
1

Computing Smooth Time-Trajectories
for Camera and Deformable Shape

in Structure from Motion with Occlusion
Paulo F. U. Gotardo, Member, IEEE, Aleix M. Martinez, Senior Member, IEEE

Abstract—We address the classical computer vision problems of rigid and non-rigid structure from motion (SFM) with occlusion. We
assume that the columns of the input observation matrix W describe smooth 2D point trajectories over time. We then derive a family
of efficient methods that estimate the column space of W using compact parameterizations in the Discrete Cosine Transform (DCT)
domain. Our methods tolerate high percentages of missing data and incorporate new models for the smooth time-trajectories of 2D-
points, affine and weak-perspective cameras, and 3D deformable shape. We solve a rigid SFM problem by estimating the smooth
time-trajectory of a single camera moving around the structure of interest. By considering a weak-perspective camera model from the
outset, we directly compute Euclidean 3D shape reconstructions without requiring post-processing steps such as Euclidean upgrade
and bundle adjustment. Our results on real SFM datasets with high percentages of missing data were positively compared to those
in the literature. In non-rigid SFM, we propose a novel 3D shape trajectory approach that solves for the deformable structure as the
smooth time-trajectory of a single point in a linear shape space. A key result shows that, compared to state-of-the-art algorithms, our
non-rigid SFM method can better model complex articulated deformation with higher frequency DCT components while still maintaining
the low-rank factorization constraint. Finally, we also offer an approach for non-rigid SFM when W is presented with missing data.

Index Terms—Structure from motion, matrix factorization, missing data, camera trajectory, shape trajectory.

F

1 INTRODUCTION

A CCURATELY describing a data matrix as a prod-
uct of two low-rank factors, matrix factorization,

is a fundamental task in computer vision and pattern
recognition. This paper focuses on the classical computer
vision problem of matrix factorization in rigid and non-
rigid structure from motion (SFM) [5], [29]. The goal in
SFM is to jointly estimate the 3D scene structure and
relative camera motion from corresponding 2D points
in a sequence of images. Applications of SFM include
autonomous navigation, image augmentation, and the
construction of rigid and deformable 3D models from
images [11], [15]. The modeling of deformable shapes
such as the human hand, face, and body is also of
particular importance in computer graphics, and human-
computer interaction (e.g., [10]).

While techniques for rigid SFM have matured con-
siderably over the past two decades [6]–[8], [12], [16],
[17], [19], [21], [28], non-rigid SFM is still a very difficult
problem, especially for complex articulated deforma-
tions [30]. The difficulty in providing good solutions
reflects the underconstrained nature of SFM once the
rigidity assumption is removed. Recent research has thus
focused on the definition of new constraints (priors) to
solve this problem [1]–[3], [23], [24], [26], [30], [32]–[34].

In the standard matrix factorization approach to
SFM [5], [29], each column of the input matrix W ∈

• The authors are with the Department of Electrical and Computer Engineer-
ing, The Ohio State Univerisy, 2015 Neil Avenue, 205 Dreese Laboratories,
Columbus, OH 43210. E-mail: {gotardop,aleix}@ece.osu.edu.

Rm×n has a sequence of 2D coordinates of the same
3D structure point as observed from different locations.
Considering W of a predefined low-rank r ≤ min(m,n),
the SFM solution is obtained from the factorization

W = MS, M ∈ Rm×r,S ∈ Rr×n. (1)

In rigid SFM, r = 4 and S describes the 3D shape
observed by the cameras in M. In non-rigid SFM, each
observed shape of the deformable structure is repre-
sented in a linear shape space defined by K basis shapes
in S. Then, r = 3K + 1 and M includes the cameras
and also the shape coordinates in terms of basis S. In
both cases, factors M and S may be obtained from the
singular value decomposition (SVD) of W. In practice,
however, a large portion of the 2D observations in W is
often missing because of occlusions. Therefore, standard
matrix factorization algorithms such as SVD [13] cannot
be directly used. To solve SFM, it is also necessary to
overcome other challenges such as tracking errors [19]
and degeneracies in the assumed camera motion and
shape deformation – i.e., when the above constraints on
the rank r of W do not hold [21], [32], [34].

To compute more accurate and efficient solutions to
rigid and non-rigid SFM with occlusion, we start by
assuming that each column of W represents the smooth
time-trajectory of a 2D point. Such 2D trajectories are
usually provided by a feature tracking algorithm that
operates on a monocular video sequence. Equivalently,
we assume that the 2D observations were obtained by
a single camera moving smoothly around the structure

2

t = 0

x

y

z

Fig. 1. The smooth trajectory (dashed line) of a single camera moving
around the structure of interest (cube) over time (t).

Ŝ
1

t = 0

Ŝ
2

Ŝ
3

Fig. 2. The smooth time-trajectory (dashed line) of a deforming 3D
shape (cube). The object shape is represented by a single point (blue
sphere) with coordinates relative to 3D basis shapes Ŝ1, Ŝ2, and Ŝ3

(not shown). As the shape deforms smoothly over time (t), its point
representation describes a single, smooth 3D shape trajectory.

of interest (Fig. 1). Our factorization approach tolerates
missing data and defines constraints that considerably
reduce the number of unknowns that need to be esti-
mated. First, we consider factor S only implicitly, re-
formulating the factorization problem in terms of M
alone. Second, because M is a basis for the smooth 2D
trajectories in the columns of W, we solve for a compact
representation of M in a subspace of the Discrete Cosine
Transform (DCT) basis vectors. Our algorithms are re-
markably efficient in cases of long image sequences and
many imaged points (i.e., when W has high-dimensional
column and row spaces).

We solve for rigid SFM by estimating only the smooth
time-trajectory of a camera’s projection plane, Fig. 1.
Also, by considering the weak-perspective camera model
from the outset, we directly solve for Euclidean shape
and cameras. Therefore, our method does not require
post-processing algorithms that upgrade and refine the
initial affine solution (e.g., bundle adjustment [15]).

In non-rigid SFM, we assume that the smooth 2D tra-
jectories in W also reflect the smooth deformation of the
observed 3D structure over time. The deformable struc-
ture is represented as a single point moving smoothly
in a linear shape space, Fig. 2. We then solve for a
single, smooth 3D shape trajectory with time-coordinates
in factor M. Thus, the associated basis shapes are defined
only implicitly in factor S. Once M has been estimated,
S is then trivially computed from M and W by solving
simple linear systems of equations.

Our work is most closely related to the recent non-
rigid SFM method by Akhter et al. [2]. They propose

a factorization approach that does not define a linear
shape space, but recovers instead independent 3D point
trajectories over time. The DCT vectors are used as a
basis for individual 3D point trajectories. Their method
has provided some of the best results on highly articu-
lated shapes to date. However, the main problem is the
method’s inability to use additional, higher frequency
DCT vectors without increasing the rank of the resulting
matrix factors. Thus, its application is restricted to struc-
tures with slow and smooth deformation. The method
does not address the missing data problem either; W is
assumed complete and factorized using SVD.

In this paper, we also present an interpretation of
Akhter et al.’s approach in terms of a linear shape space
and show that their results correspond to coarse approx-
imations of our solutions. Our non-rigid SFM method
provides better results on complex articulated deforma-
tions due to its more effective use of higher-frequency
DCT components without increasing the factorization
rank. Furthermore, we use the DCT basis to model a
camera’s trajectory and efficiently solve for rigid SFM.
Finally, we also contribute with missing data approaches
for both rigid and non-rigid SFM.

One main group of related methods that address the
missing data problem are known as batch algorithms [14],
[17], [19], [23], [28]. These methods propose strate-
gies for combining partial rank-r factorizations obtained
for complete sub-blocks of W. Examples include the
subspace constraint algorithms that reconstruct W by
first building its row null-space [17], [19], column null-
space [14], [23], or one of its range spaces [28]. The main
problem with these methods is their sub-optimality since
errors in the factorization of sub-blocks are propagated
to the subsequent optimization stage. Also, the rank-r
constraint may not apply to all sub-blocks in case of
degenerate motion and deformation [21], [23].

A second group of missing data approaches include
iterative methods that use all data at once without
searching for complete sub-blocks in W [6], [8], [16],
[24], [30], [31]. Among these, alternation methods [16],
[24], [30] iteratively solve for subsets of unknowns while
the others remain fixed. For instance, PowerFactoriza-
tion [16] solves for factors M and S in a simple, al-
ternated least-squares manner. It presents very slow
convergence when a considerable amount of data is
missing. However, the method is useful in initializing
faster Newton methods [6] that minimize matrix fitting
error in terms of M and S. The Levenberg-Marquardt-
Subspace (LM-S) method in [8] considers S as an im-
plicit function of M and W and solves for M only.
Despite its superior performance, proper initialization
of this method remains an open problem. The method’s
complexity also makes it difficulty to integrate additional
constraints into the factorization problem.

In the following, we present our Column Space Fitting
(CSF) method that computes a rank-r basis M for the col-
umn space of a matrix with missing data. Using a simple
Gauss-Newton-based approximation to the Hessian ma-

3

trix, our method provides equivalent or better solutions
for M when compared to LM-S on matrices with high
percentage of missing data. Furthermore, the simplicity
of our approach allows us to easily consider additional
constraints in the factorization problem, such as a mean
column vector and a pre-defined reference basis for M.
We then solve for a compact representation of M in
a subspace defined in terms of the DCT basis vectors.
As a result, we offer a family of CSF algorithms for
rigid and non-rigid SFM problems. Our methods always
start from a deterministic initialization corresponding to
a “coarse” solution for M.

This paper is organized as follows. Section 2 derives
our general CSF approach for matrix factorization with
missing data. In Section 3, we solve for rigid SFM by
estimating a smooth time-trajectory of an affine or a
weak-perspective camera. Section 4 describes our 3D
shape trajectory approach to non-rigid SFM. Sections 5
and 6 present experimental results and conclusion.

2 SOLVING FOR THE COLUMN SPACE OF A
MATRIX WITH MISSING DATA
We formulate the rank-r factorization of incomplete ma-
trix W as solving exclusively for a column space basis
M of rank-r. To facilitate the introduction of additional
constraints into the factorization procedure, especially in
SFM problems, we first derive our Column Space Fitting
(CSF) algorithm. We then show how to solve for M in
the subspace spanned by a predefined bases. When such
a bases is defined in terms of the DCT basis vectors, we
propose a simple, deterministic initial form of M.

2.1 General CSF approach
Consider W ∈ Rm×n as in (1) and note the related
equation S = M†W, where † denotes the Moore-Penrose
pseudo-inverse [13].

