
Learning Deformable Shape Manifolds

Samuel Rivera and Aleix Martinez

Abstract

We propose an approach to shape detection of highly deformable shapes in
images via manifold learning with regression. Our method does not require
shape key points be defined at high contrast image regions, nor do we need
an initial estimate of the shape. We only require sufficient representative
training data and a rough initial estimate of the object position and scale. We
demonstrate the method for face shape learning, and provide a comparison
to nonlinear Active Appearance Model. Our method is extremely accurate,
to nearly pixel precision and is capable of accurately detecting the shape
of faces undergoing extreme expression changes. The technique is robust to
occlusions such as glasses and gives reasonable results for extremely degraded
image resolutions.

Keywords: Shape modeling, detailed face shape detection, face detection,
nonlinear regression, face recognition, manifold learning.

1. Introduction

Shape detection is an important problem in computer vision because of its
utility in object recognition, classification, and segmentation among others
[1, 2, 3, 4]. The general shape detection problem can be stated as follows:
Given an image, can we delineate the shape of a specific object in the image?
The problem becomes difficult when the shape is not rigid, but can deform,
translate, rotate, change scale, or become occluded in the image. In this
paper, we are interested in this scenario.

We develop a new method for deformable shape detection based on man-
ifold learning through regression. We illustrate the concept applied to face
shape detection in Fig. 1. Consider this simplified illustration of the model
where the u and v axes correspond to the face image space, while the z axis
corresponds to the face shape space. Given a finite set of face image samples

In press, Pattern Recognition October 20, 2011



Figure 1: Conceptual illustration of the face shape manifold and the method presented.
The u and v axes correspond to the face image space, while the z axis corresponds to the
face shape space. A finite set of face image samples and their associated shape parameters
are used to estimate the nonlinear manifold. This manifold defines a mapping f(·) from a
face image sample to the associated shape parameters.

and their associated shape parameters, we wish to estimate the nonlinear face
shape manifold so that we can interpolate the shape of new samples in the
face image space. Once learned, the manifold provides a direct mapping f(·)
from a new image x ∈ Rp to the shape space y ∈ Rd, where p and d are the
number of image features and the number of shape parameters, respectively.
Hence, in contrast to most methods in shape detection and modeling which
iteratively fit a model to an image until convergence, the shape estimate is
given in a single step.

One of the first successful shape detection algorithms requiring an iter-
ative approach was developed by Kass et al. [1] who utilized energy mini-
mization to deform active contour models, called snakes, to fit salient image
features. Thus, this method requires shapes be defined by high contrast
regions. Additional constraints of how much the shape can deform (e.g.,
based on smoothness) are incorporated, and with a reasonable initialization
of the shape, the model can deform to extract the shape of the object. A
logical extension of snakes was to change the smoothness constraint of the
shape for one that defines the variabilities of the object we want to model.
Cootes et al. [3] developed on this idea with models that could only deform
in ways specific to a given shape class. The shape variability was modeled
using a probability density function (pdf) learned by manually delineating
shapes in sample images of the object. This model is called the Active Shape

2



Model (ASM). ASM works well but still requires high contrast regions such
as edges for fitting the active contour. To overcome this drawback, Cootes et
al. defined the Active Appearance Model (AAM) [5], where the density of the
texture is also learned from sample images. The algorithm finds the shape
which best fits to the set of possible textures given by the learned pdf. This
method was enhanced by using boosting to learn the shape parameter update
and confidence score [6]. Other authors take a Bayesian approach to shape
modeling, learning the conditional density of the shape parameters given the
object image, and iterating to the maximum a posteriori (MAP) estimate of
the shape parameters [7, 8, 9]. Liang et al. [10] improve on the idea by
using regularization at accurately aligned points to reduce the occurence of
local minima favored by the global shape model. Zhang et al. [11] further
develop on this Bayesian approach by using regression to learn a sequence
of unimodal conditional density functions which guide the shape estimate
toward the correct solution.

Another alternative is to train a set of classifiers to detect various face
fiducials and inter-connect them to estimate the shape [12]. In this case, a
sliding window approach is used, where the classifiers are evaluated at all
positions and scales of interest followed by pruning and voting for the final
detection. This approach can provide very accurate results if high resolu-
tion images are available, but the sliding window method is computationally
demanding.

Zhou and Comaniciu changed direction with Shape Regression Machine
(SRM) and utilized nonlinear regression to segment the left ventricular en-
docardium in highly structured images [13, 14]. SRM employs boosting with
an over-complete feature bank to train a strong learner which associates an
image with a shape. A strong learner is a linear combination of weak learners
which coorespond to the outputs of local feature extractors. Detecting shape
using such an approach is advantageous because it avoids the initialization
and iteration posed by the above methods. Regression has also been used by
Cristinacce and Cootes [15] to model imprecisely detected fiducials in faces.
Imprecisely detected fiducials had previously been modeled using a pdf [16].

Our approach is related to SRM in that both use nonlinear regression to
relate an image with a shape, but there are fundamental differences. Our
model uses kernel regression with global object appearance while SRM uses
boosted regression with local features. Our experiments show that the lo-
cal approach is not as effective in the low resolution setting as the holistic
approach. Furthermore, SRM is proposed for medical image segmentation

3



so objects are normalized according to an estimated scale and rotation pa-
rameter. In this work, images are normalized according to the estimated eye
positions which is more appropriate in the context of faces.

The approach proposed in the present paper and illustrated in Fig. 1 has
the positive aspects of the above approaches while eliminating some of the
drawbacks:

1. As the discriminative approaches, the method is non-iterative.

2. As the generative approaches, the method does not require a sliding
window.

3. The method does not require strong shape contours so the shape man-
ifold can be learned at extremely low resolutions.

