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Abstract

Non-rigid structure from motion (NR-SFM) is a difficult,
underconstrained problem in computer vision. This paper
proposes a new algorithm that revises the standard matrix
factorization approach in NR-SFM. We consider two alter-
native representations for the linear space spanned by a
small number K of 3D basis shapes. As compared to the
standard approach using general rank-3K matrix factors,
we show that improved results are obtained by explicitly
modeling K complementary spaces of rank-3. Our new
method is positively compared to the state-of-the-art in NR-
SFM, providing improved results on high-frequency defor-
mations of both articulated and simpler deformable shapes.
We also present an approach for NR-SFM with occlusion.

1. Introduction
The modeling of deformable 3D shapes such as the hu-

man hand, face, and body from 2D image data is a fun-
damental task in computer vision. Important applications
are found in surveillance, biometrics, computer graphics,
and human-computer interaction (e.g., [5]). The 3D recon-
struction task above is the subject of the computer vision
problem of non-rigid structure from motion (NR-SFM) [3].
Given a set of corresponding 2D points in a sequence of im-
ages depicting a deformable object, the goal in NR-SFM is
to recover the 3D object shape and pose (i.e., relative cam-
era position) in each image.

Structure from motion techniques [9] have improved
considerably over the past two decades using the assump-
tion of object rigidity. However, in the absence of any prior
knowledge on 3D shape deformation, computing NR-SFM
is still a difficult, underconstrained problem. For this rea-
son, recent research work has attempted to define new, gen-
eral constraints for 3D shape deformation [1–3, 7, 11, 12].

The standard matrix factorization approach of [3] con-
straints all 3D shapes to lie within the linear space spanned
by a small number K of 3D basis shapes. For a matrix W
containing the input 2D points, the solution is computed by

modeling W = MS as a product of a motion factor M
and a shape basis S. With M and S constrained to be of a
low-rank 3K, a solution is obtained using singular value de-
composition (SVD) [6]. Recently, a dual approach was pro-
posed in [2] that models independent 3D point trajectories
instead of 3D shapes. In this case, deformation is assumed
to be only gradual (i.e., smooth) from one image to the next.
Then, the 3D point trajectories are modeled compactly in
the domain of the Discrete Cosine Transform (DCT) basis
vectors. This dual approach provides significantly improved
results on articulated shapes with more complex deforma-
tion. However, it cannot model high-frequency deforma-
tion without relaxing the rank-3K constraint above. Thus,
its results are often over-smoothed.

In this paper, we propose a novel NR-SFM algorithm
that subsumes the two approaches described above. Our ap-
proach models a smoothly deforming 3D shape as a single
point moving along a smooth time-trajectory within a linear
shape space (Fig. 1). We show that our method provides
better reconstruction of high-frequency deformation with-
out relaxing the rank-3K constraint. In addition, we model
the basis factor S as an implicitly function of M and W,
with the NR-SFM solution computed in terms of M only.
We consider two alternative definitions of S and show that
a derivation that explicitly models K complementary rank-
3 spaces outperforms the method using a general rank-3K
derivation. Finally, we also offer an approach for NR-SFM
with occlusion, with W presented with missing data.

This paper is organized as follows: Section 2 reviews
the standard matrix factorization model in NR-SFM and its
dual representation with independent 3D point trajectories.
These two approaches are generalized in our new model de-
scribed in Section 3. Experimental results are presented in
Section 4. The conclusion is presented in Section 5.

2. Matrix Factorization Models in NR-SFM
Consider a NR-SFM problem with T images (cameras)

and n input 2D point tracks. Let [xt,j , yt,j ]
T be the 2D

projection of the jth 3D point at time t (the tth image),
t = 1, 2, . . . , T , j = 1, 2, . . . , n. These input 2D points are
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(a) (b)
Figure 1. The 3D Shape trajectory model: (a) two views of the 3D
basis shapes Ŝ1, Ŝ2, and Ŝ3, computed from the bending shark
dataset in [12]; (b) shape space where the gradually deforming 3D
shape is represented as a point moving along a smooth trajectory.

given in the observation matrix,

W =


x1,1 x1,2 . . . x1,n
y1,1 y1,2 . . . y1,n

...
...

xT,1 xT,2 . . . xT,n

yT,1 yT,2 . . . yT,n

 ∈ R2T×n, (1)

For now, assume W is complete, meaning that no 2D
points became occluded during tracking. Considering an
orthographic projection model in all cameras, the mean col-
umn vector t ∈ R2T of W gives a stack of 2D translations,
one for each image, resulting from the camera translation
in a world coordinate system centered on the observed 3D
object. Here, we assume the columns of W are zero-mean
(i.e., t was computed and subtracted from each column).

