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I. DERIVATION OF THE GRADIENT

We take ϕ(.) to be the RBF function, k(xi,xj) = exp
(
−∥xi−xj∥2

σ

)
, with σ the parameter to be optimized. And, we consider

the case where each class distribution is modeled by a single Gaussian distribution. The derivations for the subclass case follows
immediately from the ones given below.

The gradient of our criterion Q(.), when considering the RBF kernel, is given by

∂Q(ϕ)

∂σ
=

∂(Q1(ϕ)Q2(ϕ))

∂σ
=

∂Q1(ϕ)

∂σ
Q2(ϕ) +

∂Q2(ϕ)

∂σ
Q1(ϕ).

The partial derivative of Q1(ϕ) with respect to the RBF parameter σ is
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Note that ΣΦ
i = Φ(Xi)(I − 1ni)Φ(Xi)

T , where Φ(Xi) = (ϕ(xi1), ..., ϕ(xini
)) and 1ni is a ni × ni matrix with all elements
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TΦ(Xk). Let K̃ki = Kki(I− 1ni) and K̃ik = Kik(I− 1nk ). We can rewrite this result as,
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where K̃pq
ki is the (p, q)th entry of K̃ki. Denote the partial derivative of an m×n matrix K with respect to σ as ∂K
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Next, note that Q2(ϕ) can be written as
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Using this notation, the gradient of Q2(ϕ) with respect to σ is
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This result allows us to iteratively determine an appropriate solution. To see that the solution found with such a gradient descent
technique is an appropriate one, recall that Theorem 2 showed Q1 monotonically increases if tr(SB) > tr(SW ). In most practical
problems this condition is satisfied, since otherwise the classes mostly overlap and the classification problem is not solvable (i.e.,
there is a very large classification error in the original feature space). This means there is an identifiable global maximum. We now
note that the same applies to Q2. That is, as long as the class distributions do not overlap significantly, Q2 has a unique maximum for
a sigma value in between the averaged within class sample distances and the averaged between class sample distances. To see this,
note that for every Q2 calculated for a pair of classes (i.e., classes 1 and 2), there are three main components: the sum of the kernel
matrix elements in class 1, in class 2, and between classes 1 and 2. Each of these components monotonically increases with respect
to sigma (starting with 1/n1, 1/n2, 0, and converging to 1). The fastest increases occur for sigma around the averaged distance in
that component; e.g., for within class 1, this will be around the averaged distance of the samples in that class. This means that the
within class components will converge earlier than the between class distances. Hence, the sum of the within class subtracted with
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TABLE S1
RECOGNITION RATES (IN PERCENTAGES) WITH NEAREST MEAN

Data set ksdaH ksdaF ksdaB ksdaCV kdaH kdaF kdaB kdaCV kndaH kndaF kndaB kndaCV

ETH-80 82.6* 73.5 61.7 77.4 82.6* 81.6 61.7 71.6 76.2 74.6 65.6 73.6
AR database 88.1* 78.2 65.5 84.2 87.5* 86.7 69.5 84.2 71.3 61.4 72.5 74.3
SPDM 84.6* 80.1 67.9 83.9* 84.6* 83.2 67.9 83.3 82.4 82.9 53.4 75.6
Monk1 88.2* 85.0 71.1 88.0* 84.0 89.6* 65.3 83.1 70.1 65.7 50.0 63.4
Monk2 76.6 82.2* 56.7 74.5 80.1 75.2 55.6 70.1 73.5 64.8 61.8 71.8
Monk3 96.3* 88.7 85.4 94.0 93.1 89.7 85.7 82.4 67.6 63.7 77.8 66.4
Ionosphere 93.4 84.8 88.1 96.0* 93.4 86.1 67.6 80.8 74.8 62.3 65.6 78.2
Pima 80.4* 77.4 70.2 80.4* 78.6 75.0 75.0 72.6 65.5 67.3 70.8 66.7
Mnist 98.0* 96.9 92.0 97.4 98.1* 96.6 92.0 97.2 94.6 94.3 93.1 96.4
Rank 1.9* 7.0 13.3 3.6 2.8 5.4 14.2 9.2 12.2 14.7 15.8 13.3
Data set mog ksvm kpca pca lda nda apac hlda lpp rda sda
ETH-80 69.2 81.8 56.9 56.5 63.3 64.9 64.0 58.2 65.9 71.6 70.9
AR database 75.5 86.7 42.2 24.0 79.3 69.7 24.2 67.4 46.2 78.6 79.3
SPDM 73.4 84.7* 62.6 66.4 44.5 52.5 65.3 68.0 54.7 59.5 69.3
Monk1 80.3 83.6 67.4 66.0 64.6 64.8 66.0 66.2 44.4 72.0 66.7
Monk2 75.9 82.6 53.7 53.5 55.1 60.0 53.5 53.5 48.6 60.0 55.1
Monk3 89.4 93.5 78.9 80.6 63.9 81.3 80.6 81.3 75.5 86.3 80.8
Ionosphere 82.1 96.0 89.4 62.3 57.0 92.1 62.3 90.1 55.0 82.8 90.1
Pima 75.0 79.2 50.0 56.0 61.3 74.4 56.0 77.4 67.9 66.7 61.3
Mnist 88.6 97.6* 80.6 82.2 86.7 85.9 82.2 85.5 80.1 87.0 88.2
Rank 9.8 2.7 18.0 19.1 18.3 14.4 18.4 14.1 19.9 12.4 12.8