4. The manifold is based on a specific shape model, so it will give a reason-
able shape estimate even in the case of large occlusions, deformations,
or other image changes.

In the current work, we apply the method to face shapes, but the ideas can
be generalized to other deformable shapes.

The remainder of this paper is organized as follows. In Section 2 we
summarize regression and in particular, the methods Kernel Ridge Regres-
sion and Support Vector Regression. Section 3 describes our methodology
in detail. Section 4 describes several experiments which demonstrate the
method’s ability to detect the shape of realistic face images with occlusions,
and at extremely low resolution. We close the article with our conclusions in
Section 5.

2. Regression

Regression allows us to find the functional relationship between some
predictor variables x ∈ Rp and an associated output y ∈ Rd [17]. Given x
and y from unknown distributions, we want to find the mapping function
f : x→ y which minimizes the expected risk,

E[L(f(x),y)],

where L(f(x),y) is an appropriate cost function which penalizes the devia-
tions between f(x) and y. Since we do not know the underlying distribution
of the independent and dependent variables, we generally minimize the em-
pirical risk. Given a training set (xi,yi), i = 1, 2, . . . , n, the empirical risk is

4



given by
1

n

n∑
i=1

L(f(xi),yi).

Preliminary experiments showed that a simple linear model was insufficient
for representing the manifold illustrated in Fig. 1 accurately. We thus now
turn our attention to nonlinear regression.

2.1. Kernel Ridge Regression

Kernel Ridge Regression (KRR) is the kernel extension of Ridge Regres-
sion (RR), which is a penalized version of linear least squares regression [18].
RR minimizes the cost function,

L(W) =
1

n

n∑
i=1

‖yi −WTxi‖2F + λ‖W‖2F ,

where λ is a user determined regularization parameter, ‖.‖F denotes the
Frobenius norm, and W ∈ Rp×d.

If we create a matrix X ∈ Rn×p where each row is one of the vectors from
the training input and a matrix Y ∈ Rn×d with the associated output values,
the solution is given by

arg min
W

L(W) = (XTX + λIp)
−1XTY, (1)

where Ip is the p× p identity matrix. Our regressed function is then f(x) =
WTx, where x is the input vector.

It has been shown [19] that we can extend this method to the nonlinear
case through the use of kernels. The solution for the regressed function is
given by

f(x) = YT (K + λIn)−1κ(x), (2)

where K ∈ Rn×n is the Gram matrix of the training data. The entries of the
Gram matrix are given by Kij = k(xi,xj), where k(·, ·) a Mercer kernel [20]
and κ(x) = (k(x,x1), k(x,x2), . . . , k(x,xn))T . We use the popular Radial
Basis Function (RBF) kernel given by

kσ(x,xi) = exp

(
−‖x− xi‖22

2σ2

)
,

5



where σ is a parameter to tune and ‖.‖2 denotes the Euclidean-norm. We
denote the σ used in KRR by σK . Note that multiple KRR assumes the
output values, the shape parameters, are uncorrelated. Section 3.3 describes
the shape model used to achieve this property.

2.2. ε-Support Vector Regression

ε-Support Vector Regression (ε-SVR) is another linear regression method
which finds a linear function

f(x) = wTx + b,

where w ∈ Rp and b is a scalar, such that the difference between the regressed
output and the true output is below ε for all the training data while keeping
f(·) as smooth as possible. Smoothness is achieved through regularization
by penalizing ‖w‖22 [21].

The underlying assumption of the algorithm is that there exists a function
f(·) which can correctly predict training data with ε precision. To mitigate
this assumption, one can introduce real valued scalar slack variables ξi and
ξ∗i to the above definition.

It has been shown [22] that this problem can be formulated as the follow-
ing convex optimization problem,

minimize
1

2
‖w‖22 + C

n∑
i=1

(ξi + ξ∗i )

subject to


yi −wTxi − b ≤ ε+ ξi
wTxi + b− yi ≤ ε+ ξ∗i
ξi, ξ

∗
i ≥ 0,

(3)

where C > 0 is a constant which controls the trade-off between the smooth-
ness of f(·) and the allowable error greater than ε, and yi is the scalar output
associated with xi. Instead of solving (3) directly, it is easier to solve the
dual problem:

maximize


−1

2

n∑
i,j=1

(αi − α∗
i )(αj − α∗

j )x
T
i xj

−ε
n∑
i=1

(αi − α∗
i ) +

n∑
i=1

yi(αi + α∗
i )

(4)

subject to
n∑
i=1

(αi − α∗
i ) = 0 and αi, α

∗
i ∈ [0, C],

6



where αi and α∗
i are the dual variables [23].

The dual problem can be solved using quadratic programming, yielding

w =
n∑
i=1

(αi − α∗
i )xi,

f(x) =
n∑
i=1

(αi − α∗
i )x

T
i x + b. (5)

The value of b follows since it must satisfy the Karush-Kuhn-Tucker (KKT)
conditions [23]:

αi(ε+ ξi − yi + wTxi + b) = 0,

α∗
i (ε+ ξ∗i − yi + wTxi − b) = 0.