Assuming W is presented with missing data, let the
complete vector wj ∈ Rmj (mj ≤ m) denote all the
observed entries in the jth column of W. Also, define
Πj ∈ Rmj×m as a row-amputated identity matrix such
that Mj = ΠjM has the rows in M that correspond to
the rows of entries in wj . Then wj = Mjsj , with the
complete jth column of S defined as sj = M†

jwj ∈ Rr.
The goal is to minimize

f(M) =
1

2

∑
j

∥∥∥(I−MjM
†
j

)
wj

∥∥∥2
F
, (2)

where ‖·‖F is the Frobenius norm. To better understand
the meaning of (2), let the projector on the orthogonal
space of Mj be

P⊥j =
(
I−MjM

†
j

)
∈ Rmj×mj . (3)

Rewriting (2) in terms of residual (error) vectors
rj ∈ Rmj , we have

f(M) =
1

2

∑
j

rTj rj , rj = P⊥j wj . (4)

Algorithm 1 Column Space Fitting (CSF) method for minimizing
the error function f(M).

1: M← initial matrix (M0).
2: δ ← initial damping scalar (δ0).
3: repeat
4: Compute gradient (g) and Hessian (H)

from Jacobian terms (Jj).
5: repeat
6: δ ← δ × 10.
7: Find ∆M from

vec(∆M)← (H + δI)−1g.
8: until f(M−∆M) < f(M).
9: M←M−∆M.

10: δ ← δ × 10−2.
11: Orthogonalize M (keep mean vector t unchanged).
12: until convergence.

Therefore, we minimize the overall matrix fitting error
as defined by a sum of squared Euclidean distances from
each observed column vector to the subspace spanned
by the corresponding rows in M.

The error function (2) is minimized using our Col-
umn Space Fitting (CSF) method, based on Levenberg-
Marquardt optimization [4], which we summarize in
Algorithm 1. M is first set to an initial matrix. Then,
in each iteration, we update the current estimate of M
by computing an adjustment matrix ∆M in vectorized
form, vec(∆M), which stacks the columns of ∆M in
a single vector of unknowns. We solve for vec(∆M)
using the gradient vector (g) and Hessian matrix (H)
of f as given by matrix differential calculus [20]. The
damping parameter δ leads to combined Gauss-Newton
and steepest-descent iterations when H becomes singu-
lar. For numerical stability, we orthogonalize M at the
end of each iteration.

To compute g and H, we follow a Gauss-Newton-
based derivation in terms of Jacobian matrices Jj for
each vector wj (see complete derivation in Appendix A).
The first and second differentials of f(M) are

df = −
∑
j

(
JTj rj

)T
vec(dM), (5)

d2f =
∑
j

vec(dM)T
(
JTj Jj

)
vec(dM), (6)

Jj = sTj ⊗P⊥j Πj . (7)

In (7), ⊗ is the Kronecker product and sj = M†
jwj

denotes the current (and implicit) estimate of the jth

column of factor S. From (5) and (6), we identify

g = −
∑
j

JTj rj and H =
∑
j

JTj Jj . (8)

For comparison, the forms of g and H as computed
in [8] are reproduced in our supplementary documenta-
tion file. It is important to note that the simplicity of our
expressions above makes it easier to consider additional
optimization constraints as described next.

As an alternative to the derivations given above, we

4

can solve for rank-(r− 1) factors M and S, and an addi-
tional mean column t ∈ Rm such that W = MS + t1T ,
where 1 ∈ Rn is a vector of all ones. This is a very useful
model in applications such as rigid and non-rigid SFM.
Equivalently, we solve for a rank-r factorization

W = M̃S̃ = [M t]

[
S
1T

]
, (9)

with extended factors M̃ and S̃. The mean column
interpretation for the last column of M̃ constrains the
last row of S̃ to be 1T . Therefore, the model in (9) has
fewer degrees of freedom than that in (1) and the final
matrix fitting error, f(M̃), is expected to be higher.

The goal now is to minimize

f(M, t) =
1

2

∑
j

rTj rj , rj = P⊥j (wj − tj) , (10)

with tj = Πjt and P⊥j computed from Mj only. The
new Jacobian terms are then derived for vec(dM̃) as

Jj =
[
sTj 1

]
⊗P⊥j Πj , (11)

with sj = M†
j(wj − tj) (see derivation in Appendix A).

In this case, at the end of each iteration, only the left-
most r − 1 columns of M̃ are orthogonalized and t is
kept unchanged.

2.2 Solution with a predefined basis

Let the columns of a matrix B ∈ Rm×d contain a
predefined set of basis vectors (e.g., a truncated DCT
basis). We now consider a factor M of the form

M = BX, X ∈ Rd×r.

Each column of X has d ≤ m coordinates for the
corresponding column of M as represented in the d-
dimensional space spanned by B.

Previously, we had implicitly considered a canonical
basis B = Im, the m×m identity matrix, and solved for
X = M. Now, in each iteration we solve for the update
step vec(dX) with gradient and Hessian as in (8). The
Jacobian terms are given by

Jj = sTj ⊗P⊥j ΠjB. (12)

It is important to describe our motivation for using
a predefined basis: Problems in different application
domains involve matrices (W) whose columns have
observations of random variables that change only grad-
ually over time. Observations in each column can be
considered as samples of a smooth signal over time
with a narrow bandwidth spectrum in the DCT domain.
This means that most of the energy of a signal (column)
is captured by a small number of low-frequency DCT
components, leading to a compact representation X
(i.e., small d).

In the next sections, we consider matrices B con-
structed from DCT basis vectors, with the right-most

columns corresponding to higher-frequency compo-
nents. Since signal smoothness leads to high-frequency
coefficients close to zero, we propose an initialization of
X, denoted X0, of the form

X0 =

[
Q
0

]
, Q ∈ Rr×r.

The goal becomes initializing a small block Q, which
must be full-rank (i.e., the rank of M = BX0 is rank(Q)).
For any full-rank Q, an equally good initial solution is
given by the simple and deterministic initialization

X0 =

[
Q
0

]
Q−1 =

[
Ir
0

]
. (13)

As a proof, we note that the factorization in (1) is
defined only up to a rank-r ambiguity matrix Q such
that W = MS = (MQ−1)(QS).

As a result, we can even fix the values for the top-
most block of X as Ir and solve only for the remaining
(d − r) × r submatrix. Note that (d− r)r is the number
of parameters defining an r-dimensional linear space
embedded in another d-dimensional linear space.

When the last column of X is interpreted as the
coefficients of the mean column vector t, the ambiguity
matrix Q is of rank (r− 1) only, i.e., the last row of S is
constrained to be 1T . This fact suggests to initialize the
last column of X with zeros (t = 0).

3 RIGID SFM: ESTIMATING THE SMOOTH
TIME-TRAJECTORY OF A CAMERA

This section focuses on rigid SFM with occlusion. We as-
sume the point tracks in W were obtained from a monoc-
ular video sequence provided by a single, smoothly
moving camera. First, we present a method using a com-
pact DCT basis to represent the smooth trajectory of a
general affine camera. Subsequently, we further improve
on this method by using a weak-perspective camera
model from the outset to directly estimate Euclidean
cameras and shape. Once the final solution for M is
defined, each column sj of S is obtained independently
as in the computation of the Jacobian terms above.

3.1 Affine camera trajectory

In rigid SFM with T images, W ∈ R2T×n is

W =


x11 . . . x1n
y11 . . . y1n

...
...

xT1 . . . xTn
yT1 . . . yTn

 = M

[
s1 . . . sn
1 1

]
, (14)

with [xtj , ytj]
T the 2D projection of 3D point sj in the tth

image (t = 1, 2, . . . , T ; j = 1, 2, . . . , n). Here, the motion
factor M ∈ R2T×4 describes a stack of T affine camera

5

matrices M̂t ∈ R2×4,

M =

M̂1

...
M̂T

 , M̂t =
[

Ât t̂t

]
, (15)

where Ât ∈ R2×3 is a general affine projection and t̂t ∈
R2 is a 2D translation. The rows of Ât are 3D vectors
defining the x and y axes (not necessarily orthonormal)
of the camera’s projection plane in the tth observation.

Assuming the 8 camera parameters vary smoothly
over time, we define the camera as a sample of a
smooth matrix function of time, M̂t = M̂(t). We then
parameterize M̂(t) using 8 independent cosine series
whose f th frequency coefficients are given in X̂f ∈ R2×4,

M̂(t) =
[
Â(t) t̂(t)

]
=

d∑
f=1

ωtfX̂f . (16)

Each constant ωtf above is the f th frequency cosine term
at time t,

ωtf =
σf√
T

cos

(
π(2t− 1)(f − 1)

2T

)
,

with σ1 = 1 and, for f ≥ 2, σf =
√

2.

The goal is then to solve for d ≤ T matrices X̂f . Let
Ωd ∈ RT×d be a truncated, orthonormal DCT matrix
whose (t, f)th entry is ωtf , as above. Substituting (16)
into (15) yields

M = (Ωd ⊗ I2)

X̂1

...
X̂d

 = BafX.

Thus, with basis Baf = (Ωd ⊗ I2) ∈ R2T×2d, we solve for
M ∈ R2T×4 as a function of X ∈ R2d×4. Note that the
smoothness assumption implies d � T . We solve for X
as in Section 2.2, with extended terms s̃Tj = [sTj 1] in (12).

For simplicity, and unless stated otherwise, we assume
in this paper that the number of DCT components d has
been fixed a priori based on empirical observations (e.g.,
expected motion or noise level). An alternative coarse-
to-fine strategy can start with a small d and increment
its value until a convergence criterion is verified. For
instance, d can be incremented until the energy of the
highest frequency coefficients falls below a small per-
centage pd ∈ (0, 1) of the total energy,∥∥xTd ∥∥F < pd ‖X‖F ,

where xTd is the last row of X.

3.2 Euclidean camera trajectory
The solution X above leads to an affine shape S. Re-
covering Euclidean shape and cameras requires a subse-
quent upgrading step and, ideally, a final bundle adjust-
ment [15]. Because an affine camera has more degrees
of freedom than the final Euclidean camera, the initial
solution can overfit measurement noise and also lead to
incorrect results in cases of degenerate, planar camera
motion [21]. These are problems faced by most SFM
methods based on an initial affine solution. To avoid
them and also render post-processing unnecessary, we
further improve on our method above.

We now solve directly for the smooth trajectory of an
Euclidean camera, also obtaining the optimal Euclidean
shape directly. We consider the trajectory of a weak-
perspective (i.e., scaled-orthographic) camera,

M̂t =
[

R̂t t̂t

]
,

where the vector t̂t is defined as before. The rows of
R̂t ∈ R2×3 define the Euclidean 2D imaging plane of the
camera at time t. These rows are constrained to be two
equal-length, orthogonal 3D vectors and are obtained
from a scaled 3D rotation (see also (17)),

R̂t = λt

[
1 0 0
0 1 0

]
RZ(αt)RY (βt)RZ(γt).

