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Abstract

Kernel methods provide an efficient mechanism to de-
rive nonlinear algorithms. In classification problems as
well as in feature extraction, kernel-based approaches map
the originally nonlinearly separable data into a space of
intrinsically much higher dimensionality where the data is
linearly separable and can be readily classified with exist-
ing and efficient linear methods. For a given kernel func-
tion, the main challenge is to determine the parameters of
the kernel which map the original nonlinear problem to a
linear one. This paper derives a Bayes optimal criterion
for the selection of the kernel parameters in discriminant
analysis. Our criterion selects the kernel parameters that
maximize the (Bayes) classification accuracy in the kernel
space. We also show how we can use the same criterion
to do subclass selection in the kernel space for problems
with multimodal class distributions. Extensive experimen-
tal evaluation demonstrates the superiority of the proposed
criterion over the state of the art.

1. Introduction
Kernel mapping has become one of the most popular ap-

proaches to perform nonlinear feature extraction and clas-
sification with many applications, such as, object and face
recognition, handwritten text analysis, and classification of
specimens in paleontology to name but a few [17, 22, 21, 8].
Using a kernel function, the original data is implicitly
mapped to a very high or even infinite dimensional space
where the data is linearly separable. Then, any efficient lin-
ear method can be employed in this so called kernel space.
Since the mapping is intrinsic, one does not need to work
with an explicit mapping function. Instead, one can employ
the kernel trick [18, 17], resulting in a space of the same
dimensionality as that of the input representation while still
eliminating the nonlinearity of the data.

Kernel Discriminant Analysis (KDA) [1, 15] is one of
the most common techniques used in feature extraction and
classification. KDA is a kernel extension of Linear Dis-

criminant Analysis (LDA) [5]. KDA aims to maximize the
between-class scatter and minimize the within-class scatter
of the data simultaneously. While LDA attempts to do so
in the original space, KDA does this in the kernel space. If
the class distributions in the original space are homoscedas-
tic (i.e., identical covariance matrices), then LDA will yield
the Bayes optimal solution, that is, the hyperplane separat-
ing the class distributions in the LDA subspace will have the
smallest possible error (also known as the Bayes error). Un-
fortunately, the class distributions are rarely homoscedastic
and the optimal solution cannot be attained. To resolve this
problem, we can employ the kernel trick.

For a given kernel function, the goal is to determine the
kernel parameters to achieve Bayes optimal classification in
the kernel space. Care needs to be taken in this selection
process. If the kernel parameter makes the model too com-
plex, an over-fitting problem to the training data may result.
If the model is made too simple, it may underfit the data and
will thus not effectively capture the underlying structure of
the data.

The classical approach to determine the kernel parame-
ters is cross-validation (CV). In this technique, the param-
eters which minimize the validation error are selected via
an exhaustive search. However, this method is computa-
tionally expensive and merely selects the parameters from
a set of prespecified discrete values. To avoid these two
drawbacks, [19, 20] define a criterion, which maximizes
the between-class scatter and minimizes the within-class
scatter in the kernel space, to optimize the kernel param-
eters. Since the idea is similar to between-within class ratio
of LDA [5], we will refer to this as the Fisher criterion.
This criterion maximizes the class separability in the ker-
nel space, and it generally obtains higher classification ac-
curacies than CV. A similar idea is developed in [9], where
the Fisher criterion is reformulated as a convex optimization
problem and then used to find a solution over a convex set
of kernels. Alternatively, [3] defines the concept of kernel
alignment to capture the agreement between a kernel and
the target data. It is shown how this measure can be used
to optimize the kernel. Interestingly, [20] shows that this
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kernel-target alignment criterion is equivalent to maximiz-
ing the between-class scatter, provided that the kernel ma-
trix has been centralized and normalized by its Frobenius
norm. These approaches will thus be grouped within the
idea of the Fisher criterion. The major drawback with these
criteria is that they are only based on the measures of class
separability. Note that the measure for the class separability
is not always related to the classification error. For example,
since the Fisher criterion is based on a least-squares formu-
lation [8], this can easily over-weight the influence of the
classes that are farthest apart (i.e., well separated) [12].