Notice that in (4) and (5), the function input and training samples, x and
xi, only appear as inner products in the original feature space. Therefore, the
method can be extended to the nonlinear case through the use of a Mercer
kernel, k(·, ·). The dual problem then becomes

maximize


−1

2

n∑
i,j=1

(αi − α∗
i )(αj − α∗

j )k(xi,xj)

−ε
n∑
i=1

(αi − α∗
i ) +

n∑
i=1

yi(αi + α∗
i )

(6)

subject to
n∑
i=1

(αi − α∗
i ) = 0 and αi, α

∗
i ∈ [0, C],

and

f(x) =
n∑
i=1

(αi − α∗
i )k(xi,x) + b. (7)

As above, we use the RBF kernel. We denote the σ used in ε-SVR by σS.
ε-SVR is advantageous because it yields a sparse solution [21], but a

good multiple output formulation is yet to be defined. Typically, the multi-
ple output ε-SVR is defined by first uncorrelating the output values (shape
parameters), then regressing each separately. We use this approach in our im-
plementation along with the single output ε-SVR implementation LIBSVM
[24].

7



3. Methodology

The method requires learning a function f(x) → y which relates an
image feature vector x ∈ Rp to a set of shape parameters y ∈ Rd associated
with shape coordinates s ∈ Rk. Once the shape parameters are regressed,
we can obtain the associated shape coordinates by applying a mapping g
from y to s, g(y) = s. The shape parameterization and mapping functions
are described in section 3.3. Shapes are defined by the two dimensional
coordinates of 130 points (also known as landmarks) delineating the major
facial fiducials (eyes, eyebrows, nose, mouth, and jaw) in a face image. This
set of k

2
two-dimensional coordinates, where k is an even integer equal to

twice the number of shape landmarks, defines the face shape s for the image
feature vector x. Throughout the discussion, when we refer to the shape
we mean the shape landmark coordinate vector s, while shape parameters
correspond to the associated parameters y. The following describes the image
normalization, shape parameterization, image representation, and function
learning methodology in detail.

3.1. General Algorithm

Our first step is to normalize all faces to facilitate subsequent modeling.
This involves detecting and cropping the faces, then scaling them to a stan-
dard size. Then we detect the eye positions using an approach similar to [25],
where regression is used to learn the function which maps the scaled face im-
age to the eye positions. After detection, we rotate the images to an upright
view and standard inter-eye distance. Normalizing the images restricts the
range of face deformations, concentrating the samples in the image space and
the associated shape space.

To model imprecise eye detections in test faces, we normalize the training
faces according to their perturbed eye positions following a Normal distribu-
tion. More formally, let the true eye positions for all the training data be
vectorized as true position = (Lx, Ly, Rx, Ry)

T , where L and R correspond to
the left and right eye, respectively, and x and y correspond to the horizontal
and vertical coordinates, respectively. The perturbed positions are given by

perturbed position = true position+ ε, (8)

where ε ∼ N(µe,Σe), and µe and Σe are the sample mean and covariance
of the eye detection error. Note that we perturb the eye positions using the

8



Figure 2: Normalized faces with automatic eye detection coordinates highlighted.

joint distribution of the error since we expect the errors to be correlated.
Fig. 2 shows some example normalized faces.

Next, we use regression to learn the face shape manifold defined by f(·).
The input to the regressor is a cropped image region x centered at the mean
training face position while the outputs are the associated shape parameters
y. The features used for regression can either be the pixels themselves or
some pre-processing of the image. In our experiments we evaluate the pixel
intensities and the C1 features of Serre et al. [26].

3.2. Feature Spaces

We experiment with two image feature spaces. Our first image represen-
tation consists of the pixel intensities which are vectorized in a raster scan
fashion and normalized to unit length. The unit length normalization is
done to reduce the effect of intensity by the lighting source. The second im-
age representation uses the C1 features of Serre et al. [26] which are reduced
in dimensionality via PCA. The C1 features are the output of the 2nd layer of
a 4−layer hierarchical filter architecture modeling the hierarchy of the visual
cortex. The first layer, S1, comprises of Gabor filters at various positions,
scales, and orientations. The second layer, C1, comprises of maximum pool-
ing operations of filter responses for the S1 layer in the same image regions
with the same orientation and within the same scale band. This pooling
operation reduces sensitivity to small image perturbations. These image fea-
tures are useful in our approach because these gradient based features reduce
sensitivity to illumination changes and skin color.

3.3. Shape Modeling

Shape corresponds to the position of a discrete set of landmarks delineat-
ing the face features (eyes, eyebrows, nose, mouth, and jawline). The shape
is modeled using a linear combination of a discrete set of d basis shapes

9



usually referred to as shape modes [3]. The shape parameters are the co-
efficients of the shape modes. The modes correspond to directions in the
shape space preserving most of the shape variance, where the shape space is
defined as the span of all shape coordinate vectors. This model allows us to
enforce reasonable limits on the possible shape deformation. For example,
varying the parameter of the first shape mode may correspond to scaling the
shape vertically. If we know the vertical range of the shape, then we could
enforce a constraint on the contribution of the first mode in the final shape
description. More modes can be included in the model to capture more of
the possible shape variance. Following on our previous example, adding a
second mode may allow us to represent vertical and horizontal shape scale
changes. Representing shape using a number of modes equal to the dimen-
sionality of the shape coordinate vector would correspond to a rotation of
the shape coordinate vector in the shape space, or a change of basis.

Modes are derived using PCA. Specifically, the shape modes are defined
by the primary eigenvectors of the shape coordinate covariance matrix Σx ∈
Rk×k for a shape defined by k

2
landmarks in R2. These eigenvectors pi, i =

1, 2, . . . k, are the ones associated with the largest eigenvalues, λi, with λ1 ≥
λ2 ≥ . . . λk ≥ 0.

The eigenvectors form an orthonormal basis for the shape space. This
is important because this yields uncorrelated shape parameters, and recall
that multiple KRR and our formulation of multiple ε-SVR assume the output
variables are uncorrelated. Since most of the shape variance will be preserved
by just a few of the shape modes, or eigenvectors, we can approximate shapes
using a small number of parameters. The percentage of shape variance pre-
served by each shape mode pi is given by the ratio λi∑k

j=1 λj
. Thus, we can

keep the amount of modes that preserves a desired amount of the total shape
variance.