The scalar λt is the weak-perspective scale and the three
Euler angles αt, βt, and γt determine a 3D rotation as a
sequence of simpler rotations around the Z and Y world
coordinate axes.

We model a smooth camera trajectory by considering
a cosine series for each of the 6 camera parameters given
by the weak-perspective model above,α1

...
αT

 = Ωdx1,

β1...
βT

 = Ωdx2,

γ1...
γT

 = Ωdx3,

λ1...
λT

 = Ωdx4, t = Bafx5,

where vectors x1,x2,x3,x4 ∈ Rd and x5 ∈ R2d have
the unknown DCT coefficients. For simplicity of presen-
tation, the notation above assumes that d is the same
for x1, . . . ,x5. Note, however, that our approach is not
limited to such case – an alternative derivation is given
in the supplementary file for the case in which x1, . . . ,x5

have different numbers of DCT components.
A deterministic initial solution is defined with t = 0

(x5 = 0), as before. Also, note that the rigid SFM
solution we seek here is defined only up to an ar-

R̂t = λt

[
cosαt cosβt cos γt − sinαt sin γt − cosαt cosβt sin γt − sinαt cos γt cosαt sinβt
sinαt cosβt cos γt + cosαt sin γt − sinαt cosβt sin γt + cosαt cos γt sinαt sinβt

]
(17)

6

bitrary scale and a 3 × 3 rotation. We thus initialize
the sequence of scaling factors λt to a constant signal
by setting x4 = [1, 0, . . . , 0]T . We avoid initializing the
angles βt (x2) with zeros because the resulting R̂t would
then represent only 2D rotations within a plane. Setting
x2 = [0, 1, 0, . . . , 0]T provides a coarse initial solution
with a smooth sequence of non-coincident camera planes
that allows x1 and x3 to be initialized with zeros.

Here, we iteratively solve for vec(dX) defined as

vec(dX) ≡
[
dxT1 , dx

T
2 , dx

T
3 , dx

T
4 , dx

T
5

]T ∈ R6d.

To this end, modified expressions for vec(dM) and the
Jacobian terms are needed. First, let ωTt be the tth row
of Ωd. The differential of each camera parameter at
time t is dαt = ωTt dx1, dβt = ωTt dx2, dγt = ωTt dx3,
dλt = ωTt dx4, and dtt = (ωTt ⊗ I2)dx5. The differential of
each rotation matrix (17) is

dR̂t =
∂R̂t

∂αt
dαt +

∂R̂t

∂βt
dβt +

∂R̂t

∂γt
dγt +

∂R̂t

∂λt
dλt.

Considering the three columns r̂t,1, r̂t,2, and r̂t,3 ∈ R2

of a partial derivative matrix ∂R̂t

∂αt
, for all t, we stack all

α-terms associated with dx1 into

Bα =



r̂1,1 ⊗ ωT1
...

r̂T,1 ⊗ ωTT
r̂1,2 ⊗ ωT1

...
r̂T,2 ⊗ ωTT
r̂1,3 ⊗ ωT1

...
r̂T,3 ⊗ ωTT


∈ R6T×d.

Analogously, we define Bβ , Bγ , and Bλ. Hence,

vec(dM) =

[
Bα Bβ Bγ Bλ 0
0 0 0 0 Baf

]
︸ ︷︷ ︸

B̃wp


dx1

dx2

dx3

dx4

dx5


= B̃wp vec(dX),

with B̃wp ∈ R8T×6d and 0 is a matrix of zeros.

Finally, from (5)-(7), the Jacobian terms of this camera
model can be computed as

Jj =
([

sTj 1
]
⊗P⊥j Πj

)
B̃wp.

Unlike in the previous sections, here the extended basis
B̃wp must be recomputed in each iteration to update the
partial derivatives in Bα, Bβ , Bγ , and Bλ. Thus, B̃wp

can be considered only as a local basis at the current
location of the smooth parameter manifold.

The last step in each iteration shown in Algorithm 1,
orthogonalization of M, is no longer necessary.

4 NON-RIGID SFM: ESTIMATING A SMOOTH-
TRAJECTORY IN SHAPE SPACE
In this section, we solve for non-rigid SFM by estimating
the smooth time-trajectory of a 3D shape as represented
by a point moving in a linear shape space. Without loss
of generality, we assume W is complete and derive our
3D shape trajectory approach. Subsequently, we offer an
algorithm for cases with missing data.

4.1 Solving for a shape trajectory
Let W ∈ R2T×n as in (14) and consider the rank-r
factorization method, with r = 3K + 1, proposed by
Bregler et al. [5] for non-rigid scenes,

W = D (C⊗ I3)︸ ︷︷ ︸
M

S + t1T ,

with D ∈ R2T×3T , C ∈ RT×K , and S ∈ R3K×n.
The predefined constant K is the number of 3D basis
shapes Ŝk ∈ R3×n defining a linear shape space in
S = [ŜT1 ŜT2 . . . ŜTK]T .

The column space factor M is composed of a block-
diagonal rotation matrix D,

D =


R̂1

R̂2

. . .
R̂T

 ,
and a shape coordinate matrix C. Each row cTt ∈ RK
of C has the coordinates of the 3D shape in the tth

image with respect to the shape basis in S. Here, we
also consider cTt = c(t) as a single point in shape space
that defines a single smooth 3D shape trajectory over time.

We assume that the smooth 2D trajectories in W
reflect not only smooth camera motion, but also the
smooth deformation of the observed 3D structure over
time. This means that each shape coordinate ctk ∈ R
(k = 1, 2, . . . ,K) is assumed to vary smoothly with t.
Then, we represent C using K compact cosine series,

C =

c1,1 . . . c1,K
...

. . .
...

cT,1 . . . cT,K

 = Ωd

x1, . . . , xK

 ,
with xk ∈ Rd (k = 1, . . . ,K),

C = ΩdX, X ∈ Rd×K .

Assuming W is complete, t is estimated simply as the
mean column of W. Then, to recover Euclidean shapes
and cameras, we consider S implicitly and solve for

M = D (ΩdX⊗ I3) , (18)

with D subject to camera orthonormality constraints,
i.e., R̂tR̂

T
t = I2,∀t. For now, let’s assume D has been

computed by an initialization algorithm. We will define
this algorithm below. Thus, we only need to solve for
the rank-K shape trajectory X in the DCT domain.

7

For a fixed D, the factor C = ΩdX is defined only
up to a full-rank ambiguity Q ∈ RK×K ; equivalently,
M in (18) is defined only up to an ambiguity Q ⊗ I3.
Therefore, as in Section 2.2, we can initialize X with a
coarse solution X0 = [IK 0]T , leading to

M0 = D (ΩdX0 ⊗ I3) = D (ΩK ⊗ I3) . (19)

Note that K < d and the initial rank-3K solution in (19)
can only use K low-frequency vectors in the DCT basis.

The 3D point trajectory approach (PTA) in [2] defines
M = DΘ, where Θ has the same columns as (ΩK ⊗ I3)
in (19), but in a different order. Therefore, our coarse ini-
tial solution M0 is equivalent to the final solution M of
PTA (with factor S presenting a different order of rows).
Note that the PTA method cannot consider additional
DCT basis vectors without increasing K, leading to a
higher rank of M. Our 3D shape trajectory approach, on
the other hand, can consider any number d = K, . . . , T
of DCT basis vectors because the linear combination
represented by X constrains M to be of rank-3K. That
is, our method can better model structure deformation
presenting higher-frequency components in the DCT
domain, yielding better 3D shape reconstructions.

Empirically, we have found that the coarse solutions
computed by PTA contain accurate estimates of the
rotation matrices in D. We iteratively run PTA with
increasing values of K ∈ {1, 2, . . . , bn3 c}, obtaining a
solution denoted as DK . Iterations stop automatically
when there is no additional improvement in the average
camera orthonormality,

ε(DK) =
1

T

T∑
t=1

∥∥∥I2 − R̂tR̂
T
t

∥∥∥2
F
.

Given D = DK , we then solve for M as a function of
X only. The first differential of M in (18) is given by

dM = D (Ωd ⊗ I3)︸ ︷︷ ︸
Bnr

(dX⊗ I3) = Bnr (dX⊗ I3) . (20)

Next, consider vec(dX⊗ I3) = Vvec(dX), with V ∈
R9dK×dK a binary mapping matrix. From (12) and (20),
the Jacobian terms for the update step vec(dX) are

Jj =
(
sTj ⊗P⊥j ΠjBnr

)
V.

with sj = M†
j(wj − tj). For X with dimensions d×K,

the constant and sparse matrix V is defined as [20],

V = IK ⊗
[
(K3d ⊗ I3) (Id ⊗ vec(I3))

]
,

where the permutation matrix K3d ∈ R3d×3d satisfies
vec(AT) = K3dvec(A), for any A ∈ R3×d.

4.2 Non-Rigid SFM with missing data

The method above can estimate X using only the ob-
served data in W. We now consider the initial estimation
of t and D (the camera motion) in cases of missing data.
To compute t and D from a coarse solution as above, we

first recover a complete, rank-r W via the factorization

W = BafX︸ ︷︷ ︸
M

[
S
1T

]
, X ∈ R2d×r,

with a predefined r ∈ {4, 5, . . . , 3K + 1} and the DCT
basis Baf of Section 3. Instead of considering the trajec-
tory of an affine camera, here Baf is a basis for individual,
smooth 2D point trajectories in the column space of W.

Note that a common solution for M corresponds to
the eigenvector matrix U of WWT (if W is complete).
Here, our solution M = BafX can be seen as using linear
combinations of the DCT basis vectors to approximate
the eigenvectors in U. Indeed, the DCT basis vectors
have been found to be good approximations of the
Karhunem-Loeve (eigenfunction) transform of first-order
Markov processes [18]. Also, the Markov assumption is
used in algorithms that track the 2D points in W [11].

5 EXPERIMENTAL RESULTS

In this section we provide extensive experimental val-
idation for the proposed algorithms. General matrix
factorization performance is first assessed on different,
synthetic and real datasets. Subsequently, we apply our
methods on rigid and non-rigid SFM data.

5.1 Fitting low-rank matrices
Our initial experiments analyze the general performance
of our CSF method in its simplest form (i.e., with a
canonical basis I and without a mean column vector
t) in the low-rank factorization of synthetic and real
data matrices with missing data. The method is eval-
uated against the LM-S algorithm [8] and its Gauss-
Newton variant, LM-SGN (presented in the supplemen-
tary file). We also provide results using PowerFactoriza-
tion (PF) [16] as a baseline algorithm.