2.1. Modeling 3D Shapes in a Linear Space

Bregler et al. [3] model W as a product of two matrix
factors, M ∈ R2T×3K and S ∈ R3K×n, of low-rank 3K,

W = D (C⊗ I3)︸ ︷︷ ︸
M


Ŝ1

Ŝ2

...
ŜK


︸ ︷︷ ︸

S

, (2)

where⊗ denotes the Kronecker product, I3 is the 3×3 iden-
tity matrix. The coefficients of factor M are separated in a
block-diagonal rotation matrix D ∈ R2T×3T and a shape
coefficient matrix C ∈ RT×K defined as

D =


R̂1

R̂2

. . .
R̂T

 , C =


c1,1 . . . c1,K
c2,1 . . . c2,K

...
. . .

...
cT,1 . . . cT,K

 .
(3)

For each image t, the unknown 3D shape is modeled
as a linear combination of K basis shapes Ŝk ∈ R3×n

(k = 1, 2, ...,K) as described by the shape (deformation)
coefficients ct,k. The camera orientation (i.e., object pose)
at image t is given by R̂t ∈ R2×3, a 3D rotation followed
by an orthogonal projection to 2D.

Factors M and S are computed from the singular value
decomposition W = UΣVT = (UΣ

1
2 )(Σ

1
2 VT ) = MS,

with all but the largest 3K singular values in Σ set to zero.
This non-unique, “implicit” solution is defined only up to
a rank-3K ambiguity matrix Q ∈ R3K×3K . To recover D
and C, an Euclidean upgrade step [1] finds a corrective Q,
leading to the solution W = (MQ)(Q−1S) = MS.

2.2. Modeling Independent 3D Point Trajectories

Akhter et al. [2] propose a dual factorization model in
which the deformable 3D shape is seen as a collection of
individual 3D point trajectories over time. This point tra-
jectory approach (PTA) assumes shape deformation over
time is gradual. Thus, each smooth 3D point trajectory is
compactly represented as a linear combination of K low-
frequency DCT basis vectors.

Let ΩK denote a T × K DCT basis matrix whose f th

column is the f th-frequency cosine wave with entries

ωtf =
σf√
T

cos

(
π(2t− 1)(f − 1)

2T

)
, t = 1, 2, . . . , T,

(4)
where σ1 = 1 and, for f ≥ 2, σf =

√
2. In addition, let ωT

t

denote the tth row of this orthonormal matrix ΩK .
The PTA method models W using the rank-3K factors,

W = (DΘ)︸ ︷︷ ︸
M

S, (5)

where D is as in (3) and

Θ =



ωT
1

ωT
1

ωT
1

...
ωT

T

ωT
T

ωT
T


. (6)

The columns of Θ are basis vectors of the time-trajectory
of a 3D point, [ Xj(t) Yj(t) Zj(t) ]T . The jth column of S
is now interpreted as the vector of 3K low-frequency DCT
coefficients describing the X-, Y-, and Z-coordinates of the
jth 3D point trajectory within the space spanned by Θ [2].

Factors M and S are computed from the SVD of W as
above. In this case, however, the Euclidean upgrade step
is significantly simplified because now the only unknowns
in M are the rotations R̂t. That is, the known DCT con-
stants wtf introduce additional constraints that make it pos-
sible to upgrade the initial solution by computing only three
columns of the (3K × 3K) corrective matrix Q [1, 2].
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3. Computing a Smooth 3D Shape Trajectory
with Complementary Rank-3 Spaces

In this section, we generalize the dual approaches sum-
marized above. We model 3D shape deformation as a sin-
gle, smooth time-trajectory within a linear space spanned
by 3D basis shapes. Two alternative algorithms for comput-
ing the DCT coefficients in our model are presented, with
results compared in Section 4.

For clarity, we present our ideas incrementally, starting
with a baseline algorithm [7] that computes rank-3K fac-
tors M and S, the standard approach in NR-SFM. These
derivations will then evolve into a new approach that ex-
plicitly models complementary rank-3 spaces (Section 3.5).
Finally, an extension for NR-SFM with occlusion (with W
incomplete) is also described.