If we arrange the principal eigenvectors into the columns of a matrix
P ∈ Rk×d = (p1,p2, . . .pd) with d ≤ k, and the associated eigenvalues into
a diagonal matrix Λ ∈ Rd×d, the shape parameter vector y associated with
shape coordinate vector s is given by

y = Λ− 1
2 PT (s− µ̂s), (9)

where µ̂s is the sample mean shape coordinate vector. Shape parameters are
converted back to the original space with

s = PΛ
1
2 y + µ̂s. (10)

10



The term Λ serves as a variance normalization which ensures that the objec-
tive function favors each shape parameter appropriately.

3.4. Training the Regressor

The function f(·) mapping x to y for KRR is obtained using (2), and
for ε-SVR using (6) and (7). Note that KRR requires tuning the parameters
λ and σK while ε-SVR requires tuning the parameters C, ε, and σS. These
parameters and the crop size for x are optimized using a grid search to
minimize the 5-fold cross-validation error on the training set. Details are
given in Section 4.3. For training, the face shape of the original face image is
manually annotated in each of our databases. When a test image is presented
to our algorithm, we detect the face position and scale using the Viola and
Jones Detector [27], center and scale the image to a standard face size, then
use our method to detect the face shape.

The manual shape annotations allow us to determine our final shape
detection error. Error is defined by the average Euclidean distance from
each landmark estimate to the corresponding manually annotated landmark
over all test shapes. More formally, the error e for estimating N shapes
sj, j = 1 . . . N by ŝj, j = 1 . . . N is defined by

e =
2

Nk

k
2∑
i=1

N∑
j=1

√
(uij − ûij)2 + (vij − v̂ij)2, (11)

where uij and vij are vertical and horizontal components of the ith coordinate
of the shape j, and ûij and v̂ij their estimates.

4. Experiments

We evaluated 6 shape detection algorithms on the task of face shape de-
tection. The algorithms consisted of KRR or ε-SVR with pixel intensities or
C1 features, the nonlinear AAM of [9], and Adaboost regression with Haar
fetures as in SRM [13]. The goals were to evaluate how well each algorithm:
generalizes across several identities, manages occlusions and extreme expres-
sion changes, handles extreme degradation in resolution, and performs in a
real world setting. The specific databases used were geared toward evaluat-
ing generalization ability, robustness to occlusions, and performance in the
real world. The training and testing partitions within a database were fixed
across all algorithms to give a fair comparison.

11



4.1. Databases

The American Sign Language (ASL) database of [28] includes video se-
quences of 7 ASL signers. We manually annotated the face shape of 2, 437
images in the video sequence at the original resolution of 480 × 720 pixels.
The face images in this data-set show large variations in expression and self-
occlusions (hands can occlude facial regions when signing). Our goal with
this database was to determine how well the algorithm handles these two
problems.

The AR face (AR) database [29] contains frontal faces from over 100
subjects with largely varying facial expressions. We manually annotated 885
of the images at the original resolution of 576×768 pixels. Our goal with this
database was to show that the learned manifold (Fig. 1) generalizes across
several identities, i.e., it is not subject-specific, and can deal with extreme
deformations such as a screaming face.

The Faces in the Wild (LFW) database [30] contains faces with varying
facial expressions, pose changes, and occlusions at different resolutions, in
different contexts, and in different photographic settings . Our goal with this
database was to test the algorithm’s performance in a real world setting. All
faces in this database have already been detected, cropped, and scaled to a
standard size of 250× 250 pixels. The face coordinates of 2, 610 images were
manually annotated at this scale of 250× 250 pixels.

Different training percentages were used for each database according to
the level of difficulty in estimating the manifold. In general, difficulty in-
creases as the amount of subjects and variability in the database increases.
Variability corresponds to differences in illumination, pose, occlusions, and
other imaging artifacts. Therefore, we used a random partition of 60% of the
annotated images for training and the remaining 40% for testing in the ASL
database. We used 80% for training and the remaining 20% for testing in the
AR databse. The LFW database is by far the most challenging, requiring
many training samples for reasonable manifold estimation. We used a ran-
dom partition of 90% of the annotated images for training and the remaining
10% for testing. Since the training set was so large in the LFW experiments,
we found it necessary to reduce the dimensionality of the pixel features for
computational tractability in the ε−SVR experiments. PCA was used, where
99% of the variance was kept to preserve as much information as possible.

12



4.2. Different Resolution Analysis

To simulate the effects of low resolution we detected shape in images of
different sizes. We localized all faces except those from the LFW database
(already localized) in their original image using an off the shelf face detector,
then cropped them in a square region much larger than the detected face
following the approach of Huang et al. [30]. The cropped region was then
scaled from 250 × 250 pixels to 50 × 50 pixels in decrements of 50 pixels.
Details about the face detector and crop size are given in Section 4.3. All of
these images were normalized to a 42 pixels inter-eye distance. 42 pixels was
the mean eye distance of a random subset of images from the LFW database
which were originally 250 × 250 pixels. To further challenge the algorithms
and emphasize the performance in extremely degraded image conditions, we
used images with a starting size of 250×250 pixels which were normalized to a
42, 20, 10, and 5 pixel inter-eye distance. The original annotated coordinates
were scaled as necessary to serve as the face shape coordinates for each new
image size. In each experiment and for each scale, we estimated the face
shape over 10 trials using a different training and testing partition in each
case. Example detections are shown in Figs. 3, 4, and 5 for the ASL, AR,
and LFW databases, respectively.