TABLE S2
RECOGNITION RATES (%) WITH NEAREST NEIGHBOR

Data set ksdaH ksdaF ksdaB ksdaCV kdaH kdaF kdaB kdaCV kndaH kndaF kndaB kndaCV

ETH-80 82.8* 73.6 62.3 76.8 82.8* 81.0 62.3 71.6 76.2 74.6 68.0 70.6
AR database 96.7* 78.3 66.9 84.2 88.3 87.5 71.3 84.2 69.2 64.2 70.6 70.2
SPDM 84.9* 80.1 68.2 83.7 84.9* 84.2 68.2 83.3 73.9 75.6 33.5 70.3
Monk1 89.1* 84.5 78.2 87.5 84.3 89.6* 72.5 83.1 78.2 77.1 74.5 72.2
Monk2 77.8 83.1 86.1 75.7 80.1 75.2 77.6 70.1 85.0* 81.0 79.9 78.5
Monk3 94.4* 87.7 81.5 89.8 93.5 88.0 89.4 82.4 82.1 81.3 77.6 80.3
Ionosphere 94.4 84.8 91.4 94.0 94.4 86.5 70.9 80.8 87.4 86.1 90.1 86.1
Pima 75.0 73.8 66.7 76.8 70.2 69.8 64.9 72.6 67.3 67.3 66.1 69.1
Mnist 97.8* 96.9 91.8 97.2 97.2 97.1 91.8 96.7 95.6 95.4 92.1 95.5
Rank 2.9* 8.0 13.6 5.3 3.7 7.7 15.4 10.8 11.3 12.7 15.7 14.1
Data set mog ksvm kpca pca lda nda apac hlda lpp rda sda
ETH-80 69.2 81.8 62.2 64.3 64.3 59.8 73.6 56.5 63.6 71.6 70.6
AR database 75.5 86.7 42.5 58.6 77.7 77.0 59.1 67.5 41.8 78.6 77.7
SPDM 73.4 84.7 75.0 81.5 66.5 48.8 81.1 65.3 54.1 59.5 66.1
Monk1 80.3 83.6 90.3* 81.3 69.0 68.3 81.0 84.2 61.6 72.0 75.7
Monk2 75.9 82.6 68.3 66.7 67.4 82.6 79.6 83.6 82.4 60.0 67.4
Monk3 89.4 93.5 87.8 87.3 70.6 83.6 88.4 84.5 80.6 86.3 85.9
Ionosphere 82.1 96.0* 89.4 92.1 74.8 88.8 92.1 88.7 68.2 82.8 93.4
Pima 75.0 79.2 56.0 64.3 57.7 69.1 62.5 68.5 66.8 66.7 57.7
Mnist 88.6 97.6 94.1 90.1 89.7 85.6 89.3 80.6 96.0 87.0 93.7
Rank 12.6 3.2 14.2 14.3 18.4 15.4 12.7 14.3 17.4 16.2 14.1

two times the between class elements (in the kernel matrix) will result in a maximum in between the averaged within class sample
distances and between class sample distances.

In some applications where our conditions may not hold, it would be appropriate to test a few starting values to determine the best
solution. We did not require this procedure in our experiments.

