIMIT THE AMOUNT OF INFORMATION PER SLIDE
  - » Keep key points away from bottom
- **λ STATE YOUR POINT**
- λ KISS (keep it simple, stupid!)

## Compare:





# Simplifying slides

- λ Get rid of anything you won't talk about
- λ Makes lines fat, type bold
- λ Make sure the point you want to make is on the slide
  - » What is the one thing (one idea) you want you audience to get?
  - » If you don't know what the point is, you don't need the slide

### Bad



### Good

#### WIDGET RESPONSE



First zero at 37: matches prediction

## Fine for a paper...



#### But...

- λ Can study a paper, can view slide only for short time
- λ Too many details: viewer stops listening while trying to figure out figure
- λ Viewer panics because can't comprehend figure before you take it down

#### To fix:

- λ Remove all ancillary stuff
  - » Remove power supplies, non-critical components, labels, arrows if possible
  - » Strip figure down to bare bones
- λ Make lines bold!
- λ Simplify, simplify, simplify.
- λ Use color to make things stand out or group like objects

### Better for a talk.



### **BAD**

#### The Advantages of Fiber Optics:

- 1. They are cheaper than wire for most installations
- 2. Fiber optics are more durable and last longer than copper wire since they are not susceptible to corrosion.
- 3. Fibers are difficult to tap.
- 4. Fibers are insensitive to electromagnetic interference (EMI) such as lightning or machine noise.
- 5. Fiber optics have higher bandwidth than copper wire, so more information can be transmitted per second.
- 6. Fibers are less sensitive to nuclear radiation. Fiber systems are expandable once installed by using wavelengthdivision multiplexing on existing fibers.

#### Disadvantages:

- 1. Fibers are sharp and could put your eye out.
- 2. Fibers are not cost-competitive in some applications. For example, it is not usually worthwhile to lay fiber to the home while it *is* cost effective to lay fiber in the loop.
- 3. Fibers are difficult to splice because of alignment problems and the need to have good cleaves on both surfaces. They can't be soldered like wire.
- 4. Fibers make ridiculous wigs and tacky lamps.

- λ Too many ideas
- λ Too small
  - (that was 12-point, standard for typing)
- λ Serif font
  - » (great for reading on a page, bad for slides)
- λ Long sentences
- Audience stops listening because they're trying to read this

#### Serif and non-serif fonts

- λ Serifs help carry the eye along lines of text-great for pages of text
- Non-serif fonts better for single words, phrases
- λ Notice billboards always use non-serif fonts.

The Ohio State University serifs

The Ohio State University

- λ Serif fonts:
  - » Times
  - » Palatino
  - » Courier
- λ Non-serif fonts:
  - » Helvetica
  - » Geneva
  - » Arial

# To fix busy slide

#### The Advantages of Fiber Optics:

- 1. They are cheaper than wire for most installations
- 2. Fiber optics are more durable and last longer than copper wire since they are not susceptible to corrosion.
- 3. Fibers are difficult to tap.
- 4. Fibers are insensitive to electromagnetic interference (EMI) such as lightning or machine noise.
- 5. Fiber optics have higher bandwidth than copper wire, so more information can be transmitted per second.
- 6. Fibers are less sensitive to nuclear radiation. Fiber systems are expandable once installed by using wavelength-division multiplexing on existing fibers.

#### Disadvantages:

- 1. Fibers are sharp and could put your eye out.
- 2. Fibers are not cost-competitive in some applications. For example, it is not usually worthwhile to lay fiber to the home while it *is* cost effective to lay fiber in the loop.
- 3. Fibers are difficult to splice because of alignment problems and the need to have good cleaves on both surfaces. They can't be soldered like wire.
- 4. Fibers make ridiculous wigs and tacky lamps.