In the present paper, we derive a Bayes optimal crite-
rion for selecting the parameter in discriminant analysis. To
achieve this, we define a function measuring the Bayes ac-
curacy (i.e., one minus the Bayes error) in the kernel space.
We then show how this function can be efficiently maxi-
mized using gradient ascent. It should be emphasized that
this objective function directly minimizes the classification
error, which makes the proposed criterion very powerful.
We will also illustrate how we can employ the same cri-
terion for the selection of other parameters in discriminant
analysis. In particular, we demonstrate the uses of the de-
rived criterion in the selection of the kernel parameters and
the number of subclasses in Kernel Subclass Discriminant
Analysis (KSDA), a kernel version of Subclass Discrimi-
nant Analysis (SDA) [23]. Extensive experiments demon-
strate that our criterion generally yields higher classification
accuracies than others.

2. Background Formulation and Notation

LDA simultaneously maximizes the between-class scat-
ter and minimizes the total scatter (i.e., covariance matrix)
[5, 14], given by SB =

∑C−1
i=1

∑C
j=i+1 pipj(µi−µj)(µi−

µj)T and ΣX = n−1
∑n

i=1(xi − µ)(xi − µ)T , where
X = {x1, ...,xn} are the n training samples, xi ∈ Rp,
µ = n−1

∑n
i=1 xi is the sample mean, µi = n−1

i

∑ni

j=1 xij

is the sample mean of class i, xij is the jth sample of class
i, ni is the number of samples in class i, C is the number of
classes, and pi = ni/n is the prior of class i. LDA’s solution
is then given by the generalized eigenvalue decomposition
equation Σ−1

X SBV = VΛ, where the columns of V are the
eigenvectors, and Λ is a diagonal matrix of corresponding
eigenvalues. If the class distributions are homoscedastic,
the subspace given by the eigenvectors with nonzero eigen-
value of this equation yield the Bayes optimal solution.

In general, the class distributions are not homoscedastic.
In such cases, the solution given by LDA is biased toward
those classes that are furthest apart. To see this, note that
LDA is based on least-squares (i.e., an eigenvalue decom-
position defined to solve a system of homogeneous equa-
tions [8]). Thus, the LDA solution tends to over-weight
the classes that were already well-separated in the original

space. In order to downplay the roles of the class distri-
butions that are farthest apart, [12] introduces a weighted
version of SB , defined as

ΣB =
C−1∑

i=1

C∑

j=i+1

pipjω(∆ij)(µi − µj)(µi − µj)T , (1)

where ∆2
ij = (µi − µj)T Σ−1

X (µi − µj) is the Maha-
lanobis distance between classes i and j, ω : R+

0 → R+
0

is a weighting function, ω(∆ij) = 1
2∆2

ij
erf ( ∆ij

2
√

2
), and

erf (x) = 2√
π

∫ x

0
e−t2dt is the error function.

One advantage of (1) is that it is related to the mean pair-
wise Bayes accuracy [12] (i.e., one minus the Bayes error),
since

J(L) =
d∑

m=1

C−1∑

i=1

C∑

j=i+1

pipjω(∆ij)tr(eT
mΣijem), (2)

where L = (e1, ..., ed) is the eigenvector matrix of∑C−1
i=1

∑C
j=i+1 pipjω(∆ij)Σij , Σij = (µi − µj)(µi −

µj)T are the pairwise class distances, and, for simplicity,
we have assumed ΣX = Ip, Ip an identity matrix with di-
mension p× p.

3. Bayes Optimal Criterion
3.1. Bayes accuracy in the kernel space

As mentioned above, (2) is proportional to the Bayes ac-
curacy and as such it can be employed to improve LDA [12].
We want to derive a similar function for its use in the kernel
space.

Let φ(.) : Rp → F be a function defining the
kernel map. We also assume the data has already
been whitened in the kernel space. Denote the data
matrix in the kernel space Φ(X), where Φ(X) =
(φ(x11), . . . , φ(xini), . . . , φ(xCnC

)). The kernel matrix is
given by K = Φ(X)T Φ(X).