II. MIXTURE OF GAUSSIANS (MOG) APPROACH

Mixture Models is a widely used approach to estimating the underlying distribution of the data. In the MoG approach, each class
is modeled as a mixture of Gaussians, and the means and covariance matrices are estimated using the Expectation-Maximization
(EM) algorithm [1]. The algorithm also needs to determine the number of mixtures. However, as the number of clusters increases,
the likelihood of the data also increases and applying the EM algorithm would lead to the “optimal” representation of one Gaussian
per sample. This is an overfitting problem. A classical way to resolve this is using the Minimum Description Length (MDL) criterion
[4], defined as

MDL(H, θ) = −logp(X|H, θ) +
1

2
Llog(N), (1)
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TABLE S3
RECOGNITION RATES (%) WITH THE SMOOTH NEAREST-NEIGHBOR CLASSIFIER

Data set ksdaH ksdaF ksdaB ksdaCV kdaH kdaF kdaB kdaCV kndaH kndaF kndaB kndaCV

ETH-80 83.5* 73.9 62.3 76.4 83.5* 82.8 62.3 72.9 76.2 74.2 68.2 71.2
AR database 96.6* 78.5 66.9 85.1 90.6 86.7 71.3 85.1 70.9 63.2 70.6 72.6
SPDM 84.3* 75.3 68.2 83.9* 84.3* 83.4 68.2 82.6 75.6 77.9 35.6 71.5
Monk1 90.2* 76.6 71.5 82.9 89.6 87.7 72.2 88.7 65.2 62.0 61.4 62.3
Monk2 83.3* 77.5 60.6 75.7 80.6 82.9 73.8 78.5 74.1 64.8 62.3 56.9
Monk3 94.6* 83.3 86.1 86.3 93.5 92.4 89.4 91.2 68.5 64.8 85.4 66.2
Ionosphere 94.3 84.8 84.8 86.1 94.3 86.8 80.1 86.8 80.8 82.8 77.5 78.1
Pima 80.4* 76.8 79.2 76.2 78.6 73.0 64.9 69.0 72.0 67.9 69.0 67.9
Mnist 97.8* 96.9 91.8 97.3 97.2 97.2 91.8 96.7 95.6 95.4 92.1 95.6
Rank 1.2* 9.4 14.4 6.7 2.7 4.6 15 6.9 14.2 14.7 17.6 16.1
Data set mog ksvm kpca pca lda nda apac hlda lpp rda sda
ETH-80 69.2 81.8 60.3 67.1 64.3 63.5 71.2 59.1 64.3 71.6 72.3
AR database 75.5 86.7 49.5 44.5 70.9 77.3 60.2 67.5 35.5 78.6 70.9
SPDM 73.4 84.7 75.1 77.0 56.2 50.2 81.2 53.4 50.2 59.5 69.5
Monk1 80.3 83.6 77.3 78.2 67.4 77.8 69.4 71.5 59.0 72.0 79.2
Monk2 75.9 82.6 58.6 56.7 70.6 70.6 70.4 58.3 72.0 60.0 70.6
Monk3 89.4 93.5 91.2 89.7 70.8 91.9 89.6 93.8 87.0 86.3 90.5
Ionosphere 82.1 96.0* 82.1 82.1 74.8 83.4 91.1 94.0 62.9 82.8 89.4
Pima 75.0 79.2 60.7 70.2 57.7 70.2 63.8 72.6 66.1 66.7 57.7
Mnist 88.6 97.6 94.1 90.1 89.8 86.0 89.4 82.6 96.1 87.0 93.5
Rank 11.6 2.7 15.6 14.6 17.8 13.4 13.9 14.9 18.1 14.9 11.9