3.1. The 3D Shape Trajectory Model

We first reconsider the factorization approach expressed
in (2). Note that, for each image t, the associated row
cTt ∈ RK of C describes an observed 3D shape as a sin-
gle point in the K-dimensional space spanned by the ba-
sis shapes Ŝ1, . . . , ŜK . Assuming smooth 3D shape de-
formation over time, we consider the smooth time-function
cTt = c(t) to describe a single point in shape space that
moves along a single, smooth 3D shape trajectory (Fig. 1).

Equivalently, each shape coordinate ct,k is assumed to
vary smoothly with t. We thus represent each column of C
using a linear combination xk ∈ Rd of dDCT basis vectors,

C = Ωd

x1 . . . xK

 = ΩdX, X ∈ Rd×K . (7)

Here, Ωd is a DCT basis matrix with entries as in (4). The
unknown factor X describes the 3D shape trajectory in DCT
domain, considering the K basis shapes in factor S. For
simplicity, we assume that the number of DCT components
d and the rank parameter K have been fixed a priori.

Therefore, our NR-SFM approach models W = MS,
the product of two rank-3K factors in (2), but with an addi-
tional smoothness constraint applied on M,

M = D (ΩdX⊗ I3) . (8)

Furthermore, we also note that the factor S can be consid-
ered only implicitly, as a function of W and M. For in-
stance, a common definition is given by S = M†W, with
† denoting the Moore-Penrose pseudo-inverse [6]. Hence,
the next sections will formulate the NR-SFM as an iterative
optimization problem in terms of M alone.

To solve a NR-SFM problem, all we need to compute is
the rotation matrix D and DCT coefficient matrix X in M,
as in (8). As described next, D is computed by an initial-
ization algorithm. We then proceed by solving exclusively

for the 3D shape trajectory X in the DCT domain. Op-
timization is performed using an iterative, Gauss-Newton
algorithm that also requires an initialization of X.

3.2. Initialization

The assumed smoothness of 3D shape deformation leads
to high-frequency DCT coefficients close to zero. Thus, we
propose an initialization of X, denoted X0, of the form

X0 =

[
Q̂
0

]
, Q̂ ∈ RK×K . (9)

The goal now is to initialize only a small, rank-K block Q̂.
For any full-rank Q̂, an equally good initial solution is given
by the simple and deterministic initialization

X0 =

[
Q̂
0

]
Q̂−1 =

[
IK
0

]
, (10)

where IK is the K × K identity matrix. As a proof, note
that a NR-SFM solution is non-unique; for a fixed D, factor
M in (8) is defined only up to a full-rank ambiguity matrix
(Q̂⊗ I3), with Q̂ ∈ RK×K . This means that C0 = ΩdX0

is defined only up to an ambiguity matrix Q̂ as above.
Hence, for a given D, we initialize M as

M0 = D (ΩdX0 ⊗ I3) = D (ΩK ⊗ I3) . (11)

Note that K < d here and this initial rank-3K solution can
only use K low-frequency vectors in the DCT basis.

We now compare the expressions of M0 in (11) and
of M in (5), which is the solution computed by the PTA
method: not only D is of the same form, but also (ΩK⊗I3)
and Θ have the same columns, albeit in a different order.
Therefore, our coarse initial solution M0 is equivalent to
the final solution M of PTA (with factor S presenting a
different order of rows). Note that the PTA method can-
not consider additional DCT basis vectors without increas-
ing K, leading to a higher rank of M. Our approach, on
the other hand, can consider any number d = K, . . . , T of
DCT basis vectors because, in (8), the linear combination
represented by X constrains M to be of rank-3K. That is,
our method can better model 3D structure deformation pre-
senting higher-frequency components in the DCT domain,
yielding better 3D shape reconstructions.

Empirically, we have found that the coarse solutions
computed by PTA contain accurate estimates of the rotation
matrices in D (rigid motion components). We iteratively
run PTA with increasing values of K ∈ {1, 2, . . . , bn3 c},
obtaining a solution denoted as DK . Iterations stop auto-
matically when there is no additional improvement in the
average camera orthonormality,

ε(DK) =
1

T

T∑
t=1

∥∥∥I2 − R̂tR̂
T
t

∥∥∥2
F
. (12)
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Algorithm 1 CSF method for minimizing the error function
f(X), with M defined in terms of X.