Using this notation, the covariance matrix in the kernel
space can be written as ΣΦ

X = n−1Φ(X)(In−Pn)Φ(X)T ,
where In is the n×n identity matrix, and Pn is a n×n ma-
trix with all elements equal to 1/n. The whitened data ma-
trix Φ̃(X) is now given by Φ̃(X) = Λ− 1

2 VΦT

Φ(X), where
Λ and VΦ are the eigenvalue and eigenvector matrices
given by ΣΦ

XVΦ = VΦΛ. We know from the Represen-
ter’s Theorem [18] that a projection vector lies in the span of
the samples in the kernel space Φ(X), i.e., VΦ = Φ(X)Γ,
where Γ is a corresponding coefficient matrix. Thus, we
have

Φ̃(X) = Λ− 1
2 VΦT

Φ(X)

= Λ− 1
2 ΓT Φ(X)T Φ(X) = Λ− 1

2 ΓT K,



where Λ and Γ can be calculated from a generalized eigen-
value decomposition problem NΓ = KΓΛ, with N =
n−1K(In−Pn)K. With this trick, we transform the kernel
covariance matrix ΣΦ

X into the identity matrix.
Next, define the mean of class i in the kernel space as

µφ
i = Φ̃(Xi)1i, (3)

where Φ̃(Xi) = (φ̃(xi1), . . . , φ̃(xini
)), and 1i is a ni ×

1 vector with all elements equal to 1/ni. Let K̃i =
Φ̃(X)T Φ̃(Xi) denote the subset of the whitened kernel ma-
trix for the samples in class i.

Combining the above results, we can define the Bayes
accuracy in the kernel space as

Q(φ) =
d∑

m=1

C−1∑

i=1

C∑

j=i+1

pipjω(∆Φ
ij)e

φT

m SΦ
ije

φ
m, (4)

where eφ
1 , ..., eφ

d are the eigenvectors of the weighted kernel
between-class scatter matrix

C−1∑

i=1

C∑

j=i+1

pipjω(∆Φ
ij)S

Φ
ij ,

SΦ
ij = (µφ

i − µφ
j )(µφ

i − µφ
j )T , the Mahalanobis distance

∆Φ
ij in the whitened kernel space becomes the Euclidean

distance,

∆Φ2

ij = (µφ
i − µφ

j )T (µφ
i − µφ

j )

= (Φ̃(Xi)1i − Φ̃(Xj)1j)T (Φ̃(Xi)1i − Φ̃(Xj)1j)

= 1T
i K̃ii1i − 21T

i K̃ij1j + 1T
j K̃jj1j , (5)

and K̃ij = Φ̃(Xi)T Φ̃(Xj) is the subset of the kernel matrix
for the samples in class i and j.

From the Representer’s Theorem [18], we know that
eφ

i = Φ̃(X)ui, where ui is a coefficient vector. Then,
using (3) we have eφT

m SΦ
ije

φ
m = uT

mSijum, where Sij =
(K̃i1i − K̃j1j)(K̃i1i − K̃j1j)T , and u1, . . . ,ud are the
eigenvectors of

∑C−1
i=1

∑C
j=i+1 pipjω(∆Φ

ij)Sij . Therefore,
criterion (4) can be rewritten as

Q(φ) =
d∑

m=1

C−1∑

i=1

C∑

j=i+1

pipjω(∆Φ
ij)u

T
mSijum. (6)

By maximizing Q(φ), we favor a kernel representation
where the sum of pairwise Bayes accuracies is maximized.
The optimal kernel function, φ∗, is given by

φ∗ = arg max
φ

Q(φ).

We will refer to the derived criterion given in (6) as Ker-
nel Bayes Accuracy (KBA) criterion.

3.2. Kernel parameters with gradient ascent

The first application of the above derived criterion is in
determining the value of the parameters of a kernel func-
tion. For example, if we are given the Radial Basis Function
(RBF) kernel, k(xi, xj) = exp(−‖xi−xj‖2

2σ2 ), our goal is to
determine an appropriate value of the variance σ.

To determine our solution, we employ a quasi-Newton
method with a Broyden-Fletcher-Goldfarb-Shanno Hessian
update [4]. The main advantage of this method is that it has
a fast converge and does not require the calculation of the
Hessian matrix. Instead, the Hessian is updated by analyz-
ing the gradient vectors.