Quantitative results of detection error are graphed in Fig. 6 as standard
error of equation (11) in the first row, and the normalized detection error
defined by,

enormalized =
e

Inter-Eye Distance
, (12)

in the second row. The normalization standardizes the error rates to account
for the range of inter-eye distances. All other figures and tables report the
standard error of equation (11). Additional results are tabulated in Table
1. A more detailed view of the trends can be seen in the cumulative error
histogram plots of Figs. 7, 8, and 9.

Some noticeable trends are evident from the results in Table 1. First,
the ASL database containing 7 subjects shows that KRR with pixel features
performed best over a variety of resolutions when detecting shape over a
limited range of subjects. Although the C1 features did not perform as
well, it was important to evaluate their performance within the manifold
learning framework because it has been argued that these features facilitate
recognition of different classes of objects including shape and texture based
objects, and provide invariance to illumination [26]. While pixels perform
favorably for faces, other classes of objects may prefer the C1 representation.

13



Figure 3: Example face shape detections for the ASL database using KRR with
pixel features. Starting from the top row we display results for 250×250 pixel face
images which have been normalized to a 42, 20, 10, and 5 pixel inter-eye distance.

14



Figure 4: Example face shape detections for the AR face database using KRR with
pixel features. Starting from the top row we display results for 250×250 pixel face
images which have been normalized to a 42, 20, 10, and 5 pixel inter-eye distance.

15



Figure 5: Example face shape detections for the LFW database using KRR with
pixel features. Starting from the top row we display results for 250×250 pixel face
images which have been normalized to a 42, 20, 10, and 5 pixel inter-eye distance.

16



50 100 150 200 250
0

1

2

3

4

5

ASL Error

Image Size

P
ix

e
l 
E

rr
o

r

(a) ASL database.

50 100 150 200 250
0

1

2

3

4

5

AR Error

Image Size

P
ix

e
l 
E

rr
o

r

(b) AR database.

50 100 150 200 250
0

1

2

3

4

5

LFW Error

Image Size

P
ix

e
l 
E

rr
o

r

(c) LFW database.

10 20 30 40
0

0.05

0.1

0.15

ASL Error

Inter−Eye Distance

N
o

rm
a
liz

e
d
 P

ix
e
l 
E

rr
o

r

(d) ASL database.

10 20 30 40
0

0.05

0.1

0.15

AR Error

Inter−Eye Distance

N
o

rm
a

liz
e

d
 P

ix
e
l 
E

rr
o

r

(e) AR database.

10 20 30 40
0

0.05

0.1

0.15

LFW Error

Inter−Eye Distance

N
o

rm
a
liz

e
d
 P

ix
e
l 
E

rr
o

r

(f) LFW database.

Figure 6: (a) - (c) show the mean Euclidean pixel error for each database as a
function of image size in pixels. Image size corresponds to the height and width of
the face image before rotating and scaling to a standard inter-eye distance of 42
pixels. (d) - (f) show the normalized mean Euclidean pixel error for each database
as a function of the inter-eye distance. P and C1 denote pixel and C1 features of
[26], respectively. AAM-RIK denotes the AAM with Rotation Invariant Kernels
of [9], ADA-H denotes the Adaboost regression [13] with Haar-like features of [27],
and Mean denotes taking the mean of the training shapes as the estimate in every
case.

17



Table 1: Mean Euclidean landmark error of equation (11) and standard deviation
over all test images in pixels for images at 250× 250 pixels which are normalized
to 42, 20, 10, and 5 pixel inter-eye distances. (a) - (c) correspond to the ASL,
AR, and LFW databases, respectively. The left column entries are defined in Fig.
6.

Inter-eye Distance
5 pixels 10 pixels 20 pixels 42 pixels

(a) ASL

KRR-P .23± .15 .37± .28 .62± .53 1.18± 1.10
KRR-C1 .37± .23 .62± .42 1.15± .81 2.34± 1.68
SVR-P .25± .16 .40± .31 .73± .61 1.42± 1.40
SVR-C1 .33± .23 .51± .42 .81± .76 1.59± 1.61

AAM-RIK .52± .32 .60± .40 .91± .66 1.73± 1.30
ADA-H .46± .28 .50± .32 1.18± .80 1.64± 1.12

(b) AR

KRR-P .35± .21 .57± .40 1.02± .77 2.10± 1.61
KRR-C1 .41± .28 .63± .45 1.16± .89 2.36± 1.92
SVR-P .37± .36 .63± .46 1.05± .88 2.30± 1.96
SVR-C1 .39± .29 .63± .48 1.14± .92 2.29± 1.89

AAM-RIK .57± .41 .81± .63 1.06± .86 2.02± 1.54
ADA-H .42± .27 .81± .59 1.43± 1.02 2.34± 1.83

(c) LFW

KRR-P .50± .34 .94± .68 1.78± 1.33 3.67± 2.80
KRR-C1 .57± .37 1.06± .74 1.95± 1.37 4.00± 2.88
SVR-P .51± .35 .96± .72 1.90± 1.44 4.06± 3.09
SVR-C1 .60± .40 1.07± .75 1.95± 1.41 4.07± 3.01

AAM-RIK .82± .60 1.36± .92 2.30± 2.01 3.38± 3.04
ADA-H .61± .39 1.01± .67 1.77± 1.29 3.51± 2.58

18



0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

ASL 50by42

Pixel Error

P
ro

b
a
b
ili

ty

(a)

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

ASL 150by42

Pixel Error

P
ro

b
a
b
ili

ty

(b)

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

ASL 250by42

Pixel Error

P
ro

b
a
b
ili

ty

(c)

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

ASL 250by5

Pixel Error

P
ro

b
a
b
ili

ty

(d)

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

ASL 250by10

Pixel Error

P
ro

b
a
b
ili

ty

(e)

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

ASL 250by20

Pixel Error

P
ro

b
a
b
ili

ty

(f)

Figure 7: Cumulative pixel error histograms are plotted for the ASL database. The
plots in (a) - (c) show error rates for images which are first scaled to 50 × 50,
150× 150, and 250× 250 pixels, then normalized to a 42 pixel inter-eye distance.
(d) - (f) show error rates for images which are first scaled to 250×250 pixels, then
normalized to a 5, 10, and 20 pixel inter-eye distance. Legend entries are defined
in Fig. 6.