1: X← initial matrix (X0).
2: δ ← initial damping scalar (δ0 = 10−4).
3: repeat
4: Compute M from X.
5: Compute gradient (g) and Hessian (H)

from the Jacobian and residual terms (Jj and rj).
6: repeat
7: δ ← δ × 10.
8: Find ∆X from

vec(∆X)← (H + δI)−1g.
9: until f(X−∆X) < f(X).

10: X← X−∆X.
11: δ ← δ × 10−2.
12: until convergence.

With the final solution of PTA identified as a coarse,
over-smoothed instance of our shape deformation model,
we then proceed to estimate the higher-frequency DCT co-
efficients in X. This approach is seen as a “coarse-to-fine”
optimization, with the NR-SFM solution refined iteratively.

3.3. Optimization

We now describe two Gauss-Newton algorithms to com-
pute M (i.e., X). Because M describes a basis for the col-
umn space of W, our algorithms used to compute M are
dubbed the Column Space Fitting (CSF) methods.

The two CSF methods presented in the following differ
on the definition of factor S as an implicit function of W
and M. Each definition leads to a different form of the cost
function f(X), expressing the overall error of the factoriza-
tion represented by X in approximating the entries of W.
The error f(X) is then minimized as summarized in Algo-
rithm 1. Starting with X = X0, in each iteration we update
X by computing an adjustment matrix ∆X in vectorized
form, vec(∆X), which stacks the columns of ∆X in a sin-
gle vector of unknowns. We solve for vec(∆X) using the
gradient vector (g) and the Hessian matrix (H) of f as given
by matrix differential calculus [10]. The damping parame-
ter δ leads to combined Gauss-Newton and steepest-descent
iterations when H becomes singular.

3.4. Baseline method: CSF1

Here, we consider a rank-3K S = M†W. Let wj ∈
R2T and sj ∈ R3K denote, respectively, the jth column of
W and S (j = 1, . . . , n). Also, define the residual (error)
vector rj = wj −Msj , where sj = M†wj .

With M defined by X as in (8), the goal is to minimize

f(X) =
1

2

n∑
j=1

rTj rj , rj =
(
I−MM†)︸ ︷︷ ︸

P⊥

wj , (13)

where P⊥ ∈ R2T×2T is the projection onto the orthogonal
space of M. Therefore, we minimize the sum of squared
Euclidean distances from each column of W to the space
spanned by the columns of M.

To compute g and H, we follow a Gauss-Newton deriva-
tion in terms of Jacobian matrices, Jj , of the residual rj ,

g = −
∑
j

JT
j rj and H =

∑
j

JT
j Jj . (14)

To derive the Jacobian terms Jj , we express the differential
dM in terms of dX and drj = −Jjvec(dX). Note that,

dM = D (Ωd ⊗ I3)︸ ︷︷ ︸
Bnr

(dX⊗ I3) = Bnr (dX⊗ I3) , (15)

with Bnr ∈ R2T×3d interpreted as a basis for the column
space of M in our NR-SFM method. Then, the Jacobian
terms Jj are of the form (derivations are in Appendix A),

Jj =
(
sTj ⊗P⊥Bnr

)
V, (16)

with sj = M†wj denoting the current (and implicit) esti-
mate of the jth column of factor S. Above, V ∈ R9dK×dK

is a binary map satisfying vec(dX⊗ I3) = Vvec(dX). For
X with dimensions d×K, the constant and sparse matrix
V is defined as [10],

V = IK ⊗
[
(K3d ⊗ I3) (Id ⊗ vec(I3))

]
, (17)

where the permutation matrix K3d ∈ R3d×3d satisfies
vec(AT ) = K3dvec(A), for any A ∈ R3×d.

3.5. Defining complementary rank-3 spaces: CSF2

This section proposes an alternative method for comput-
ing factor S as a function of M and W. To motivate the
new approach, we first note that each column sj of S de-
fines a basis for the deformation of a single 3D point of the
observed object. The number of degrees of freedom (3K)
in sj ,∀j, increases with the rank parameter K. Also note
that, in practice, not all object points deform equally. In
human faces, for instance, points on the nose are expected
to deform less than those on the mouth; other objects may
present a subset of points that remain in a rigid setting.
Thus, as K is increased to better model deformation, some
object points are modeled with too many degrees of free-
dom. As a result, large spurious deformations can be intro-
duced in the recovered 3D shapes. This is the case when
the data in W present weaker constraints due to occlusion
(fewer observations), noise, and slow camera motion [2].