- λ Break up into more than one slide
- λ Use big fonts
- λ Use non-serif font like this one
- λ Capture each thought in a phrase

# Advantages of Fiber

- λ Cheaper
- λ Durable
- λ Can't tap
- λ No EMI
- λ High bandwidth
- λ Radiation-hard
- λ Expandability (e.g., WDM)

# Disadvantages of fiber

- λ Sharp (potential eye damage)
- λ Not always cost-effective
- λ Difficult to splice
- λ Image problems

# Use white space

#### TITLE OF MY SLIDE

Once upon a time in Arkansas, an old man Sat in his little cabin door, he fiddle at a tune He liked to hear, a jolly little tune that he played by ear



$$\begin{vmatrix} & 7.54 & 19 \\ & d = \end{vmatrix} \begin{vmatrix} & 0 & 12 \\ & -17 & 6 & x \end{vmatrix}$$

#### TITLE OF MY SLIDE

One idea per slide



# Suppose they have to see more than one thing at once

Will help to see this graph while discussing equation

$$\begin{bmatrix} 3 & 7.54 & 19 \\ |d| = \begin{bmatrix} \pi & \omega & 12 \\ -17 & 6 & x \end{bmatrix}$$



#### Then show them one first

- λ Here are my main points about the graph
- λ Audience gets familiar with while I'm talking
- λ Then show it again, adding the equation



# Now they don't need to see it in as much detail

- λ Graph is there, but smaller- they can refer to it
- λ Equation is now main point, and they can see it well



# If you are difficult to understand...

- λ Speech impediment?
- λ Not giving talk in your native language?
- λ Then, by all means, put more words on your slides
- λ Key is to be understood



# Presenting Equations

- λ Do you have to?
- λ What can you say about equation that audience will really get?
- λ What point are you trying to make using the equation?

# Example

$$\mu_{12} = \gamma_{12}(0) = \frac{e^{ik\left(\frac{x^2 + y^2}{2z}\right)} \frac{1}{z^2} \iint_{S} J(v_x, v_y) e^{-ik(v_x x + v_y y)} dv_x dv_y}{\frac{1}{z^2} \iint_{S} J(v_x, v_y) dv_x dv_y}$$

- λ Screw the phase constant (not important)
- λ Don't define two things at once
- λ Who cares about normalization constant?
- λ What is the IDEA behind this?

### Better way:

#### Input intensity

$$\mu \propto \iint_{S} J(v_{x}, v_{y}) e^{-ik(v_{x}x + v_{y}y)} dv_{x} dv_{y}$$

Fourier transform

# Presenting plots



- λ Keep them simple
- λ Read the axes out loud
- λ Tell audience what you're looking for
- λ Point it out to them
- λ Tell them whether it's good or bad



#### Normalized SEP - E-



# plane Scans

- Normalized so max value across any frequency cut is zero
- Beamwidth of SEP shows scan volume vs. frequency
- Angle scans in azimuth





No evidence of scan blindness!







# Periodic Array - Design



#### **Prediction**



#### **Design Incorporates:**

- » One driven and two parasitic Face Sheet layers
- » Multi-layer r-card screen

#### Performance:

- » ~1 dB or better from 5-10 GHz
- » Better than 3 dB from 300 MHz 10 GHz

Multi-Layer Fragmented Radiators Key to Performance at Upper End (Better than 1 dB Insertion Loss)





# **Complicated Plots**

- λ As with any complicated stuff:
  - » Start with easy idea
  - » Gradually add complexity, explaining each step

Slides are cheap! (when I was young...)

- » Build up to complete plot
- » Explain what you're looking for
- » Point it out

# Suppose you want to present:



After R. M. Woefle, Ed., A Guide for better technical presentations, IEEE Press, New York, 1975.

#### Start with this:



After R. M. Woefle, Ed., A Guide for better technical presentations, IEEE Press, New York, 1975.

## Add other lines for same part



After R. M. Woefle, Ed., A Guide for better technical presentations, IEEE Press, New York, 1975.

# Then add other parts



After R. M. Woefle, Ed., A Guide for better technical presentations, IEEE Press, New York, 1975.