We start by generating a random 20 × 30 matrix W
of rank 3 with values uniformly distributed in the in-
terval [0, 1]. Then, we add Gaussian noise with standard
deviation σn and randomly occlude ρ% of the matrix
entries. The algorithms above are used to compute a
rank-3 factorization W = MS starting from the same
initial factor M = M0, which is generated randomly
and then refined with 20 iterations of the PF method.
We always set the initial damping scalar to δ0 = 10−4.
Each algorithm runs until the change in the cost value (2)
is less than 10−10 or until the number of iterations
reaches 1,000. Note that, although we know the ground
truth data, we do not know where the optimal solution
for the matrix with missing data is [8]. Therefore, we
first run all algorithms and, considering the solution
obtained by each algorithm, we then define the trial’s
target (i.e., “optimal”) cost as the smallest cost observed.

We perform 500 trials, with σn and ρ fixed, and report
the frequency (%) with which a method failed to match
the trial’s “optimal cost”. We consider two cost values
as equivalent if their absolute difference is below 10−7.

8

TABLE 1
Algorithm performances on random matrices with missing data:
frequency of sub-optimal solutions (%) and average number of

iterations (in parenthesis).

ρ(%), σn PF LM-S LM-SGN CSF

25, .1 23 (313) 1 (16) 4 (82) 3 (57)
25, .2 30 (391) 3 (17) 6 (93) 3 (65)
25, .4 28 (381) 3 (16) 8 (108) 5 (74)
50, .1 71 (813) 12 (51) 14 (96) 11 (79)
50, .2 76 (831) 15 (58) 14 (105) 12 (89)
50, .4 77 (869) 18 (61) 19 (120) 16 (103)
75, .1 100 (1000) 69 (356) 62 (380) 42 (549)
75, .2 100 (1000) 72 (376) 54 (419) 46 (586)
75, .4 100 (1000) 77 (421) 65 (473) 44 (698)

TABLE 2
Algorithm performances on real datasets with missing data:

frequency of sub-optimal convergence (%) and average
number of iterations (in parenthesis).

Dataset PF LM-S LM-SGN CSF CSF-Baf

Dinosaur 100 (500) 26 (225) 3 (92) 1 (101) 0 (12)
Giraffe 100 (500) 0 (192) 0 (86) 0 (61) 0 (49)

Face 100 (500) 65 (36) 62 (64) 62 (43) –

Results for different values of σn and ρ are shown in
Table 1, which also includes the average number of
iterations performed by each method. As expected, the
simple PF method converges very slowly and is com-
petitive only when ρ is very small. For ρ ∈ {25%, 50%},
CSF’s performance is either comparable or better than
that of LM-S and LM-SGN . CSF also converges faster
than LM-SGN for smaller fractions of missing data. With
ρ = 75%, CSF clearly outperforms the other methods.
These results are highly revelant to SFM, where the
number of missing entries is usually large (> 75%).

A second, similar experiment considers the three real
datasets used in [6] and [8]: (i) the dinosaur on a turn
table, with rank-4 W ∈ R72×319 and 76.9% missing data;
(ii) the occluded motion of a giraffe, with rank-6 W ∈
R240×166 and 30.2% missing data; and (iii) the face illu-
mination data under a moving light source, with rank-4
W ∈ R20×2944 and 41.7% missing data. For each dataset,
the smallest known root-mean-square error (RMSE) of
the observed entries, as previously published [6], gives
the target value that indicates optimal convergence.

We performed 100 trials corresponding to 100 different
initial factors M generated as above. Each algorithm
was allowed to run for at most 500 iterations. Table 2
shows the frequency of sub-optimal convergence (%)
and average number of iterations for each algorithm. We
first note that on the face dataset, all algorithms except
PF often converged to a sub-optimal solution whose
cost is only .45% (about 10−4) higher than that of the
optimal solution. If this solution is considered equivalent
to the optimal one, the new sub-optimal convergence
frequencies are 9% (LM-S), 8% (LM-SGN), and 1% (CSF).

Fig. 3. Smooth camera trajectory in the synthetic sphere dataset.

Nevertheless, in the results above, CSF either provides
better solutions or computes equivalent solutions with
fewer iterations as compared to the other methods.

Because the columns of the dinosaur and giraffe matri-
ces have measurements (alternated x- and y-coordinates)
that vary smoothly over subsequent pairs of rows, we
also computed factorizations with the CSF-Baf variant
of our method. We used the full Baf basis and started
with the deterministic initialization in (13) as a coarse
initial solution. CSF-Baf presented optimal convergence
on both datasets, without the initial use of PF.

5.2 Computing rigid SFM

Our first experiment on rigid SFM considers a synthetic
sphere dataset with known 3D points (n = 100), located
on its surface, and also known camera matrices (T = 90)
describing a smooth trajectory over time, Fig. 3. The real
occlusion pattern for the simple spherical shape can be
easily determined and the resulting observation matrix
W ∈ R180×100 is missing 50% of its entries.

Results of our SFM methods with affine (CSF-Baf)
and weak-perspective (CSF-Bwp) cameras are compared
against those of PF, LM-S, LM-SGN , and the Wiberg
algorithm [31]. Euclidean upgrade is applied to the
results of affine methods. All results are aligned (rotated
and scaled) with the ground-truth shape and motion
before comparison. On the noiseless W, the methods
above provide camera and shape reconstructions with
nearly zero error. Our CSF methods are run with only
30% of the DCT basis vectors (d = .3T).

In our experiment, we analyze how the performance of
these methods degrades with different levels of Gaussian
noise added to W. We now set σn = σ̂nσ(W), where
σ̂n ∈ [.05, .25] and σ(W) indicates the scale of the entries
of W. For any matrix A with m rows, let

σ(A) =
1

m

m∑
r=1

σr , (21)

where σr is the standard deviation of the available
entries in the rth row of A. For each value of σ̂n,
we perform 100 trials and report the average error of
the recovered 3D shape (eS) and camera rotations (eR).
The error eS is the average Euclidean distance between
original and recovered 3D points, normalized by the
radius of the original 3D sphere. Let the original and

9

TABLE 3
Results of rigid SFM methods on the sphere dataset.

Method
σ̂n = .05 σ̂n = .125 σ̂n = .25

eS eR eS eR eS eR

PF .0163 .0250 .0818 .1247 .2092 .2839
LM-S .0169 .0255 .0845 .1284 .1780 .2690
LM-SGN .0170 .0255 .0845 .1284 .1777 .2686
Wiberg .0163 .0250 .0806 .1242 .1695 .2569
CSF-Baf .0163 .0151 .0806 .0731 .1651 .1513
CSF-Bwp .0156 .0130 .0779 .0606 .1586 .1280

estimated rotations be R̂∗t and R̂t, then eR is

eR =
1

T

T∑
t=1

∥∥∥R̂∗t − R̂t

∥∥∥
F
. (22)

CSF-Baf and CSF-Bwp were run with deterministic ini-
tializations. The other methods require random initial-
izations and often provided very poor solutions in our
experiments. For this reason, in each trial they were run
with five different random initializations; the result with
the smallest RMSE for the reconstructed W was chosen.

The average errors in Table 3 show that the shape
estimates of all methods seem to be similarly affected
by noise up to σ̂n = .125. Also, a significant difference
is seen for the camera estimates with σ̂n > .05. Affine
methods overfit noise in the data due to the extra degrees
of freedom in their camera model. CSF-Baf and CSF-Bwp
attenuate this problem by enforcing smoothness on the
camera trajectory. CSF-Bwp outperforms all methods by
further constraining the camera axes to be orthogonal
and of equal length. This result is of special importance
to SFM applications that rely more on the motion factor.

The average runtimes in seconds (per initialization, on
a single-core 2.6 GHz processor) were: .2 (PF), 18.2 (LM-
S), 14.9 (LM-SGN), 128.5 (Wiberg), 1.1 (CSF-Baf), and 8.0
(CSF-Bwp). The simple PF is fast but often provides poor
estimates, even with a maximum of 10,000 iterations
(versus 500 for the other methods). CSF-Baf and CSF-
Bwp are also very fast. Typically, CSF-Bwp performs more
iterations than CSF-Baf – for better convergence on long
sequences (large T), we run CSF-Bwp in a coarse-to-fine
manner, increasing d ∈ {.1T, .2T, .3T}. We also note that
the Wiberg method does not scale well for application on
large matrices due to the size of the system of equations
it has to solve in each iteration.

Our experiments also considered the complete di-
nosaur dataset with 4,983 tracks (of which 2,300 are
defined on only two images).1 The dinosaur sequence
is arguably the most popular dataset used to evaluate
rigid SFM algorithms, with results published on different
subsets of its 2D point tracks. For comparison against
previously published results, we consider a subset of
2,683 tracks (points tracked in at least 3 images) and the
subset of 319 tracks described above.

1. Available at http://www.robots.ox.ac.uk/∼vgg/.

Results of the methods above are also compared
to those of the following algorithms: Damped-Newton
(DN) [6], the Deviation Parameter (DP) for subspace
constraints [19], Minimal Missing Elements (MME) [7],
Camera Basis (subspace) Constraints (CBC) [28], and
the Euclidean PowerFactorization (EPF) method in [21].
Finally, we also compare the result of CSF-Bwp to that ob-
tained with projective SFM followed by Euclidean bun-
dle adjustment (ProjSFM-BA) [22]. Because the ground-
truth 3D shape and cameras are not available, we com-
pare RMSE values for the reconstructed W and also
the mean/maximum 2D reprojection errors (in pixels)
of the best solutions provided by each method. For this
numerical comparison on the relatively short dinosaur
sequence (T = 36), our CSF methods were both initial-
ized (deterministically) with full DCT bases.

In Table 4, each incomplete row contains only the
results reported in the original publication due to the
algorithm not being available in our experiments. Be-
cause these algorithms use factorization models with
different numbers of degrees of freedom, we define three
main groups of methods. In this case, models with more
degrees of freedom are expected to be associated with
lower RMSE and 2D error values. However, we note that
CSF-Bwp yielded lower 2D reprojection errors compared
to the affine SFM methods. In the dinosaur dataset, the
performance of CSF-Bwp is very close to that of the
projective SFM method with bundle adjustment, despite
the non-negligible perspective distortion in the data.
Fig. 4(b)-(c) show the 3D shape recovered by CSF-Bwp.

Information on the ground-truth motion is actually
available because we know the dinosaur is on a turn-
table. Thus, the reconstructed W must describe 2D
point trajectories that are all concentric ellipses. Indeed,
the result of CSF-Bwp indicates correct motion recovery,
Fig. 4(d). The best affine methods in our comparison
(CSF-Baf , LM-S, LM-SGN , and Wiberg) overfit noise
and outliers and recover an incorrect motion pattern,
Fig. 4(e). This problem is inherent in all affine SFM
methods (incorrect 2D trajectories are also shown in [6],
[8]). Also note this fact is independent of the Euclidean
upgrade step, which does not affect reprojection.