To compute the derivative of our criterion, note that (6)
can be rewritten as

Q(φ) = tr(
C−1∑

i=1

C∑

j=i+1

pipjω(∆Φ
ij)Sij)

=
C−1∑

i=1

C∑

j=i+1

pipjω(∆Φ
ij)tr(Sij).

Taking the partial derivative with respect to
σ in the RBF kernel, we have ∂Q(φ)

∂σ =
∑C−1

i=1

∑C
j=i+1 pipj

[
∂ω(∆Φ

ij)

∂σ tr(Sij) + ω(∆Φ
ij)

∂tr(Sij)
∂σ

]
.

Denote the partial derivative of an m × n matrix K
with respect to σ as ∂K

∂σ =
[

∂Kij

∂σ

]
i=1,...,m,j=1,...,n

, with

∂Kij

∂σ = ∂k(xi,xj)
∂σ = ‖xi−xj‖2

σ3 exp(−‖xi−xj‖2
2σ2 ). Then

∂ω(∆Φ
ij)

∂σ = − erf (∆Φ
ij/2

√
2)

∆Φ3
ij

∂∆Φ
ij

∂σ + exp(−∆Φ2
ij /8)

2
√

2π∆Φ2
ij

∂∆Φ
ij

∂σ , where

∂∆Φ
ij

∂σ = 1
2∆Φ

ij
(1T

i
∂K̃ii

∂σ 1i − 21T
i

∂K̃ij

∂σ 1j + 1T
j

∂K̃jj

∂σ 1j).

Finally, ∂tr(Sij)
∂σ = ∂(K̃i1i−K̃j1j)

T (K̃i1i−K̃j1j)
∂σ =

1T
i

∂K̃T
i

∂σ K̃i1i + 1T
i K̃T

i
∂K̃i

∂σ 1i − 21T
j

∂K̃T
j

∂σ K̃i1i −
21T

j K̃T
j

∂K̃i

∂σ 1i + 1T
j

∂K̃T
j

∂σ K̃j1j + 1T
j K̃T

j
∂K̃j

∂σ 1j .

3.3. Subclass extension

Another application of the derived KBA criterion is in
determining the number of subclasses in Subclass Discrim-
inant Analysis (SDA) [23] and its kernel extension. KDA
assumes that each class has a single Gaussian distribution
in the kernel space. However, this may be too restrictive
since it is usually difficult to find a kernel representation
where the class distributions are single Gaussians. In order
to relax this assumption, we can describe each class using a
mixture of Gaussians. Using this idea, we can reformulate
(6) as

Qsub(φ,H1, . . . , HC) =
d∑

m=1

C−1∑

i=1

Hi∑

j=1

C∑

k=i+1

Hk∑

l=1

pijpkl

ω(∆Φ
ij,kl)u

T
mSij,klum, (7)



where Hi is the number of subclasses in class i, u1, ...,ud

are d eigenvectors of the kernel version of the weighted
between-subclass scatter matrix

C−1∑

i=1

Hi∑

j=1

C∑

k=i+1

Hk∑

l=1

pijpklω(∆Φ
ij,kl)Sij,kl,

Sij,kl = (Mij1ij −Mkl1kl)(Mij1ij −Mkl1kl)T , Mij =
Φ̃(X)T Φ̃(Xij), Φ̃(Xij) = (φ̃(xij1), . . . , φ̃(xijnij )), xijk

is the kth sample of subclass j in class i, 1ij is a nij × 1
vector with all elements equal to 1/nij , and nij the number
of samples in the jth subclass of class i. Note that in the
above equation, the whitened Mahalanobis distance is given
by

∆Φ2

ij,kl = (µφ
ij − µφ

kl)
T (µφ

ij − µφ
kl)

= 1T
ijK̃ij,ij1ij − 21T

ijK̃ij,kl1kl + 1T
klK̃kl,kl1kl,

where K̃ij,kl = Φ̃(Xij)T Φ̃(Xkl). The optimal kernel func-
tion and subclass divisions are given by

φ∗,H∗
1 , . . . ,H∗

C = arg max
φ,H1,...,HC

Qsub(φ,H1, . . . , HC).