To address this problem, we introduce new constraints
on the magnitude of the recovered modes of shape defor-
mation, i.e., ‖Ŝk‖F . Instead of considering a rank-3K fac-
tor S, we now explicitly estimate Ŝk. This is done by ex-
plicitly defining M as a sequence of K complementary 3-
dimensional column spaces for W.
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Let Mk ∈ R2T×3 (k = 1, . . . ,K) denote each triplet
of columns of M = [ M1,M2, . . . ,MK ]. The triplets of
rows in S are the basis shapes Ŝk, as before. Then, note that
W = MS =

∑
k MkŜk. We now define:

Ŝk = M†
k(W −

k−1∑
ko=1

Mko Ŝko)

= M†
kP⊥k−1 . . .P

⊥
2 P⊥1 W, (18)

where P⊥k = I−MkM†
k is the projection onto the orthog-

onal space of Mk. Thus, factor S is now given by

S =


Ŝ1

Ŝ2

Ŝ3

...

 =


M†

1

M†
2P
⊥
1

M†
3P
⊥
2 P⊥1
...

W. (19)

As a consequence, the basis shape Ŝ1 can be seen as a main
shape component while Ŝk, for k ≥ 2, is interpreted as a
mode of a 3D shape deformation. Note that, as k increases,
Ŝk and Mk model (residual) components of W with de-
creasing magnitude and not modeled by the previous Ŝko

and Mko
,∀ko < k. Thus, the model in (19) is in principle

similar to 3D shape models based on Principal Component
Analysis (PCA), e.g., [12]. Our new method for estimat-
ing Ŝk prevents the modeling of large, spurious 3D shape
deformations as k increases.

Let Pk = MkM†
k be the projection on the range space

of Mk and skj ∈ R3 be the jth column of Ŝk as in (19).
The new residual vector rj is now defined as

rj = wj −M1s1j −M2s2j −M3s3j − . . .

=
(
(I−P1)−P2P

⊥
1 −P3P

⊥
2 P⊥1 − . . .

)
wj

=
(
(I−P2)−P3P

⊥
2 − . . .

)
P⊥1 wj

= ((I−P3)− . . .) P⊥2 P⊥1 wj

= P⊥KP⊥K−1 . . .P
⊥
2 P⊥1 wj . (20)

That is, Mk models a region of the column space of
W that is orthogonal to the region modeled by the other
Mko ,∀ko < k. With rj defined as above, we minimize

f(X) =
1

2

n∑
j=1

rTj rj , Mk = D (Ωdxk ⊗ I3) , (21)

with Mk defined by xk, the kth column of X as in (8).
To compute X, we use Algorithm 1 with Jacobian terms

Jj =
[
sT1j ⊗ P⊥1 Bnr . . . sTKj ⊗ P⊥KBnr

]
V, (22)

with P⊥k = P⊥KP⊥K−1 . . .P
⊥
k . (23)

The complete derivation of Jj is given in Appendix B.

3.6. NR-SFM with Occlusion

The two algorithms derived above assume W is com-
plete, which is also a requirement in the initial computation
of t and D (as in the PTA method). For the problem of NR-
SFM with occlusion, with W presented with missing data,
this section derives a method that can be used to recover a
complete, low-rank W prior to using the methods above.

Consider W = MS with factors M ∈ R2T×r and
S ∈ Rr×n of a predefined rank r. Let the complete vec-
tor ŵj ∈ R2Tj (Tj ≤ T ) denote all the observed entries
in the jth column of W. Also, define Πj ∈ R2Tj×2T as
a row-amputated identity matrix such that Mj = ΠjM has
the rows in M that correspond to the rows of entries in ŵj .
Then, consider the residual vectors rj = ŵj−Mjsj , where
the complete column vector sj = M†

jŵj .
As in (13), we define the projection P⊥j = (I−MjM

†
j)

and minimize the sum of squared Euclidean distances from
ŵj to the subspace spanned by Mj , the corresponding rows
in M. This approach uses only the available entries (con-
straints) of W and is common in methods for matrix factor-
ization with missing data [4, 7, 8].

Here, we will assume that both 3D shape deformation
and camera motion are smooth over time (t). This is a com-
mon scenario for NR-SFM using monocular video. As a
result, the columns of W describe smooth 2D point trajec-
tories with a compact representation in the DCT domain.
We then model the r-dimensional column space of W as

M = (Ωd ⊗ I2)︸ ︷︷ ︸
B2D

X, X ∈ R2d×r, (24)

where B2D duplicates the DCT basis Ωd for the alternated
x- and y-coordinates in the rows of W.