TABLE S4
RECOGNITION RATES (%) WITH LINEAR SVM

Data set ksdaH ksdaF ksdaB ksdaCV kdaH kdaF kdaB kdaCV kndaH kndaF kndaB kndaCV

ETH-80 83.0* 73.6 61.9 77.4 83.0* 82.2 61.9 71.3 75.6 75.2 65.6 74.6
AR database 88.1* 79.6 65.5 83.1 87.5* 86.7 69.5 83.1 79.4 75.7 72.5 78.6
SPDM 82.1 84.6* 67.5 82.3 82.1 83.6 67.5 82.6 82.2 82.9 52.7 84.0
Monk1 89.1* 88.2 50.0 86.1 84.7 89.7* 52.1 86.1 69.9 62.5 50.0 63.4
Monk2 77.1 81.5 67.1 73.8 80.1 75.2 67.1 75.1 67.1 83.1* 67.1 67.1
Monk3 95.6* 91.9 47.2 94.4 92.8 89.1 47.2 81.5 81.7 81.7 47.2 81.0
Ionosphere 93.4 86.1 82.1 96.7* 93.4 86.1 82.1 82.1 82.1 82.1 82.1 82.1
Pima 79.8* 78.6 64.9 79.8* 78.0* 75.0 64.3 72.8 64.3 64.3 64.3 64.3
Mnist 97.9 96.9 92.0 97.3 98.1* 96.7 92.0 97.2 94.7 94.3 93.3 96.2
Rank 2.8* 5.6 17.8 4.3 4.1 5.8 17.7 9.5 11.9 11.6 17.3 13.0
Data set mog ksvm kpca pca lda nda apac hlda lpp rda sda
ETH-80 69.2 81.8 65.3 60.1 65.3 61.8 68.4 68.4 62.1 71.6 67.8
AR database 75.5 86.7 42.1 66.7 79.3 69.7 67.2 70.1 44.2 78.6 79.3
SPDM 73.4 84.7* 66.7 76.5 50.3 49.0 82.1 69.3 45.5 59.5 69.0
Monk1 80.3 83.6 88.4* 67.8 65.6 66.4 67.8 68.5 44.9 72.0 66.7
Monk2 75.9 82.6 50.0 67.1 67.1 67.5 65.6 67.1 67.1 60.0 67.1
Monk3 89.4 93.5 94.4 81.3 63.9 83.3 80.6 81.9 78.5 86.3 84.7
Ionosphere 82.1 96.0 82.1 84.8 84.8 88.1 93.4 93.4 82.1 82.8 90.1
Pima 75.0 79.2 64.3 68.6 64.9 76.8 77.4 76.2 76.2 66.7 64.9
Mnist 88.6 97.6 81.0 82.2 86.9 85.9 83.1 85.4 80.1 87.0 88.2
Rank 11.5 3.3 16.1 16.1 15.8 14.6 13.6 12.5 19.0 13.8 12.9

where logp(X|H, θ) is the log-likelihood of the mixture model, X is the data matrix, H is the number of clusters, and θ are the
parameters of the model. 1

2Llog(N) is a penalty function, with L = H−1+H(D+(D+1)D/2), where N is the number of samples,
and D is the dimension of the data. The minimization of the MDL criterion thus determines the number of mixtures in our model.

After the parameters of the MoG are estimated, the Maximum Likelihood (ML) rule is used to define the nonlinear classification
boundary. Note that, as in SVM, this classification is directly done in the original space.

III. EXPERIMENTAL RESULTS: DETAILS

In the main paper we provided a summary of the experimental results. We now present a slightly larger comparison – against
additional method. These comparisons are given in Tables S1-S4. These tables provide comparative results against all the nonlinear and
linear approaches described in the paper. As with the results given in the main manuscript, we see that the proposed Homoscedastic
criterion consistently selects those kernel parameters which yield the highest classification accuracies. The bolded values are given
to identify which of the four criteria used for optimizing the kernel DA approaches yields the best results. For example, in Table
S1, when using KSDA, the homoscedastic criterion derived in this paper yields better results than those obtained with the Fisher,
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Bregman and CV criteria 7 out of 9 times. In comparison, the Fisher criterion only yields the best results once, and CV 4 times.
We are also interested in which algorithm, over all those listed in the table, yields the top result. That is, which approach is to be
preferred. The top results (with statistical significance) are marked with an asterisk in the tables.

We now provide a quantitative analysis to rank the different approaches tested. This requires that we provide an analytical study
of the results of multiple algorithms on multiple databases. To do this we follow the approach of [2]. In particular, we used the
Friedman’s statistical test of significance. The null hypothesis is that all algorithms are equally good and that the numerical differences
are given by noise. The resulting rankings are given in Tables S1-S4, with statistical significance marked with an asterisk. We see
that KSDAH consistently yields the best classification accuracies, regardless of the classifier used in the reduced space. KDAH and
KSVM rank second. We also see that slightly better results are given when the smooth nearest-neighbor classifier of [3] is used in
the subspace of KSDAH ; followed by the nearest mean. This suggests the subclasses are close to homoscedastic and that our goal
has been achieved.

The differences in running time observed in Table V between KSDA and KSVM are given by implementation or running details
rather than algorithm complexity. Both algorithms share the same complexity and will generally be equivalent with regard to the
training time. KSVM does, however, considerably reduce the size of the feature spaces. KDAH is about an order of magnitude faster
than KSVM and yields comparable results to it – as demonstrated by the rankings generated above.
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