The robust CBC method uses random sampling to tol-
erate outliers when computing subspace constraints and
triangulating 3D points. Thus, CBC yields higher RMSEs
as compared to the other methods. Table 4 shows that
2D reprojection error decreases as more point tracks are
available for outlier/inlier identification – we computed
camera constrains from triplets of frames presenting at
least 15 tracks in common. In [28], CBC was found to
provide the best solutions among the main subspace con-
straint methods. Here, error values are higher than those
in [28] because we did not remove outliers before the
comparison against non-robust methods. We note that
our CSF methods do not explicitly address the problem
of outliers and may fail if the input data present gross
measurement errors. Future work will investigate the use
of robust error terms [9], [12] in our cost functions.

10

TABLE 4
Results of rigid SFM methods on different subsets of the dinosaur dataset.

Method (model)
319 point tracks (76.9% missing) 2,683 point tracks (87.8% missing) 4,983 point tracks (90.8% missing)
RMSE mean/max 2D error RMSE mean/max 2D error RMSE mean/max 2D error

CSF-Baf (1) 1.0847 .6286 / 38.8381 1.3370 .7129 / 39.9999 1.1346 .5133 / 39.9999
LM-S, LM-SGN (1) 1.0847 .6287 / 38.8376 1.3370 .7131 / 39.9999 1.1346 .5135 / 39.9997
DN (1) 1.0847 – – – – –
DP (1) 1.5482 1.0131 / 39.4277 2.0201 1.9103 / 40.2124 1.7142 1.6233 / 40.1713
MME (1) – – – 2.4017 / 72.4467 – 1.8438 / 72.4467

CSF-Baf (2) 1.2702 .8810 / 41.4078 1.4294 .8610 / 42.5002 1.2176 .6808 / 42.4961
Wiberg (2) 1.2702 .8810 / 41.4081 1.4294 .8609 / 42.5002 1.2176 .6808 / 42.4959
DN (1*) 1.2702 – – – – –
CBC (2) 1.8120 .9730 / 76.4071 2.9126 .8884 / 92.7365 2.4538 .7044 / 92.7399
PF (2) 1.4139 1.0091 / 41.1094 2.0604 1.2238 / 64.1713 2.4531 1.5846 / 61.3726

CSF-Bwp (3) 1.3031 .8757 / 43.8770 1.4833 .8122 / 44.6721 1.2641 .6472 / 44.7587
EPF (3) 1.3705 – / 21 – – – –
ProjSFM-BA (3*) – – – – – .64 / 41.5

†Models: (1) general rank-4 factors (no mean column); (2) affine SFM; (3) Euclidean (weak-perspective) SFM; (3*) projective SFM with Euclidean
bundle adjustment; (1*) penalty terms imposed on model (1) to favor orthogonality of camera axes. Error values are given in pixels.

(a) (b) (c) (d) (e)

Fig. 4. Results on the 4,983 point set (90.8% missing) of the dinosaur dataset: (a) one of the 36 images of the sequence; (b)-(c) side and frontal
views of the Euclidean 3D shape recovered by CSF-Bwp; and 2D point tracks reconstructed by CSF-Bwp (d) and by the best affine methods (e).

TABLE 5
Results of rigid SFM methods on the teddy bear dataset.

Method (model) RMSE mean/max 2D error

CSF-Baf (1) .4925 .4527 / 7.4998
LM-S, LM-SGN (1) .4925 .4527 / 7.4998
DP (1) .5911 .4977 / 13.8324

CSF-Baf (2) .6174 .5689 / 10.7385
Wiberg (2) .6174 .5689 / 10.7385
CBC (2) .7487 .6478 / 14.1339
PF (2) 1.2125 .8649 / 27.5116

CSF-Bwp (3) .6310 .5792 / 10.6524

†Models are as in Table 4. Error values are given in pixels.

In another experiment, we applied the Kanade-Lucas-
Tomasi (KLT) feature tracker [27] on a 200-image teddy
bear sequence [28]. We selected 806 point tracks appear-
ing in at least 10 images. Due to occlusion, the resulting
matrix W ∈ R400×806 is missing 88.6% of its entries.
For numerical comparison, both CSF methods consid-
ered a full DCT basis. CSF-Bwp adopted a coarse-to-fine
strategy with d ∈ {.1T, .2T, .3T, . . . , T} increased each
time convergence to a coarser solution was detected.

(a) (b)

(c) (d)

Fig. 5. Result of CSF-Bwp on 806 point tracks (88.6% missing) of the
teddy bear sequence: (a) image in the sequence; (b) input 2D tracks;
(c)-(d) frontal and top views of the recovered Euclidean 3D shape.

Table 5 gives the 2D errors obtained with the algorithms
described above on our teddy bear dataset. CSF-Baf
provides equivalent or better solutions as compared to
the other methods. Also, CSF-Bwp directly reconstructs

11

the Euclidean 3D shape with only a slight increase in
2D error – its camera model captures less of the noise in
the data. Fig. 5 shows the 3D shape reconstructed with
CSF-Bwp. On this long sequence (T = 200) with smooth
motion, the difference in the results of CSF-Bwp with a
full DCT basis (d = T) and with d = .3T is very small,
eR = .0175 and eS = .0229 (here eS is normalized by
σ(S) as in (21)). With d = .3T , the runtime of CSF-Bwp
drops from 27.3 to 3.6 minutes (4 to .7 minute for CSF-
Baf). Wiberg took on average 4.2 hours.

5.3 Computing non-rigid SFM

First, we evaluate our non-rigid SFM algorithm on com-
plete datasets with known 3D shapes for each frame,
also simulating missing data and noise. Then, we present
results on real datasets with and without occlusion. The
number of frames (T) and the number of point tracks (n)
are indicated as (T/n) after a dataset’s name.

We start with the motion capture sequences: drink
(1102/41), pick-up (357/41), yoga (307/41), stretch
(370/41), and dance (264/75) used in [2]; face1 (74/37)
of [24]; face2 (316/40) and walking (260/55) of [30]. We
also use the synthetic bending shark (240/91) of [30].
Note that a different shark dataset appears in [2]. We use
only the original one in [30].

To allow for comparison against the results reported
in [2], we used the same procedure and error metrics
therein. For each dataset, the complete 2D point trajec-
tories in W are obtained by applying an orthographic
projection on the sequence of 3D shapes. Because the
solution of non-rigid SFM methods is defined up to an
arbitrary 3×3 rotation, we compute a single rotation that
best aligns all reconstructed and original 3D shapes. Let
etj be the reconstruction error (i.e., Euclidean distance)
for the jth 3D point of frame t. We then compute a
normalized mean 3D error over all points and frames,

e3D =
1

σeTn

T∑
t=1

n∑
j=1

etj , σe =
1

T

T∑
t=1

σ(St),

with σ(·) as in (21) and St ∈ R3×n the original 3D shape
in frame t. The first four motion capture sequences have
artificial rotations applied on them. We thus compare
original and estimated rotations using eR as in (22).

Table 6 compares the performance of our 3D shape
trajectory approach, CSF-Bnr, against four state-of-the-
art, non-rigid SFM methods: (i) the shape basis con-
straints (XCK) method2 [32]; (ii) the algorithm modeling
3D shape using probabilistic principal component anal-
ysis (EM-PPCA) [30]; (iii) the Metric Projections (MP)

2. We did not implement the XCK algorithm. Its results on the first
five sequences are reproduced from [2]. Results on the shark, face, and
walking datasets are given in [30], with a different error metric, and
found to be significantly inferior to those of EM-PPCA.

(a) Original (b) CSF-Bnr (c) PTA

Fig. 6. Overlay of 316 unrotated 3D shapes in the face2 sequence.
Deformation is seen predominantly on the lower-lips and chin. CSF-Bnr

can capture this high-frequency deformation better than PTA.

method3 [24]; and (iv) the DCT-based 3D point trajectory
approach (PTA) [2].

Following the methodology in [2], we ran the al-
gorithms with different values of K ∈ {2, 3, . . . , 13},
reporting the best result. Table 6 also shows the value
of K for the best solutions obtained with PTA and
CSF-Bnr for comparison. We also report the initial error
of CSF-Bnr because it shows the error that PTA would
provide with the same K and rotations in D. In all runs,
CSF-Bnr had the number of DCT basis set to d = .1T ,
except for the two face datasets on which we set d = T

3
due to the presence of higher frequency deformations.

Our results, as shown in Table 6, are consistently
similar or better than the best results provided by the
other methods on each dataset. As compared to PTA,
CSF-Bnr computes better solutions and at a lower rank
r = 3K + 1 by more efficiently using higher DCT fre-
quency components. Furthermore, our simple strategy of
iterating over K while computing factor D also provides
better Euclidean camera estimates than plain PTA.

EM-PPCA, MP, and CSF-Bnr provide comparable re-
sults on the face2 dataset, which has mostly rigid motion
with high-frequency deformation seen on the lower-lips
and chin. In this case, CSF-Bnr requires at least 75%
of all DCT components (d = .75T) to provide a mean
3D error (.0328) that is smaller than that of EM-PPCA.
PTA is not capable of modeling this high-frequency
deformation and recovers a mostly rigid mouth, Fig. 6.
On the much shorter face1 sequence, CSF-Bnr obtains an
error improvement of only .0012 with a larger d. Setting
d > .1T resulted in no significant improvement to the
CSF-Bnr solutions on the other datasets.

CSF-Bnr is the only method that can accurately re-
construct the deformation of the bending shark. Fur-
thermore, with a full DCT basis, the resulting e3D is
negligible (.00004) and perfect reconstruction is achieved.
Fig. 7 shows the three best shark reconstructions of Ta-
ble 6. XCK fails on this dataset due to the bending shark
presenting a 2D (degenerate) deformation mode [30].

The motion capture sequences containing highly ar-
ticulated bodies also show the superiority of CSF-Bnr

3. Two MP methods are presented in [24]. Here we experiment
with the method using a generic model of deformable shapes. The
supplementary file shows comparative results against MP with a
specialized articulated model that requires the columns of W to be
initially grouped as corresponding to separate object parts.

12

TABLE 6
Performance of non-rigid SFM methods on synthetic and motion capture data. For the related PTA and CSF-Bnr methods,

factorization rank is also indicated by the value of K in parenthesis.