To reconstruct an incomplete W, we compute X in (24)
using Algorithm 1 with Jacobian terms

Jj = sT ⊗P⊥j ΠjB2D, (25)

derived as in Appendix A, with dMj = ΠjB2DdX.
Because M is a basis for smooth 2D point trajectories

in the columns of W, the high-frequency DCT coefficients
of X are expected to be close to zero. Additionally, not-
ing that the factorization W = MS is defined only up to
an ambiguity matrix Q ∈ Rr×r, we initialize X using the
deterministic initialization X0 = [ Ir 0 ]

T as above.

4. Experimental Results
We compare the performance of our algorithms, CSF1

and CSF2, against three state-of-the-art, non-rigid SFM
methods: (i) the algorithm modeling 3D shape using prob-
abilistic principal component analysis (EM-PPCA) [12];
(ii) the Metric Projections (MP) method [11]; and (iii) the
DCT-based 3D point trajectory approach (PTA) [2].
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Our experiments considered the same datasets that were
chosen by the authors of the methods above. The number of
frames (T ) and the number of point tracks (n) are indicated
as (T /n) after a dataset’s name. We start with the motion
capture sequences: drink (1102/41), pick-up (357/41), yoga
(307/41), stretch (370/41), and dance (264/75) used in [2];
face1 (74/37) of [11]; face2 (316/40) and walking (260/55)
of [12]. We also consider the different, synthetic sequences
shark1 (240/91) of [12] and shark2 (240/91) of [2].

To allow for comparison against the results reported
in [2], our experiments follow the same procedure therein.
For each dataset, W is obtained by applying an ortho-
graphic projection on the sequence of 3D shapes. Because
the solution of non-rigid SFM methods is defined up to an
arbitrary 3 × 3 rotation, we compute a single rotation that
best aligns all reconstructed and original 3D shapes. Let etj
be the reconstruction error (i.e., Euclidean distance) for the
jth 3D point of frame t. We then compute a normalized
mean 3D error over all points and frames,

e3D =
1

σTn

T∑
t=1

n∑
j=1

etj , σ =
1

3T

T∑
t=1

(σtx + σty + σtz) ,

(26)
with σtx, σty , and σtz the standard deviations of the x-, y-,
and z-coordinates of the original shape in frame t.

Following the methodology in [2], we ran the algorithms
with different values of K ∈ {2, 3, . . . , 13}, reporting the
best result. In all runs, CSF1 and CSF2 had the number
of DCT basis set to d = 0.1T (i.e., 10%), except for the
two face datasets on which we set d = T

3 (i.e., 33%) due
to the presence of higher frequency deformations. Table 1
compares the performances of the NR-SFM methods above
in terms of the obtained error e3D. The value of K for the
best solutions obtained with PTA, CSF1 and CSF2 are also
shown for comparison of these closely related methods.

Table 1 shows that the results of CSF1 and CSF2 are
consistently similar or better than the best results provided
by the other methods on each dataset. As compared to
PTA, CSF1 and CSF2 compute better solutions and at a
lower rank 3K by more efficiently using higher DCT fre-
quency components to model deformation. In addition,
the basis shape model of CSF2, defining complementary
3-dimensional spaces, provides significant improvements
over CSF1 on dance and walking, while also modeling
better some small magnitude deformations on the other
datasets. The 3D shapes recovered by CSF1 and CSF2 for
the walking sequence are shown in Fig. 2.

The motion capture sequences containing highly artic-
ulated bodies highlight the superiority of PTA, CSF1, and
CSF2 compared to EM-PPCA, and MP. On the sequences
drink and stretch, the improvement offered by CSF1 and
CSF2 over PTA is small because the reconstruction of PTA
already provides small errors on these very smooth shape

Table 1. Average 3D reconstruction error (e3D) of non-rigid SFM
methods on the complete synthetic and motion capture datasets.
For the related PTA and CSF methods, factorization rank is also
indicated by the value of K in parenthesis.