3.4. Optimal subclass discovery

In KSDA we are simultaneously optimizing the kernel
parameter and the number of subclasses. It is in fact advan-
tageous to do so, because it will allow us to find the Bayes
optimal solution when the classes need to be described with
a mixture of Gaussians in the kernel space. Furthermore,
we can automatically determine the underlying structure of
the data. This last point is important in many applications.
We illustrate this with a set of examples.

In our case study, we generated a set of 120 samples for
each of the two classes. Each class was represented by a
mixture of two Gaussians, with mean and diagonal covari-
ance randomly initialized. Then, (7) was employed to deter-
mine the appropriate number of subclasses and parameter of
the RBF kernel. This process was repeated 100 times, each
with a different random initialization of the means and co-
variances. The average of the maxima of (7) for each value
of Hi (with H1 = H2) are shown in Fig. 1(a). We see
that the derived criterion is on average higher for the cor-
rect number of subclasses. We then repeated the process
described in this paragraph for the cases of 3, 4 and 5 sub-
classes per class. The results are in Fig. 1(b-d). Again, the
maximum of (7) corresponds to the correct number of sub-
classes. Therefore, the proposed criterion can generally be
efficiently employed to discover the underlying structure of
the data. For comparison, in Fig. 1(e-h) we show the plots
of the Fisher criterion described earlier. We see that this
criterion does not recover the correct number of subclasses
and is generally monotonically increasing, thus, tending to
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Figure 1. Comparative results between the (a-d) KBA and (e-h)
Fisher criteria. The true underlying number of subclasses per class
are (a,e) 2, (b,f) 3, (c,g) 4, and (d,h) 5. The x-axis specifies the
number of subclasses Hi. The y-axis shows the value of the crite-
rion given in (7) in (a-d) and of the Fisher criterion in (e-h).

−0.5 0 0.5

−0.5

0

0.5

X
1

X
2

(a)

0 1 2 3 4 5 6 7 8 9 10
0.1

0.15

0.2

0.25

0.3

0.35

H
i

(7
)

(b)

0 1 2 3 4 5 6 7 8 9 10
2

4

6

8

10

12x 10
−4

H
i

F
is

he
r

(c)

Figure 2. (a) The classical XOR classification problem. (b) Plot of
the KBA criterion versus Hi. (c) Plot of the Fisher criterion.

select large values for Hi. This is because the Fisher crite-
rion maximizes the between-subclass scatter and, generally,
the larger Hi, the larger the scatter.

As a more challenging case, we also consider the well-
known XOR data classification problem, Fig. 2(a). The
values of (7) for different Hi are plotted in Fig. 2(b) and
those of the Fisher criterion in (c). Once more, we see that
the KBA criterion is capable of accurately recovering the
number of subclasses, whereas the Fisher criterion is not.

4. Experimental results

We now present results on a variety of classification
problems. We use the derived criterion in KDA and KSDA.
We use the notation KDAK and KSDAK to indicate that
the KBA criterion was used to optimize the parameters. We
provide comparative results with CV and the Fisher cri-
terion, denoted with a CV and F subscript, respectively.
We also provide comparative results against Principal Com-
ponent Analysis (PCA), LDA, accurate Pairwise Accuracy
Criteria (aPAC) [12], Nonparametric DA (NDA) [7], SDA
[23], Regularized DA (RDA) [6], Kernel PCA (KPCA) and
Heteroscedastic LDA (HLDA) [11].



4.1. Databases

The first five data-sets we will use are from the UCI
repository [2]. The Monks problem goal is to learn to dis-
criminate between two different postures of a robot. Three
different case scenarios are considered, denoted Monk 1, 2,
and 3. The Ionosphere set corresponds to satellite imag-
ing for the detection of two classes (structure or not) in the
ground. And, the NIH Pima set is used to detect diabetes
from a set of eight measurements.

The next database we will use is the ETH-80 [10], which
includes a total of 3, 280 images of 8 categories. Each cat-
egory includes 10 objects and each of these 80 objects has
been photographed from 41 different positions. All the im-
ages are resized to 25× 30 pixels. The pixel values in their
vector form (in R750) are used to define the original fea-
ture space. As it is typical in this database, we will use the
leave-one-object-out test. In this test, we use the 41 images
of one of the 80 objects for testing and the images of the
remaining 79 objects are employed for training. Since there
are 80 ways of selecting the testing group, we test them all
and calculate the average recognition rate.