XCK EM-PPCA MP PTA CSF-Bnr

Dataset eR e3D eR e3D eR e3D eR e3D (K) eR e3D (K) initial e3D (K)

Drink .3359 3.5186 .2906 .3393 .2859 .4604 .0058 .0250 (13) .0055 .0223 (6) .0854 (6)
Pick-up .4687 3.3721 .4277 .5822 .2506 .4332 .1549 .2369 (12) .1546 .2301 (6) .2685 (6)

Yoga 1.2014 7.4935 .8089 .8097 .8711 .8039 .1059 .1625 (11) .1021 .1467 (7) .1528 (7)
Stretch .9489 4.2415 .7594 1.1111 .8174 .8549 .0549 .1088 (12) .0489 .0710 (8) .0966 (8)
Dance – 2.9962 – .9839 – .2639 – .2958 (5) – .2705 (2) .3259 (2)
Face1 – – – .0434 – .0734 – .1247 (3) – .0637 (5) .1487 (3)
Face2 – – – .0329 – .0357 – .0444 (5) – .0363 (3) .0451 (3)
Shark – – – .0501 – .1571 – .1796 (9) – .0081 (3) .3195 (3)

Walking – – – .4917 – .5607 – .3954 (2) – .1863 (2) .6823 (2)

EM
-P

PC
A

PT
A

C
SF

-B
n
r

Fig. 7. Results on the bending shark sequence. Reconstructed 3D shapes (blue circles) are shown against the original 3D data (dark dots).
Frames 20, 50, 80, 115, 148, 175, and 200 are displayed above.

and PTA compared to XCK, EM-PPCA, and MP. On the
smoothly deforming shapes in the drink, pick-up, and
yoga sequences (used in [2]), the improvement offered
by CSF-Bnr over PTA is marginal. On the other hand,
the results on the more difficult walking sequence of [30]
(Fig. 8) highlight the advantages of using our 3D shape
trajectory approach (no artificial rotation was added to
this sequence). MP provides comparable results with
CSF-Bnr on the dance sequence. The supplementary file
includes additional examples.

To simulate missing data in the shark and walking
datasets, we randomly discard ρ% of the 2D entries in
W. Before applying CSF-Bnr (with K as in Table 6), we
compute D and t by first using CSF-Baf to reconstruct
the complete 2D point trajectories in W. CSF-Baf was
run with d = .25T and rank r = 7. Let W0 be the
complete matrix, we normalize the 2D reconstruction
error for the incomplete W by σ(W0) as in (21).

On the smooth shark deformation, results are visually

similar to those in Fig. 7 with ρ up to 95% (see images
in the supplementary file). Of 10 runs with ρ = 95%,
the average (maximum) 2D reconstruction error for W
was .0015 (.0029). The average (maximum) 3D error
after running CSF-Bnr was .0163 (.0488). On the walking
sequence, results with ρ = 75% are still visually similar
to those in Fig. 8. After 10 runs, the average (maximum)
2D and 3D errors were .0508 (.0548) and .2063 (.3910),
respectively. These results on incomplete data are still
better than those of XCK, EM-PPCA, MP, and PTA on
the complete shark and walking datasets.

On the complete face2 dataset, the performances of
EM-PPCA, MP, PTA, and CSF-Bnr are more similar than
on the other sequences. We thus analyzed their average
e3D with different levels of random occlusion and noise
(simulated independently) on W of face2. EM-PPCA
and MP handle cases of missing data by adopting an
alternation approach as in PowerFactorization. PTA does
not handle occlusions and was tested with added noise

13

EM
-P

PC
A

PT
A

C
SF

-B
n
r

Fig. 8. Results on the walking sequence. Reconstructed 3D shapes (blue circles) are shown against the original 3D data (dark dots). Frames 34,
74, 122, 160, 198, 223, and 255 are displayed above.

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

missing data, ρ%

av
er

ag
e

3D
 e

rr
or

, e
3D

Face2 dataset

CSF−B

nr

MP

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

noise level, % of σ(W)

av
er

ag
e

3D
 e

rr
or

, e
3D

Face2 dataset

CSF−B

nr

MP
EM−PPCA
PTA

(a) (b)

Fig. 9. Reconstruction errors on the face2 sequence with missing data
and noise simulated independently (averages over 100 trials).

only. All methods were run with their best parameter K
for the complete data (K = 5 for EM-PPCA, MP, PTA;
K = 3 for CSF-Bnr). After random occlusion, we ensured
that W had at least 3Kmax+1 entries (Kmax = 5) in each
row and column. On the high-frequency deformation
and motion of face2 (combined in the columns of W),
the initial CSF-Baf step of CSF-Bnr reconstructed the 2D
point trajectories in W with d = .5T and r = 5. Results
were averaged over 100 trials and are shown in Fig. 9.

In our trials on face2 with missing data, EM-PPCA was
unstable and presented both small and very large errors
for random occlusions ρ as low as 10%. Thus, Fig. 9(a)
shows the results of CSF-Bnr in comparison to those of
MP, which was shown in [24] to outperform EM-PPCA
in a similar experiment on face2. Note that the average
e3D of MP begins to increase with ρ above 30%, while
that of CSF-Bnr presents almost no variation over all the
tested levels of random occlusion.

For levels of added Gaussian noise below .15σ(W)
(15%), the increase in e3D is similar for all four meth-
ods, Fig. 9(b). At 15% and above, small differences in

performance are observed but the reconstructions still
degrade only gradually with the level of noise. Because
PTA largely oversmoothes the deformation of face2, its
performance suffers a smaller penalty as compared to
that of the other methods. At high noise levels, correct
3D shape reconstruction seems to require additional in-
formation on the nature of the 3D shapes and noise [12].

The average runtimes of the algorithms on the face2
trials at 5% noise level were, in minutes: 2.52 (EM-
PPCA), .34 (MP), .05 (PTA), and .40 (CSF-Bnr, of which
.15 was spent to compute D). These times were similar
to those observed for the algorithms on the original data.
PTA is fast due to its use of SVD. Runtimes in minutes
on face2 trials with 30% missing data were: 2.85 (EM-
PPCA), 3.66 (MP), and 2.29 (CSF-Bnr). This runtime of
CSF-Bnr includes time spent running CSF-Baf (.82) and
computing D (.19). At above 20% random occlusion,
CSF-Bnr was faster than MP and EM-PPCA.

We also applied CSF-Bnr to the (complete) real dataset
cubes (200/14) of [2]. With K = 2 and d = .1T , the so-
lution of CSF-Bnr has mean (maximum) 2D reprojection
error of .4958 (2.0672) pixel. The solution of PTA has an
error of 1.6589 (4.8602) also with K = 2. Images and
additional results are given in the supplementary file.

Finally, an application of our non-rigid SFM method is
in the interpretation of the facial expression component
of sign languages from video [10]. In this case, head
rotation and hand gesticulation often cause the occlusion
of facial features, leading to incomplete 2D point tracks.
We now consider a 115-image (4 seconds long) face close-
up sequence of an American Sign Language (ASL) sen-
tence. Facial landmarks were manually annotated in each
image when visible. The resulting matrix W ∈ R230×77 is
missing 17.4% of its data and has small magnitude noise
due to annotation errors caused by partial occlusion of
facial features and motion blur in the video images.

14

Fig. 10. Results of CSF-Bnr on the ASL sequence (77 points, 17.4% missing data): (top) six out of 115 images with annotated facial landmarks
in green; (middle,bottom) two orthogonal views of the recovered 3D shapes.

Fig. 10 shows six example images and their respective
3D face shapes recovered using CSF-Bnr (K = 2 and
d = .5T , with the initial CSF-Baf step run as for face2
above). Figures with the results of EM-PPCA and MP are
given in the supplementary file. For all tested values of
K ∈ {2, 3, . . . , 13}, the result obtained with EM-PPCA
presented visibly large 3D reconstruction errors for a
number of facial points that are occluded frequently in
each sequence (e.g., the lateral contours of the nose and
the face). The results of CSF-Bnr and MP are visually
similar and indicate correct recovery of pose and non-
rigid 3D shape despite the occurrence of occlusion.

6 CONCLUSION
In this paper, we have addressed the classical computer
vision problems of rigid and non-rigid SFM with oc-
clusion. We started by assuming that the columns of
the input data matrix W describe smooth 2D point
trajectories over time. This assumption is equivalent to
considering that 2D observations in W are obtained by a
single camera moving smoothly around a rigid structure.
In non-rigid SFM, our assumption also requires the
structure to deform only smoothly over time.

Our main contributions are two-fold: (i) we provide
new models for the smooth time-trajectories of camera
and deformable shape with a compact parameterization
in the DCT domain; and (ii) we derive a family of
efficient Column Space Fitting (CSF) methods to estimate
such trajectories while tolerating cases in which W is
presented with missing data.

In rigid SFM, we consider a weak-perspective camera
model from the outset and directly reconstruct Euclidean
3D shape without requiring post-processing steps. Our
results on synthetic and real SFM datasets with noise
and high percentages of missing data were positively
compared to the state of the art.

In non-rigid SFM, we propose a novel 3D shape trajec-
tory approach that solves for the deformable structure as

the trajectory of a single point in an implicitly defined
linear shape space. A comparison against state-of-the-
art algorithms show that our method can better model
complex articulated deformation with higher frequency
DCT components while still maintaining the low-rank
factorization constraint. We also demonstrate that our
non-rigid SFM algorithm can tolerate high percentages
on missing data in the input matrix W with only a small
penalty in 3D reconstruction accuracy.

Future work will investigate the integration of our
weak-perspective camera model into our non-rigid SFM
approach. We will also consider the automatic selection
of the number of elements in the DCT and shape bases
using regularization terms that balance the tradeoff be-
tween higher model complexity (r, K, and d) and smaller
fitting error [23], [25], [30]. Our CSF algorithms may also
benefit from a robust error term in order to better tolerate
the presence of outliers in W. Finally, non-linear models
for the column space of W shall be considered.

APPENDIX A
DERIVATION OF THE JACOBIAN TERMS IN CSF
Consider vec(uTv) = vec(u)T vec(v), and vec(BXA) =
(AT ⊗ B)vec(X), for any column vectors u and v,
and any matrices B, X, and A. The operator ⊗ is the
Kronecker product. Also, let the matrix Kmr ∈ Rmr×mr
be a permutation satisfying vec(MT) = Kmrvec(M).

By following a Gauss-Newton approach, the first and
second differentials of f in (4) are

df =
1

2

∑
j

(
drTj rj + rTj drj

)
=
∑
j

rTj drj ,

d2f ≈
∑
j

drTj drj ,

with second order terms d2rj neglected in d2f and

drj = −d
(
MjM

†
j

)
wj . (23)

15

From [20], we have

d
(
MjM

†
j

)
= P⊥j dMjM

†
j +

(
P⊥j dMjM

†
j

)T
. (24)

with P⊥j as in (3). Considering Mj = ΠjM and ex-
pressing (23) as drj = −Jjvec(dM), the Jacobian terms
are identified as

Jj = sTj ⊗P⊥j Πj +
(
ΠT
j rj ⊗M†

j

)T
Kmr. (25)

We now depart from the Gauss-Newton solution (25).
First, notice that the right-most term in (24) vanishes
when multiplied by rTj = (P⊥j wj)

T on the left,

rTj

(
P⊥j dMjM

†
j

)T
=
(
P⊥j dMj(M

†
jP
⊥
j)wj

)T
= 0,

because the property M†
j = M†

jMjM
†
j implies

M†
jP
⊥
j = M†

j

(
I−MjM

†
j

)
= 0.