Dataset EM-PPCA MP PTA CSF1 CSF2

Drink 0.3393 0.4604 0.0250 (13) 0.0223 (6) 0.0223 (6)

Stretch 1.1111 0.8549 0.1088 (12) 0.0710 (8) 0.0684 (8)

Pick-up 0.5822 0.4332 0.2369 (12) 0.2301 (6) 0.2277 (3)

Yoga 0.8097 0.8039 0.1625 (11) 0.1467 (7) 0.1465 (7)

Dance 0.9839 0.2639 0.2958 (5) 0.2705 (2) 0.1942 (7)

Walking 0.4917 0.5607 0.3954 (2) 0.1863 (2) 0.1041 (5)

Face1 0.0434 0.0734 0.1247 (3) 0.0637 (5) 0.0526 (5)

Face2 0.0329 0.0357 0.0444 (5) 0.0363 (3) 0.0312 (5)

Shark1 0.0501 0.1571 0.1796 (9) 0.0081 (3) 0.0437 (5)

Shark2 0.0529 0.1346 0.3120 (9) 0.2538 (2) 0.0052 (3)

deformations. On pick-up and yoga, the marginal improve-
ment offered by CSF1, and CSF2 is due to large errors
in the rotation matrix D recovered using PTA, as shown
in [2]. However, the results on the difficult walking and
dance datasets show the advantages of using the 3D shape
trajectory model of CSF1 and CSF2.

On face1 and face2, PTA is not capable of modeling the
high-frequency deformation of the facial structures (e.g.,
lips and chin), recovering mostly rigid shapes. CSF1 and
CSF2 provide small reconstruction errors even while com-
puting only 33% of all DCT components. Considering 75%
of DCT components (d = 0.75T ), the errors of CSF1 and
CSF2 on face1 decrease to 0.0625 and 0.0476, respectively.
On face2, the new errors are 0.0328 and 0.0310.

With a full DCT basis, CSF1 recovers the 3D shape de-
formation of shark1 perfectly (e3D = 0.00004 is negligi-
ble). However, CSF1 does not perform as well on shark2,
which has a different motion and also small differences in
the ground truth 3D shapes, as compared to shark1. Because
these differences are non-trivial, future work will further in-
vestigate these results. As for CSF2, a small e3D is obtained
on shark1, with perfect reconstruction observed on shark2.

To simulate missing data in the shark2 and walking
datasets, we randomly discard ρ% of the 2D entries in
W. Note that these sequences present smooth camera mo-
tion and smooth 3D shape deformation. Thus, we use the
method of Section 3.6, referred to as CSF0, to reconstruct
the complete 2D point trajectories in W. This is done be-
fore applying CSF1 and CSF2 (withK as in Table 1). Here,
CSF0 was run with d = 0.25T and rank r = 7. Let W0

be the complete matrix, we normalize the 2D reconstruction
error for the incomplete W by the average of the standard
deviations of x- and y-coordinates (σtx and σty , ∀t), similar
to the normalization done for e3D above.

On both shark2 and walking, and up to 75% random
occlusion, the recovered 3D shapes are visually similar to
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Figure 2. Results of CSF1 and CSF2 on the walking sequence of [12]. Reconstructed 3D shapes (blue circles) are shown against the
original 3D data (dark dots). Frames 34, 74, 122, 160, 198, 223, and 255 are displayed above.

Figure 3. Results of CSF2 on the ASL sequence: (top) five out
of 114 images with annotated facial landmarks in green; (mid-
dle,bottom) two orthogonal views of the recovered 3D shapes.

those obtained from the original, complete W (e.g., Fig. 2).
Of 10 runs with ρ = 75%, the average (maximum) 2D re-
construction error for W was 0.0066 (0.0211). The aver-
age (max.) 3D error of CSF1 was 0.2575 (0.2781) and that
of CSF2 was 0.0188 (0.0376). After 10 runs on the walk-
ing sequence, the average (max.) 2D error for the recon-
structed W was 0.0475 (0.0527). The 3D error of CSF1
was then 0.2103 (0.3543) and that of CSF2 was 0.1772
(0.2342). Except for CSF1 on shark2, these results on in-
complete data are still better than those of EM-PPCA, MP,
and PTA on the complete shark2 and walking datasets. De-
spite the large amount of missing data, CSF0 was able to
reconstruct W such that only a small penalty was observed
on the 3D shapes recovered by CSF1 and CSF2.