#### Use of Color



Find the round things

Find the pink things

# Use color to relate things



## Another example



#### Animations can be really irritating!!

- λ Wastes time
- λ Shows you don't have enough to do
- λ Spend your time on the content!
- Too much glitz weakens your presentation (especially among engineers!)

### But they can be very effective, too



### But they can be very effective, too



- λ In this case- shows clearly what's different
- λ Builds up complexity gradually

#### **CITATIONS**

- λ You MUST cite all non-original material
- Remember, the person who wrote that paper might be in the audience
- λ Or her best friend...
- λ Or one of his students...

#### CITATIONS continued





After Anderson, et al, *Proceedings on Stuff I*© Made up (36)31 pp. 245-139 university 2009

λ If you REPRODUCE it (photocopy or scan), cite FULLY on the slide

λ If you REDRAW or modify it, say "After" and cite it FULLY on the slide

# The dreaded Question and Answer period



### Relax, it's not that bad

- λ People are on your side (really!)
- λ You'll know answers to 80% of ?'s
- λ OK to say "I don't know"
  - "I haven't looked into that aspect."
  - "I'm not familiar enough with the piezoelectric devices to give you a good answer."
  - "That'd be an interesting question to look into."
  - "I don't know, but maybe someone else here can answer that."

# How about that nasty guy?

- λ Happens rarely
- λ Makes everybody mad- they'll side with you
- λ What does he REALLY want?
  - Wants to show what he knows?
  - » Wants to hear himself talk? (sometimes an answer isn't necessary, just an acknowledgment)
  - » Genuinely wants to put you down? (very rare)

# Traps to watch for:

- λ Hypothetical question:
  - "Suppose I used your device to jack up my car. What would happen?"
- λ You don't have to answer it! How should you know?
- Response: "I don't know. I haven't looked into that application."
- λ Don't BS. Don't guess. Don't speculate.

## Loaded preface:

- λ "Given the deservedly low regard for..."
- λ "Do you mean to tell me..."
- λ "Since all you big companies get together to set your prices..."
- Don't ignore it, address it: "I'd be happy to address your question, but first let me address your allegation..."

#### Loaded words

- λ Failure, overrun, delay, swindle, too (small, impractical, expensive)
  - "The poor design of your laser makes it impractical for jacking up cars..."
- λ Reword the question
  - "The question was, why was the laser made from a semiconductor chip instead of industrial steel"

#### Go from defense to offense

- λ "Clearly we have a difference of opinion here..." Terry C. Smith, "Making Successful Presentations, Wiley 1984
- λ If they won't drop it, offer to discuss it privately after the session
  - » Makes it easier for you to blow them off
  - » Makes it so no one else overhears
  - » Doesn't waste audience's time

#### Your behavior

- λ Try not to sway, fidget, rap the screen, click your pen, jingle your change
- λ Do not ignore interruptions, acknowledge them
- λ Do not apologize for bad slides, unclear pictures...
- λ Do not read from a script (if you can help it)

#### **Laser Pointers**

- λ Point to what you're talking about
  - » Especially if you're hard to understand
- λ Don't wave it wildly
- λ Don't turn it on and off too quickly
- λ Let people see the point, then follow it to your point

#### Do:

- λ Smile (puts people at ease)
- λ Make eye contact (makes them pay attention)
- λ Take a deep breath before starting
- λ Pause for effect
- λ Show enthusiasm
- λ Repeat your key points
- λ Repeat your key points

# Finally...

- λ Remember to state your key points more than once
- λ Short, internal summaries
- Tell 'em what you're going to tell 'em, tell 'em, tell 'em, tell what you told 'em
- λ Be sure to summarize your keys points

Be sure to spell-check your slides

# I lied, we aren't done yet



#### Conclusions:

- λ A talk is not a paper
- λ Can't cover everything
- λ Restate your main points in different ways
- λ Simplify your slides
- λ Practice your talk