Thus, a Jacobian term (7) in CSF neglects the right-most
term in (24) and (25). While there is no difference in the
gradient vector, it can be shown that the Hessian matrix
in (8) neglects terms of the form ΠT

j rjr
T
j Πj ⊗M†

jM
†T
j .

Our Hessian approximation, combined with the
damping parameter δ in Algorithm 1, is efficient in pro-
viding adequate solution updates, vec(dM), despite the
simpler form. CSF’s performance is positively compared
to that of LM-S in Section 5. We also consider a Gauss-
Newton derivation of LM-S (see the supplementary file).

For the rank-r factorization with a mean column t, we
define sj = M†

j(wj − tj) ∈ Rr−1. Then, the differential
of the residual terms in (10) is

drj = dP⊥j (wj − tj)−P⊥j dtj

≈ −P⊥j ΠjdMsj −P⊥j Πjdt

≈ −P⊥j Πj

[
dM dt

] [sj
1

]
≈ −

(
s̃j ⊗P⊥j Πj

)
vec(dM̃),

revealing the form of the Jacobian in (11). It is similar
to (7) but has the extended term s̃j instead of sj .

Acknowledgments
We thank the reviewers for their constructive comments.
This research was supported in part by the National
Science Foundation, grant 0713055, and the National
Institutes of Health, grant R01 EY 020834.

REFERENCES
[1] I. Akhter, Y. Sheikh, and S. Khan, “In defense of orthonormality

constraints for nonrigid structure from motion,” in Proc. IEEE
Conf. Computer Vision and Pattern Recognition, 2009, pp. 1534–1541.

[2] I. Akhter, Y. A. Sheikh, S. Khan, and T. Kanade, “Nonrigid
structure from motion in trajectory space,” in Neural Information
Processing Systems, December 2008.

[3] A. Bartoli, V. Gay-Bellile, U. Castellani, J. Peyras, S. Olsen, and
P. Sayd, “Coarse-to-fine low-rank structure-from-motion,” in IEEE
Conference on Computer Vision and Pattern Recognition, no. 1, 2008,
pp. 1–8.

[4] D. Bertsekas, Nonlinear Programming. Athena Scientific Press,
1999.

[5] C. Bregler, A. Hertzmann, and H. Biermann, “Recovering non-
rigid 3d shape from image streams,” in Proc. IEEE Conference on
Computer Vision and Pattern Recognition, vol. 2, 2000, pp. 690–696.

[6] A. M. Buchanan and A. W. Fitzgibbon, “Damped newton algo-
rithms for matrix factorization with missing data,” in Proc. IEEE
Conf. Computer Vision and Pattern Recognition, vol. 2, 2005, pp. 316–
322.

[7] P. Chen and D. Suter, “Recovering the missing components in a
large noisy low-rank matrix: Application to sfm,” IEEE Trans. on
Pattern Analysis and Machine Intelligence, vol. 26, no. 8, pp. 1051–
1063, 2004.

[8] P. Chen, “Optimization algorithms on subspaces: Revisiting miss-
ing data problem in low-rank matrix,” International Journal on
Computer Vision, vol. 80, no. 1, pp. 125–142, 2008.

[9] F. de la Torre and M. Black, “Robust principal component analysis
for computer vision,” in Proc. Int. Conf. Computer Vision, vol. 1,
2001, pp. 362–369.

[10] L. Ding and A. Martinez, “Modelling and recognition of the
linguistic components in american sign language,” Image and
Vision Computing, vol. 27, no. 12, pp. 1826–1844, 2009.

[11] D. Forsyth and J. Ponce, Computer Vision: A Modern Approach.
Prentice Hall, 2003.

[12] J. Fortuna and A. M. Martinez, “Rigid structure from motion
from a blind source separation perspective,” International Journal
of Computer Vision, 2010, (in press).

[13] G. H. Golub and C. F. Van Loan, Matrix Computations, ser. Johns
Hopkins Studies in Mathematical Sciences. The Johns Hopkins
University Press, 1996.

[14] N. Guilbert, A. Bartoli, and A. Heyden, “Affine approximation
for direct batch recovery of euclidian structure and motion from
sparse data,” International Journal of Computer Vision, vol. 69, no. 3,
pp. 317–333, 2006.

[15] R. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision. Cambridge University Press, 2003.

[16] R. Hartley and F. Schaffalizky, “Powerfactorization: 3d recon-
struction with missing or uncertain data,” in Proc. Australia-Japan
Advanced Workshop on Computer Vision, 2003.

[17] D. Jacobs, “Linear fitting with missing data for structure-from-
motion,” Computer Vision and Image Understanding, vol. 82, no. 1,
pp. 57–81, 2001.

[18] A. Jain, “A sinusoidal family of unitary transforms,” IEEE Trans.
on Pattern Analysis and Machine Intelligence, vol. 1, no. 4, pp. 356–
365, 1979.

[19] H. Jia and A. M. Martinez, “Low-rank matrix fitting based on sub-
space perturbation analysis with applications to structure from
motion,” IEEE Trans. on Pattern Analysis and Machine Intelligence,
vol. 31, no. 4, pp. 841–854, 2009.

[20] J. Magnus and H. Neudecker, Matrix Differential Calculus with
Applications in Statistics and Econometrics, 2nd ed. Wiley, 1999.

[21] M. Marques and J. Costeira, “Estimating 3d shape from degen-
erate sequences with missing data,” Computer Vision and Image
Understanding, vol. 113, no. 2, pp. 261–272, 2009.

[22] D. Martinec and T. Pajdla, “Structure from many perspective
images with occlusions,” in Proc. European Conf. Computer Vision,
2002, pp. 355–369.

[23] S. I. Olsen and A. Bartoli, “Implicit non-rigid structure-from-
motion with priors,” J. Math. Imaging Vis., vol. 31, no. 2-3, pp.
233–244, 2008.

[24] M. Paladini, A. Del Bue, M. Stošić, M. Dodig, J. Xavier, and
L. Agapito, “Factorization for non-rigid and articulated structure
using metric projections,” in Proc. IEEE Conf. Computer Vision and
Pattern Recognition, 2009, pp. 2898–2905.

[25] M. Pollefeys, F. Verbiest, and L. Van Gool, “Surviving dominant
planes in uncalibrated structure and motion recovery,” in In Proc.
European Conference on Computer Vision, vol. 2, 2002, pp. 837–851.

[26] V. Rabaud and S. Belongie, “Rethinking nonrigid structure from
motion,” in Proc. IEEE Conf. Computer Vision and Pattern Recogni-
tion, vol. 1, 2008, pp. 1–8.

[27] J. Shi and C. Tomasi, “Good features to track,” in Proc. IEEE Conf.
Computer Vision and Pattern Recognition, no. 1, 1994, pp. 593–600.

[28] J.-P. Tardif, A. Bartoli, M. Trudeau, N. Guilbert, and S. Roy,
“Algorithms for batch matrix factorization with application to
structure-from-motion,” in Proc. IEEE Conf. Computer Vision and
Pattern Recognition, no. 1, 2007, pp. 1–8.

16

[29] C. Tomasi and T. Kanade, “Shape and motion from image streams
under orthography: a factorization method,” International Journal
of Computer Vision, vol. 9, no. 2, pp. 137–154, November 1992.

[30] L. Torresani, A. Hertzmann, and C. Bregler, “Nonrigid structure-
from-motion: Estimating shape and motion with hierarchical
priors,” IEEE Trans. on Pattern Analysis and Machine Intelligence,
vol. 30, no. 5, pp. 878–892, 2008.

[31] T. Wiberg, “Computation of principal components when data is
missing,” in Proc. Second Symp. Computational Statistics, 1976, pp.
229–236.

[32] J. Xiao, J. Chai, and T. Kanade, “A closed form solution to
non-rigid shape and motion recovery,” International Journal on
Computer Vision, vol. 67, no. 2, pp. 233–246, 2006.

[33] J. Xiao and T. Kanade, “Non-rigid shape and motion recovery:
Degenerate deformations,” in Proc. IEEE Conf. Computer Vision and
Pattern Recognition, vol. 1, 2004, pp. 668–675.

[34] J. Yan and M. Pollefeys, “A factorization-based approach for artic-
ulated nonrigid shape, motion and kinematic chain recovery from
video,” IEEE Trans. on Pattern Analysis and Machine Intelligence,
vol. 30, no. 5, pp. 865–877, 2008.

1

Supplementary Documentation
Paulo F. U. Gotardo, Aleix M. Martinez

F

1 THE LM-S METHOD
Two methods are proposed in [8] and it is concluded that the LM-S variant is the recommended one. It minimizes
the cost function (2) by computing updates vec(dM) with a gradient vector g and a Hessian matrix H as given next.
Consider our notation in the main manuscript and, for Mj ∈ Rmj×r, let matrix Kmjr ∈ Rmjr×mjr be a permutation
satisfying vec(MT

j) = Kmjrvec(Mj). Then

g =− 1

2

∑
j

(
Ir ⊗ΠT

j

)
gj , gj = (sj ⊗ rj) + KT

mjr (rj ⊗ sj) ,

and
H = −1

2

∑
j

(
Ir ⊗ΠT

j

) (
Hj + HT

j

)
(Ir ⊗Πj) ,

Hj = (Ir ⊗ rj)
[
rTj ⊗ (MT

j Mj)
−1]Kmjr − 2 (Ir ⊗ rj)

(
sTj ⊗M†

j

)
−KT

mjr

(
Imj
⊗ sj

) (
sTj ⊗P⊥j

)
.

The algorithm’s source code available on the author’s website (http://sist.sysu.edu.cn/∼chenpei/) also includes an
unpublished Gauss-Newton implementation. It computes g and H as in (8) but with Jacobian terms

Jj =
(
(sTj ⊗P⊥j) + (rj ⊗M†

j)
TKmjr

)
(Ir ⊗Πj) .

Our experimental results show that the derivation in CSF, (7) and (8), is not only simpler but also performs better
than the two derivations above when applied on low-rank matrices with a high percentage of missing data.