We will also use 100 randomly selected subjects from
the AR face database [13]. All images were aligned with
respect to the eyes, mouth and jaw line before cropping and
resizing them to a standard size of 29 × 21 pixels. This
database contains images of two different sessions, taken
two weeks apart. We will use the images in the first session
for training and those in the second for testing.

The final data-set we will use is the Sitting Posture Dis-
tribution Maps (SPDM) [24]. In this data set, samples
were collected using a chair equipped with a pressure sen-
sor sheet located on the sit-pan and back-rest. The pressure
maps provide a total of 1, 280 pressure values from 50 in-
dividuals. Each participant provides five samples of each
of the ten different postures. Our goal is to classify each
of the samples into one of the ten sitting postures. We ran-
domly selected 3 samples from each individual and posture
for training, and used the rest for testing.

4.2. Results and Analysis

The linear and nonlinear feature extraction methods
described earlier are used to find an appropriate low-
dimensional representation of the data. Here, we use
the classical RBF kernel defined earlier. In this low-
dimensional space, one can use a variety of classification
techniques. In this section, we provide successful classifica-
tion results using three methods: the classical nearest neigh-
bor (NN) classifier, the extension of K-NN defined in [16],
and a linear Support Vector Machines (SVM). The recogni-
tion results are shown in Tables 1-3.

From these results, it is clear that, on average, the de-
rived KBA criterion achieves higher classification rates than

DATA SET KSDAK KSDAF KSDACV KDAK KDAF KDACV KPCA

ETH-80 84.6* 73.6 76.8 84.6* 81.0 71.6 62.2
AR DATABASE 88.2* 78.3 84.2 86.1 87.5 84.2 42.5
SPDM 84.3* 80.1 83.7 84.3* 84.2 83.3 75.0
MONK1 88.0 84.5 87.5 87.3 89.6* 83.1 90.3*
MONK2 82.9* 83.1* 75.7 82.9* 75.2 70.1 68.3
MONK3 94.2* 87.7 89.8 92.6 88.0 82.4 87.8
IONOSPHERE 93.0 84.8 94.0* 89.1 86.5 80.8 89.4
PIMA 73.2 73.8 76.8* 76.2* 69.8 72.6 56.0

DATA SET PCA LDA NDA APAC HLDA RDA SDA

ETH-80 64.3 64.3 59.8 73.6 56.5 71.6 70.6
AR DATABASE 58.6 77.7 77.0 59.1 67.5 78.6 77.7
SPDM 81.5 66.5 48.8 81.1 65.3 59.5 66.1
MONK1 81.3 69.0 68.3 81.0 84.2 72.0 75.7
MONK2 66.7 67.4 82.6 79.6 83.6 60.0 67.4
MONK3 87.3 70.6 83.6 88.4 84.5 86.3 85.9
IONOSPHERE 92.1 74.8 88.8 92.1 88.7 82.8 93.4*
PIMA 64.3 57.7 69.1 62.5 68.5 66.7 57.7

Table 1. Recognition rates (%) with nearest neighbor. Bold num-
bers specify the top recognition obtained with the three criteria in
KSDA and KDA. An asterisk specifies a statistical significance on
the highest recognition rate.

DATA SET KSDAK KSDAF KSDACV KDAK KDAF KDACV KPCA

ETH-80 84.6* 73.9 76.4 84.6* 82.8 72.9 60.3
AR DATABASE 89.6* 78.5 85.1 87.5 86.7 85.1 49.5
SPDM 84.9* 75.3 83.9 84.9* 83.4 82.6 75.0
MONK1 88.0* 76.6 82.9 87.3 87.7 88.7* 77.3
MONK2 82.9* 77.5 75.7 82.9* 82.9* 78.5 58.6
MONK3 90.5 83.3 86.3 92.6 92.4 91.2 91.2
IONOSPHERE 92.8* 84.8 86.1 89.1 86.8 86.8 82.1
PIMA 78.6* 76.8 76.2 76.2 73.0 69.0 60.7