19



0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

AR 50by42

Pixel Error

P
ro

b
a
b
ili

ty

(a)

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

AR 150by42

Pixel Error

P
ro

b
a

b
ili

ty

(b)

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

AR 250by42

Pixel Error

P
ro

b
a
b
ili

ty

(c)

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

AR 250by5

Pixel Error

P
ro

b
a
b
ili

ty

(d)

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

AR 250by10

Pixel Error

P
ro

b
a
b
ili

ty

(e)

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

AR 250by20

Pixel Error

P
ro

b
a
b
ili

ty

(f)

Figure 8: Cumulative pixel error histograms are plotted for the AR database. As
above, the errors in (a) - (c) are for images scaled to 50 × 50, 150 × 150, and
250 × 250 pixels, then normalized to a 42 pixel inter-eye distance. (d) - (f) show
error rates for images which are first scaled to 250 × 250 pixels, then normalized
to a 5, 10, and 20 pixel inter-eye distance. Legend entries are defined in Fig. 6.

20



0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

LFW 50by42

Pixel Error

P
ro

b
a
b
ili

ty

(a)

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

LFW 150by42

Pixel Error

P
ro

b
a
b
ili

ty

(b)

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

LFW 250by42

Pixel Error

P
ro

b
a
b
ili

ty

(c)

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

LFW 250by5

Pixel Error

P
ro

b
a
b
ili

ty

(d)

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

LFW 250by10

Pixel Error

P
ro

b
a
b
ili

ty

(e)

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

LFW 250by20

Pixel Error

P
ro

b
a
b
ili

ty

(f)

Figure 9: Cumulative pixel error histograms are plotted for the LFW database. The
plots in (a) - (c) show error rates for images of 50× 50, 150× 150, and 250× 250
pixels, then normalized to a 42 pixel inter-eye distance. (d) - (f) show error rates
for images which are first scaled to 250 × 250 pixels, then normalized to a 5, 10,
and 20 pixel inter-eye distance. Legend entries are defined in Fig. 6.

21



The 5 and 10 pixel inter-eye distance results over all databases show that
AAM-RIK and adaboost with Haar features suffer when the resolution is
degraded significantly. This can be explained for the AAM-RIK by the lack of
precision in synthesizing a face that is degraded to that magnitude. Similarly,
the Haar features are unable to precisely describe local image cues at very
low resolutions. The kernel regression based algorithms did not suffer from
the degradation in resolution because the test images are not synthesized
as in the AAM-RIK, and a holistic (not local) image representation is used.
However, the AAM-RIK and adaboost methods yielded very accurate results
at higher resolutions, as supported by the AR and LFW results in Table 1.

To provide a comparison to the state of the art in detailed face shape
detection, the experiments were repeated for the ASL and AR database as
in the work of Ding and Martinez [12]. Their algorithm relies heavily on
color and edge cues, so higher resolution images are required. Therefore, we
performed our eye detection in the images which were kept at the original
resolution. After eye detection, the faces were scaled to an inter-eye distance
of 120 pixels for the ASL database, and 111 pixels for the AR Face database,
corresponding to the average inter-eye distances within the databases at the
original resolution. In [12], the authors report an average pixel error of 6.9
pixels with a standard deviation of 1.5 for the ASL database, and an average
pixel error of 8.4 pixels with a standard deviation of 1.2 for a combination
of 400 images from the AR database and 800 images from the XM2VTS
database [31]. We achieved an average error rate of 4.30 pixels with a stan-
dard deviation of 3.80 for the ASL database, and an average error rate of
6.97 pixels with a standard deviation of 5.61 for the AR database.

The error rates favor the algorithm presented, but the comparison is not
easy to make for a few reasons. Namely, the algorithm in [12] is not based
on regression, so subsets of the database were not sequestered for testing.
Therefore, evaluation was not performed using the same images. This is
especially the case for the AR results which Ding and Martinez pool with
a database not used here. However, the comparison along with the others
presented demonstrates that we have achieved performances above the state
of the art.

To illustrate the performance with occlusions, we refer the reader to Fig.
3 which contains sample results from the ASL database. These are particular
examples where occlusions are prominent in some of the fiducials. The unoc-
cluded fiducials are mostly unaffected, which is expected since these fiducial
shapes are regressed with the local texture information. In largely occluded

22



regions such as the mouth in the 5th column, there is a good shape guess.
We can achieve this because of the shape model learned from the training
samples.

To emphasize the effect of degrading the image resolution, results for each
database are shown for images which are normalized to an inter-eye distance
of 42, 20, 10, and 5 pixels before doing the shape detection. By comparing
the results for the degraded resolutions to the original resolution, we can see
that the accuracy degrades, but marginally compared to the reduction in
resolution. This is not the case for the AAM-RIK and ADA-H, which break
down as the inter-eye distance gets too small.

In some cases, the images with a 5 pixel inter-eye distance appear to have
a large error (such as for the eye shape). However, this results from the image
interpolation which produce the appearance of eyes which sag under the true
eye positions. You can see this effect if you compare the 5 pixel inter-eye
distance images to the 42 pixel inter-eye distance images.