Finally, we now consider a 114-image (4 seconds long)
face close-up video of an American Sign Language (ASL)
sentence [5]. In this case, head rotation and hand gestic-
ulation often cause the occlusion of facial features. Facial
landmarks were manually annotated in each image when
visible. The resulting W ∈ R228×75 is missing 11.5% of
its data and has small magnitude annotation errors (noise)

due to motion blur in the images. Fig. 3 shows example 3D
face shapes recovered using CSF2 (K = 6 and d = 0.4T ),
after the initial CSF0 step (r = 5, d = 0.4T ). Note that
even when a hand occludes the mouth, our 3D shape trajec-
tory model provides a correct estimate for the occluded 3D
shape by enforcing smoothness of deformation while mod-
eling the visible shapes in adjacent images. These results of
CSF2 indicate correct recovery of pose and deformation of
mouth and eyes despite the occurrence of occlusion.

5. Conclusion

This paper presents a novel matrix factorization method
for NR-SFM. Our method models smooth 3D shape defor-
mation, compactly, as the time-trajectory of a single point
within a linear shape space. We discuss the implicit repre-
sentation of the 3D basis shapes in S as a function of the
motion factor, M, and the input data, W. As a result, we
show that our approach considering complementary rank-3
column spaces of W outperforms the general rank-3K con-
straint of the standard factorization model. Improved 3D re-
construction is obtained for both articulated and simpler de-
formable shapes, as compared to state-of-the-art NR-SFM
algorithms. In addition, we present a simple and effective
approach for NR-SFM with occlusion. Future work will
consider the automatic selection of the number of elements
in the DCT and shape bases (d and K). The use of non-
linear shape models will also be investigated.

A. Derivation of Jacobian Terms in CSF1

Following a Gauss-Newton approach, the first and sec-
ond differentials of f in (13) are

df =
1

2

∑
j

(
drTj rj + rTj drj

)
=
∑
j

rTj drj , (27)

d2f ≈
∑
j

drTj drj , (28)
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with second order terms d2rj neglected in d2f and

drj = −d
(
MM†)wj . (29)

From [10], we have

d
(
MM†) = P⊥dMM† +

(
P⊥dMM†)T . (30)

with P⊥ as in (13). Notice that the right-most term in (30)
vanishes when multiplied by rTj = (P⊥wj)

T on the left,
because rj is in the null-space of M:

rTj
(
P⊥dMM†)T =

(
P⊥dM(M†P⊥)wj

)T
= 0, (31)

where the property M† = M†MM† implies M†P⊥ = 0.
We therefore approximate drj as

drj ≈ −P⊥dMsj . (32)

To derive the Jacobian terms Jj from (32), we first substi-
tute dM with (15) to express drj in terms of dX. We then
vectorize both sides of (32) to obtain drj = −Jjvec(dX).
This final step leads to the form of Jj in (16) by consider-
ing the equality vec(BXA) = (AT ⊗ B)vec(X), where
the operator ⊗ is the Kronecker product.

The Jacobian terms obtained from (32) neglect the right-
most term in (30). While there is no difference in the gra-
dient vector, it can be shown that the Hessian matrix in (14)
neglects terms of the form rjr

T
j ⊗M†M†T . Nevertheless,

our Hessian approximation, combined with the damping pa-
rameter δ in Algorithm 1, is efficient in providing adequate
solution updates, vec(dM), despite the simpler form. In our
experiments, we have found no difference between results
computed as above and using the full Gauss-Newton deriva-
tion (which is itself an approximation to the Hessian).

B. Derivation of Jacobian Terms in CSF2
We now follow a Gauss-Newton derivation similar to

that in Appendix A, but considering the new form of resid-
ual vectors in (20). Using the product rule for differentials,

drj =

K∑
k=1

P⊥k+1

(
dP⊥k

)
P⊥k−1 . . .wj , (33)

with P⊥k+1 as in (23). We define P⊥K+1 = P⊥0 = I.
To find

(
dP⊥k

)
, we once again use the result in (30).

Then, note that rTj P⊥k = rTj and rTj M†T
k = 0 because rj

is in the null-space of Mk,∀k. Thus, the right-most term
in (30) vanishes when multiplied by rTj on the left (as in
Appendix A).

Using the results in the paragraph above, (33) yields

drj ≈ −
K∑

k=1

P⊥k (dMk) skj = −
K∑

k=1

vec
(
P⊥k (dMk) skj

)
.

(34)

Considering dMk = Bnr (dxk ⊗ I3), as in (15), each
vec(·) term in (34) is rewritten as a Kronecker product and
the summation is expressed as a product of two matrices,

drj ≈ −Jj

 vec(dx1)
...

vec(dxK)

 = −Jjvec(dX), (35)

revealing the form of Jj in (22).
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