DATA SET PCA LDA NDA APAC HLDA RDA SDA

ETH-80 67.1 64.3 63.5 71.2 59.1 71.6 72.3
AR DATABASE 44.5 70.9 77.3 60.2 67.5 78.6 70.9
SPDM 77.0 56.2 50.2 81.2 53.4 59.5 69.5
MONK1 78.2 67.4 77.8 69.4 71.5 72.0 79.2
MONK2 56.7 70.6 70.6 70.4 58.3 60.0 70.6
MONK3 89.7 70.8 91.9 89.6 93.8* 86.3 90.5
IONOSPHERE 82.1 74.8 83.4 91.1 94.0* 82.8 89.4
PIMA 70.2 57.7 70.2 63.8 72.6 66.7 57.7

Table 2. Recognition rates (%) with the classification method of
[16].

DATA SET KSDAK KSDAF KSDACV KDAK KDAF KDACV KPCA

ETH-80 84.2* 73.6 77.4 84.2* 82.2 71.3 65.3
AR DATABASE 86.7* 79.6 83.1 85.3 86.7* 83.1 42.1
SPDM 84.3* 84.6* 82.3 84.3* 83.6 82.6 66.7
MONK1 87.3 88.2 86.1 87.3 89.7* 86.1 88.4*
MONK2 82.9* 81.5 73.8 82.9* 75.2 75.1 50.0
MONK3 93.5 91.9 94.4* 91.9 89.1 81.5 94.4
IONOSPHERE 92.6 86.1 96.7* 89.1 86.1 82.1 82.1
PIMA 79.8* 78.6 79.8* 77.4 75.0 72.8 64.3

DATA SET PCA LDA NDA APAC HLDA RDA SDA

ETH-80 60.1 65.3 61.8 68.4 68.4 71.6 67.8
AR DATABASE 66.7 79.3 69.7 67.2 70.1 78.6 79.3
SPDM 76.5 50.3 49.0 82.1 69.3 59.5 69.0
MONK1 67.8 65.6 66.4 67.8 68.5 72.0 66.7
MONK2 67.1 67.1 67.5 65.6 67.1 60.0 67.1
MONK3 81.3 63.9 83.3 80.6 81.9 86.3 84.7
IONOSPHERE 84.8 84.8 88.1 93.4 93.4 82.8 90.1
PIMA 68.6 64.9 76.8 77.4 76.2 66.7 64.9

Table 3. Recognition rates (%) with linear SVM.

the Fisher criterion and CV. As expected, KSDA generally
yields superior results than KDA. This is due to the added
flexibility on modeling the underlying class distributions in
the kernel space provided by KSDA. To illustrate the ef-
fectiveness of the proposed criterion in KSDA, we show
the smoothness of the function optimized by the criterion
in Fig. 3 for four of the data-sets. Note how these func-
tions can be readily optimized using gradient ascent. It is
also interesting to note that the optimal value of σ remains
relatively constant for different values of Hi. This smooth-
ness in the change of the criterion is what allows to find the
global optimum efficiently.
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Figure 3. Plots of the value of the derived criterion as a function
of the kernel parameter and the number of subclasses. From left
to right and top to bottom: AR, ETH-80, Monk 1, and Ionosphere
databases.

5. Conclusions

We have derived a Bayes optimal criterion for the se-
lection of the kernel parameters in KDA and the number
of subclasses and kernel parameters in KSDA. The derived
function computes the Bayes accuracy, defined as one mi-
nus the Bayes error, in the kernel space. Thus, the goal is
to find that kernel representation where the highest classifi-
cation accuracy is achieved. We have also shown how this
criterion can be efficiently optimized using gradient ascent
without the need to explicitly compute the Hessian. Exten-
sive experimental results on a number of databases shows
that the derived approach yields superior classification re-
sults to those given by existing algorithms. Moreover, we
have demonstrated that, when used in KSDA, the proposed
criterion can accurately recover the underlying structure of
the class distributions.

Acknowledgments

This research was partially funded by the National Sci-
ence Foundation under grant IIS 0713055.