To illustrate the performance in a more challenging setting, where the
manifold must generalize across subjects with more extreme facial expres-
sions, we show sample results from the AR face database in Fig. 4. We can
see from some examples that the results are not as accurate as the previous
database. This is also clear from the results in Fig. 6 and Table 1. The
mouth and jawline are not aligned perfectly, but the estimate is very close.

For the realistic setting where there is little control over the pose, illumi-
nation, photographic setting, or even identity of the subject, we show results
from the LFW database in Fig. 5. Much like the results in Fig. 3, the
detection is not as precise as in the ASL database (zooming into the image
may illustrate this better). However, the estimate is still very accurate, as
seen in Fig. 6 and Table 1. Of particular interest is the 3rd column, which
has very large occlusions. Much like in the ASL database, a good estimate
is given.

4.3. Implementation Details

Faces are first detected using the openCV implementation [32] of the
Viola and Jones face detector [27]. The faces are scaled to a standard size
following the approach of Huang et al. [30]. A region 2.2 times the detected
face size is cropped around the detected face position and scaled to a standard
square size, then normalized as described in Section 3.1. We define the face
shape by a set of 130 landmarks delineating the eyes, eyebrows, nose, mouth,
and jaw. We use 5-fold cross-validation with a grid search on the training

23



data to tune the crop size for x, and the regression parameters. We choose
the parameters which minimize the mean squared error of estimating the
shape parameters y over the 5 validation sets. The parameters are obtained
in the first experimental trial, and used for the remaining trials. The joint
distribution of the eye position detection error is then estimated using the
estimation errors from the cross-validation trial corresponding to the optimal
parameters.

To simplify the computation of the proposed approach we proceed as
follows. Shape modes are stored for faster function evaluation since they
only depend on the training data. In addition, the κ(x) in the KRR solution
given in (2) is arranged into a matrix for all training samples, allowing batch
shape detection in all images. Our MATLAB implementation which utilizes
this batch procedure and stores the learned shape modes can detect shapes
at .084 seconds per image, or 11.9 frames per second on a 2.4 GHz Intel Core
2 Duo with 4 GB RAM. This timing includes the eye detection and image
rotation, and was conducted on the ASL dataset with 150×150 pixel images
which are normalized to a 20 pixel inter-eye distance. 60% of the images
were used for training, with the detection being performed on the remaining
40%. Faster running times can be achieved by storing the inverted matrix
and Gram matrix of the KRR solution since they only depend on the training
data.

ε−SVR yields a sparser model than KRR which can also be stored for
fast function evaluation. Unfortunately, it requires we train a separate model
for each shape mode.

The nonlinear AAM implementations is based on [9] which employs non-
linear shape and texture models through the use of Rotation Invariant Ker-
nels (RIK) [33]. The model is trained separately for the different scales and
resolution, using the training image subsets which are normalized to the size
and resolution of the testing set. The kernel parameters are selected as sug-
gested by the authors. In testing, we first detect and normalize the images
using the approach described in Section 3.1, where KRR with pixel features
is employed since it consistently yields very accurate results. Then, we ini-
tialize the AAM with 10 random training face shapes which are aligned in
position and scale with the test image, and update the shape estimate until
convergence or a maximum of 30 iterations. Careful checks were made to
prevent divergence. The final estimate is given by the shape estimate which
gives the lowest texture estimation error over the different initializations.

The Adaboost implementation is based on the work of [13], where piece-

24



wise functions of single Haar feature outputs are selected in a greedy manner
to build a strong learner for an image based regression task. At each round
of boosting, the weak learner which most reduces the residual error is added
to the strong learner. Shrinkage is used to prevent over-fitting. Specifically,
each weak learner is scaled by a real positive value less than 1 before being
added to the strong learner. The strong learner has several parameters: the
type and number of weak learners to use, and the shrinkage value. We choose
a strong learner comprising of 400 weak learners with a shrinkage factor of
.1. Piecewise linear functions are employed as weak learners. For a given
Haar feature, the piecewise functions are split into evenly spaced bins by 40
knots according to the maximum range of that Haar feature output from
the training data. Each piecewise linear function for each bin is obtained by
fitting the output from a single Haar feature to the residual error using (1)
with regularization parameter λ = .1/n.

The training and testing images are first normalized to un upright view
and standard scale using the approach described in Section 3.1, where KRR
with pixel features is employed since it consistently yields very accurate re-
sults. Then, a strong learner is learned which maps these normalized face
images to their associated shape modes. Similarly to the ε−SVR implemen-
tation, the strong learner is an ensemble of single output strong learners for
each shape mode. Shape modes are selected to preserve 90% of the shape
variance, as described in Section 3.3.

5. Conclusion

We have presented a new algorithm for deformable shape detection that
is based on manifold learning through nonlinear regression. By taking this
approach, the algorithm has the benefits of generative and discriminative
methods while avoiding the major drawbacks associated with generative,
energy minimization based, and sliding window methods. Our algorithm
is non-iterative and does not require shapes be defined by salient edges.
Therefore, as we have demonstrated experimentally, the algorithm can be
made to work at extremely coarse resolutions. Additionally, we learn a shape
model based on training data which ensures a reasonable shape estimate even
in the case of large occlusions.

Although we presented certain feature spaces and regression techniques,
these are only particular choices for a general shape detection framework
based on manifold learning with supervised training data. The learned man-

25



ifold relates the image feature space to the corresponding shape space. What
is important about the feature space used is that it preserves the local image
information. As we have demonstrated, the framework presented is flexible
enough to model deformable faces, and can be trained reliably given the con-
straints on the training data.