2 MODELING THE TIME-TRAJECTORY OF AN EUCLIDEAN CAMERA

In this section, we model the smooth time-trajectory of a weak-perspective camera using cosine series of different
lengths d for the camera parameters αt, βt, γt, λt, and t̂t. The resulting model and algorithm allow for the
enforcement of different degrees of smoothness on the camera parameters and may be used to reduce the total
number of unknowns that need to be estimated. These capabilities are specially useful in applications for which a
priori information on the camera motion is available.

Consider integer numbers d1, d2, . . . , d5 ∈ {1, 2, . . . , T} and defineα1

...
αT

 = Ωd1x1,

β1...
βT

 = Ωd2x2,

γ1...
γT

 = Ωd3x3,

λ1...
λT

 = Ωd4x4,

 t̂1
...

t̂T

 = (Ωd5 ⊗ I2)︸ ︷︷ ︸
Baf

x5,

with x1 ∈ Rd1 ,x2 ∈ Rd2 ,x3 ∈ Rd3 ,x4 ∈ Rd4 , and x5,∈ R2d5 . We now iteratively solve for

vec(dX) ≡
[
dxT1 , dx

T
2 , dx

T
3 , dx

T
4 , dx

T
5

]T ∈ RD, D = d1 + d2 + d3 + d4 + 2d5.

As before, we compute the differential of each rotation matrix, dR̂t, and stack the terms associated with dx1, . . . , dx4

into, respectively, Bα ∈ R6T×d1 ,Bβ ∈ R6T×d2 ,Bγ ∈ R6T×d3 , and Bλ ∈ R6T×d4 . These matrices and Baf ∈ R2T×2d5

are blocks of the local basis matrix

B̃wp =

[
Bα Bβ Bγ Bλ 0
0 0 0 0 Baf

]
∈ R8T×D

Finally, we use our CSF algorithm to iteratively solve for the update step

vec(dM) = B̃wpvec(dX).

The Jacobian terms of this camera model remain the same and are given in the main manuscript.

2

M
P

PT
A

C
SF

-B
n
r

Fig. S1. Results on the dance sequence. Reconstructed 3D shapes (blue circles) are shown against the original 3D
data (dark dots). Frames 7, 44, 81, 118, 155, 192, and 229 are displayed above.

M
P

PT
A

C
SF

-B
n
r

Fig. S2. Results on the stretch sequence as seen from above the person stretching their arms. Reconstructed 3D
shapes (blue circles) are shown against the original 3D data (dark dots). Frames 7, 59, 111, 163, 215, 267, and 319
are displayed above.

3 NON-RIGID SFM RESULTS ON MOTION CAPTURE SEQUENCES

This section offers additional non-rigid SFM results on the motion capture sequences dance and stretch. We present
and discuss only the results of the three best algorithms on each of these two datasets, as in Table 6.

The results of MP, PTA, and CSF-Bnr on the motion capture sequence dance are shown in Fig. S1. Because the
deformable structure in this sequence presents natural rotations, the addition of artificial rotations was not necessary.
On this sequence, CSF-Bnr provided a mean 3D reconstruction error smaller than that of PTA and equivalent to
that of MP (see Table 6 in the main manuscript). However, the results of all three methods show inaccuracies that
may suggest the need of non-linear models in some applications of non-rigid SFM. Also, the fact that MP provided

3

0 91

0

480

Fig. S3. Results on the bending shark sequence with 95% missing data. The left-most plot shows the available entries
(in dark) of the input matrix W. The other plots show the reconstructed 3D shapes (blue circles) against the original
3D data (dark dots). Frames 20, 50, 80, 115, 148, 175, and 200 are displayed above.

0 55

0

520

Fig. S4. Results on the walking sequence with 75% missing data. The left-most plot shows the visible entries (in dark)
of the input matrix W. The other plots show the reconstructed 3D shapes (blue circles) against the original 3D data
(dark dots). Frames 34, 74, 122, 160, 198, 223, and 255 are displayed above.

good results on the dance dataset, but not on the other datasets with articulated bodies, needs to be investigated
in future experiments. Like the dance dataset, the walking sequence also has natural rotations but MP does not
perform as well on this sequence.

Results of the three methods above on the stretch sequence are shown in Fig. S2, which has unrotated body
shapes – i.e. without the artificial rotations initially applied on the sequence to simulate camera motion. Note the
results for frames 163 and 267 (the fourth and sixth shapes displayed in each row) in which there is a faster change
in hand position as the person stretches their arms out and back in. In these frames the results obtained with PTA
are over-smoothed. In comparison, our CSF-Bnr method provides more accurate 3D shape reconstructions because
it can better fit the high-frequency components of shape deformation. The result of MP on this sequence presents
a high 3D reconstruction error.

4 NON-RIGID SFM RESULTS WITH MISSING DATA

Random occlusion masks were applied on the input matrices W of the motion capture sequences bending shark and
walking. Fig. S3 shows an example of an occlusion pattern in W and the corresponding 3D shape reconstructions
on the shark dataset with 95% missing data. In this example, the application of CSF-Baf to recover complete 2D
point trajectories from the available data in W provided a normalized mean/maximum 2D reprojection error of
0.0015/0.0029. The normalized mean 3D reconstruction error obtained with CSF-Bnr was then 0.0163.

A similar example for the walking dataset with 75% missing data is shown in Fig. S4. The normalized
mean/maximum 2D error provided by CSF-Baf was 0.0508/0.0548. The normalized mean 3D reconstruction error
obtained with CSF-Bnr was then 0.2063.

Despite the large amount of missing data, the results in Figs. S3 and S4 are equivalent to those obtained with a
complete matrix W (see Table 6 and Figs. 7 and 8 in the main manuscript).

5 NON-RIGID SFM RESULTS ON REAL SEQUENCES

Results on the real datasets cubes (200/14) and deformable dinosaur (231/49), also appearing in [2], are given in Fig. S5
and Fig. S6. Because there is no 3D ground truth data available for these datasets, we only show overlays of the
results given by PTA and CSF-Bnr. These results are also compared in terms of their mean 2D reprojection errors.

On the cubes dataset, CSF-Bnr provides a smaller mean 2D reprojection error than that of PTA (see main
manuscript). CSF-Bnr can better model the changes in speed of the cube being pulled by a string. These changes in
speed introduce high-frequency deformation components in the 3D shape formed by taking together the 3D points
of both cubes.

4

Fig. S5. Results on the real data of the cubes sequence. Top row shows example images. The middle and bottom
rows give two different views of the 3D shapes reconstructed with PTA (dark dots) and CSF-Bnr (blue circles). Results
for frames 6, 39, 72, 105, 138, and 171 are displayed above.

Fig. S6. Results on the real data of the deformable dinosaur sequence. Top row shows example images. The middle
and bottom rows give two different views of the 3D shapes reconstructed with PTA (dark dots) and CSF-Bnr (blue
circles). Results for frames 6, 44, 82, 120, 158, and 196 are displayed above.

On the more complex deformation of the dinosaur model in Fig. S6, the best 3D shape reconstructions given by
PTA and CSF-Bnr were obtained with the same factorization rank and number of DCT components (i.e., K = d = 12).
The recovered 3D shapes are, thus, visually similar. Because we use a modified procedure for estimating rotations,
the mean/maximum 2D reprojection errors (in pixel units) given by CSF-Bnr and PTA are only slightly different,
respectively, 4.9780/58.3390 and 4.9223/55.9048.

6 RESULTS OF EM-PPCA AND MP ON THE ASL SEQUENCE

The algorithms EM-PPCA and MP can handle cases of missing data by adopting a strategy similar to that of
PowerFactorization, solving for camera motion and deformable shape in an alternated manner. This is a simple

5

Fig. S7. Results of EM-PCA on the ASL sequence (77 points, 17.4% missing data): (top) six out of 115 images with
annotated facial landmarks in green; (middle,bottom) two orthogonal views of the recovered 3D shapes.

Fig. S8. Results of MP on the ASL sequence (77 points, 17.4% missing data): (top) six out of 115 images with
annotated facial landmarks in green; (middle,bottom) two orthogonal views of the recovered 3D shapes.

strategy that often provides good results on datasets with small amounts of missing data. However, for all tested
values of K ∈ {2, 3, . . . , 13}, the result obtained with EM-PPCA on our ASL dataset presented visibly large 3D
reconstruction errors for a number of facial points that are occluded frequently in each sequence (e.g., the lateral
contours of the nose and the face). Figure S7 shows the result of EM-PPCA with K = 2. The result of MP, also with
K = 2, is shown in Fig. S8 and is visually similar to that of CSF-Bnr (see main manuscript). These results present
mean/maximum 2D reprojection errors of 3.2910/17.2972 (EM-PPCA) and 2.7666/19.4416 (MP), and 2.9322/18.2654
(CSF-Bnr) pixels. The smooth 3D shape trajectory computed by CSF-Bnr provides a 2D error that is slightly higher
than that of MP.

7 COMPARISON AGAINST MP WITH AN ARTICULATED SHAPE MODEL

In this section, we compare the performances of PTA and CSF-Bnr against that of MP with a specialized, articulated
shape model (MPA). Shape articulation, seen as the intersection of motion subspaces, can lead to degeneracies in
the rank-3K factorization computed by non-rigid SFM algorithms.

The MPA variant of the MP method requires a pre-processing algorithm to group the 2D trajectories of W into
separate parts of an articulated structure. Here we use a dataset for which such trajectory groups are already
available. The synthetic hinge sequence is provided with the source code of MP and MPA.1 This dataset includes a
63-frame sequence of a smoothly deforming 3D shape composed of two 3D boxes joined by a hinge. Each 3D box is

1. Available at http://www.dcs.qmul.ac.uk/∼lourdes/code.html

6

M
PA

PT
A

C
SF

-B
n
r

Fig. S9. Results on the hinge sequence. Reconstructed 3D shapes (blue circles) are shown against the original 3D
data (dark dots). Frames 7, 16, 25, 34, 43, 52, and 61 are displayed above.

composed of 231 points. The supplied observation matrix W ∈ R126×462 was generated by orthographic projection.
The dataset also includes two index matrices that describe two groups of points, one for each box. These index
matrices are used by MPA but are ignored by PTA and CSF-Bnr.

From the 2D trajectories in W, the 3D shapes reconstructed with MPA, PTA, and CSF-Bnr are shown in Fig. S9. The
normalized mean 3D error of these results are 0.0002 (MPA), 0.0148 (PTA), and 0.0071 (CSF-Bnr). All three methods
are capable of accurately reconstructing the original 3D shapes in this sequence. Despite the slightly higher 3D
errors, PTA and CSF-Bnr are capable of recovering the articulated 3D shapes in this dataset without requiring an
error-prone, initial grouping of 2D point trajectories. CSF-Bnr demonstrates that this task can be accomplished with
the standard linear shape model.

	PAMIpaper.pdf
	Supplementary_Material