References
[1] G. Baudat and F. Anouar. Generalized discriminant analysis

using a kernel approach. Neural Computation, 12(10):2835–
2404, 2000. 1

[2] C. L. Blake and C. J. Merz. UCI repository of machine
learning databases. University of California, Irvine, http
://www.ics.uci.edu/mlearn/MLRepository.html, 1998. 5

[3] N. Cristianini, J. Kandola, A. Elisseeff, and J. Shawe-Taylor.
On kernel target alignment. In Proc. Advances in Neural
Information Processing Systems, pages 367–373, 2001. 1

[4] J. Dennis and R. Schnabel. Numerical Methods for Uncon-
strained Optimization and Nonlinear Equations. Englewood
Cliffs, NJ: Prentice-Hall, 1983. 3

[5] R. A. Fisher. The statistical utilization of multiple measure-
ments. Annals of Eugenics, 8:376–386, 1938. 1, 2

[6] J. H. Friedman. Regularized discriminant analysis. J. Am.
Stat. Assoc., 84:165–175, 1989. 4

[7] K. Fukunaga and J. Mantock. Nonparametric discriminant
analysis. IEEE Trans. PAMI, 5:671–678, 1983. 4

[8] O. C. Hamsici and A. M. Martinez. Bayes optimality in lin-
ear discriminant analysis. IEEE Trans. PAMI, 30:647–657,
2008. 1, 2

[9] S. Kim, A. Magnani, and S. Boyd. Optimal kernel selection
in kernel fisher discriminant analysis. In Int. Conf. Machine
Learning, pages 465–472, 2006. 1

[10] B. Leibe and B. Schiele. Analyzing appearance and contour
based methods for object categorization. In Proc. IEEE Conf.
CVPR, 2003. 5

[11] M. Loog and R. P. W. Duin. Linear dimensionality reduction
via a heteroscedastic extension of lda: The chernoff criterion.
IEEE Trans. PAMI, 26(6):732–739, 2004. 4

[12] M. Loog, R. P. W. Duin, and R. Haeb-Umbach. Multiclass
linear dimension reduction by weighted pairwise fisher cri-
teria. IEEE Trans. PAMI, 23(7):762–766, 2001. 2, 4

[13] A. M. Martinez and R. Benavente. The AR Face Database.
CVC Technical Report No. 24, June, 1998. 5

[14] A. M. Martinez and M. Zhu. Where are linear feature extrac-
tion methods applicable? IEEE Trans. PAMI, 27(12):1934–
1944, 2005. 2

[15] S. Mika, G. Ratsch, J. Weston, B. Scholkopf, and K. Muller.
Fisher discriminant analysis with kernels. In Proceedings of
IEEE Neur. Net. Sig. Proc. Workshop, pages 41–48, 1999. 1

[16] O. Pujol and D. Masip. Geometry-based ensembles: To-
wards a structural characterization of the classification
boundary. IEEE Trans. PAMI, 31(6):1140–1146, 2009. 5

[17] B. Schlkopf and A. J. Smola. Learning with Kernels: Sup-
port Vector Machines, Regularization, Optimization, and Be-
yond. The MIT Press, 2001. 1

[18] G. Wahba. Spline Models for Observational Data. Society
for Industrial and Applied Mathematics, 1990. 1, 2, 3

[19] L. Wang, K. Chan, P. Xue, and L. Zhou. A kernel-induced
space selection approach to model selection in klda. IEEE
Trans. Neural Networks, 19:2116–2131, 2008. 1

[20] H. Xiong, M. Swamy, and M. Ahmad. Optimizing the ker-
nel in the empirical feature space. IEEE Trans. on Neural
Networks, 16(2):460–474, 2005. 1

[21] J. Yang, A. F. Frangi, J. Yang, D. Zhang, and Z. Jin. KPCA
plus LDA: A complete kernel fisher discriminant framework
for feature extraction and recognition. IEEE Trans. PAMI,
27(2):230–244, 2005. 1

[22] M.-H. Yang. Kernel eigenfaces vs. kernel fisherfaces: Face
recognition using kernel methods. In FGR ’02: Proc. IEEE
Int. Conf. on Automatic Face and Gesture Rec, 2002. 1

[23] M. Zhu and A. M. Martinez. Subclass discriminant analysis.
IEEE Trans. PAMI, 28(8):1274–1286, 2006. 2, 3, 4

[24] M. Zhu and A. M. Martinez. Pruning noisy bases in discrimi-
nant analysis. IEEE Trans. Neural Networks, 19(1):148–157,
2008. 5