Acknowledgments
This research was partially supported by NIH grants R01-EY-020834 and
R21-DC-011081.

References

[1] M. Kass, A. Witkins, D. Terzopoulos, Snakes: Active contour models,
International Journal of Computer Vision 1 (1988) 321–331.

[2] R. Malladi, J. Sethian, B. Vemuri, Shape modeling with front propaga-
tion: A level set approach, IEEE Trans. Pattern Analysis and Machine
Intelligence 17 (1995) 158–175.

[3] T. F. Cootes, C. J. Taylor, D. H. Cooper, J. Graham, Active shape
models - their training and application, Computer Vision and Image
Understanding 61 (1995) 38–59.

[4] G. Mori, S. Belongie, J. Malik, Efficient shape matching using shape
contexts, IEEE Trans. Pattern Analysis and Machine Intelligence 27
(2005) 517–530.

[5] T. F. Cootes, G. J. Edwards, C. J. Taylor, Active appearance models,
In Proc. European Conference on Computer Vision (1998) 484–498.

[6] X. Liu, Discriminative face alignment, IEEE Trans. Pattern Analysis
and Machine Intelligence 99 (2009) 1941–1954.

[7] L. Gu, T. Kanade, A generative shape regularization model for robust
face alignment, In Proc. European Conference on Computer Vision
(2008) 413–426.

[8] Y. Zhou, L. Gu, H.-J. Zhang, Bayesian tangent shape model: estimat-
ing shape and pose parameters via bayesian inference, In Proc. IEEE
Computer Vision and Pattern Recognition (2003) I–109–I–116.

26



[9] O. C. Hamsici, A. M. Martinez, Active appearance models with rotation
invariant kernels, In Proc. IEEE International Conference on Computer
Vision (2009) 1003–1009.

[10] L. Liang, F. Wen, X. Tang, Y. Xu, An integrated model for accurate
shape alignment, In Proc. European Conference on Computer Vision
(2006) 333–346.

[11] J. Zhang, S. K. Zhou, D. Comaniciu, L. McMillan, Conditional density
learning via regression with application to deformable shape segmenta-
tion, In Proc. IEEE Computer Vision and Pattern Recognition (2008)
1–8.

[12] L. Ding, A. Martinez, Features versus context: An approach for precise
and detailed detection and delineation of faces and facial features, IEEE
Trans. Pattern Analysis and Machine Intelligence (2010) 2022–2038.

[13] S. Zhou, D. Comaniciu, Shape regression machine, Information Pro-
cessing in Medical Imaging (2007) 13–25.

[14] S. K. Zhou, Shape regression machine and efficient segmentation of left
ventricle endocardium from 2D b-mode echocardiogram, Medical Image
Analysis (2010).

[15] D. Cristinacce, T. F. Cootes, Boosted regression active shape models,
In Proc. British Machine Vision Conference (2007) 880–889.

[16] A. M. Martinez, Recognizing imprecisely localized, partially occluded,
and expression variant faces from a single sample per class, IEEE Trans.
Pattern Analysis and Machine Intelligence 24 (2002) 748–763.

[17] G. Seber, C. Wild, Nonlinear Regression, Wiley-Interscience, 2003.

[18] A. E. Hoerl, Application of ridge analysis to regression problems, Chem-
ical Engineering Progress 58 (1962) 54–59.

[19] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learn-
ing: Data Mining, Inference, and Prediction, Springer-Verlag, New York,
2001.

[20] G. Wahba, Spline Models for Observational Data, Society for Industrial
and Applied Mathematics, 1990.

27



[21] A. J. Smola, B. Schlkopf, A tutorial on support vector regression, Statis-
tics and Computing 14 (2004) 199–222.

[22] V. N. Vapnik, The Nature of Statistical Learning Theory, Springer, 1999.

[23] D. P. Bertsekas, Nonlinear Programming, Athena Scientific, 1999.

[24] C.-C. Chang, C.-J. Lin, LIBSVM: a library for support vector machines,
2001. Software available at http://www.csie.ntu.edu.tw/ cjlin/libsvm.

[25] M. Everingham, A. Zisserman, Regression and classification approaches
to eye localization in face images, In Proc. IEEE Automatic Face and
Gesture Recognition (2006) 441–446.

[26] T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, T. Poggio, Robust object
recognition with cortex-like mechanisms, IEEE Trans. Pattern Analysis
and Machine Intelligence 29 (2007) 411–426.

[27] P. Viola, M. Jones, Rapid object detection using a boosted cascade of
simple features, In Proc. IEEE Computer Vision and Pattern Recogni-
tion (2001) I–511–I–518.

[28] L. Ding, A. Martinez, Precise detailed detection of faces and facial fea-
tures, In Proc. IEEE Computer Vision and Pattern Recognition (2008)
1–7.

[29] A. M. Martinez, R. Benavente, The AR face database, CVC Technical
Report No. 24 (1998).

[30] G. B. Huang, M. Ramesh, T. Berg, E. Learned-Miller, Labeled faces
in the wild: A database for studying face recognition in unconstrained
environments, University of Massachusetts, Amherst, Technical Report
07-49, October (2007).

[31] K. Messer, J. Matas, J. Kittler, J. Lüttin, G. Maitre, Xm2vtsdb: The
extended m2vts database, In Proc. International Conference on Audio
and Video-based Biometric Person Authentication (1999) 72–77.

[32] G. Bradski, The OpenCV Library, Dr. Dobb’s Journal of Software Tools
(2000).

28



[33] O. C. Hamsici, A. M. Martinez, Rotation invariant kernels and their ap-
plication to shape analysis, IEEE Trans. Pattern Analysis and Machine
Intelligence 31 (2009) 1985–1999.

29


