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Labeled Graph Kernel for Behavior Analysis
Ruiqi Zhao and Aleix M. Martinez

Abstract—Automatic behavior analysis from video is a major topic in many areas of research, including computer vision,
multimedia, robotics, biology, cognitive science, social psychology, psychiatry, and linguistics. Two major problems are of
interest when analyzing behavior. First, we wish to automatically categorize observed behaviors into a discrete set of classes
(i.e., classification). For example, to determine word production from video sequences in sign language. Second, we wish to
understand the relevance of each behavioral feature in achieving this classification (i.e., decoding). For instance, to know
which behavior variables are used to discriminate between the words apple and onion in American Sign Language (ASL). The
present paper proposes to model behavior using a labeled graph, where the nodes define behavioral features and the edges
are labels specifying their order (e.g., before, overlaps, start). In this approach, classification reduces to a simple labeled
graph matching. Unfortunately, the complexity of labeled graph matching grows exponentially with the number of categories
we wish to represent. Here, we derive a graph kernel to quickly and accurately compute this graph similarity. This approach is
very general and can be plugged into any kernel-based classifier. Specifically, we derive a Labeled Graph Support Vector
Machine (LGSVM) and a Labeled Graph Logistic Regressor (LGLR) that can be readily employed to discriminate between
many actions (e.g., sign language concepts). The derived approach can be readily used for decoding too, yielding invaluable
information for the understanding of a problem (e.g., to know how to teach a sign language). The derived algorithms allow us
to achieve higher accuracy results than those of state-of-the-art algorithms in a fraction of the time. We show experimental
results on a variety of problems and datasets, including multimodal data.

Index Terms—Graph matching, kernel, classification, decoding, computational model, multimodal.

F

1 INTRODUCTION

B Behavioral analysis is a topic of interest in many areas
of science and engineering. For example, in multime-

dia one may want to annotate actions in a basketball game,
actor behavior in a movie or hand and facial gestures asso-
ciated to speech production [18, 44, 46, 48, 54]. In robotics,
behavior analysis is essential for a robot to interact with
humans in a natural way [31]. In cognitive science, we wish
to relate behavior with input variables, e.g., responses to
observed facial expressions of emotion [14] or facial action
coding [22]. In psychiatry, we wish to understand how
psychopathologies affect behavior [36]. In biology, one may
be interested in studying animal behavior [13, 17]. And, in
linguistics, one is interested in modeling sign languages
[16]. In most of these applications, the number of video
sequences that need to be analyzed is staggering. Thus the
goal is to achieve robust and accurate automatic analysis
of these behaviors using computer vision and machine
learning algorithms.

The applications listed above define two inter-related
problems of behavior analysis. The first one is classifi-
cation. In classification, we are interested in categorizing
behavior into a set of discrete elements (i.e., categories).
For example, in sign language, we want to determine
if a video of a sign corresponds to the word apple or
onion. The second problem is decoding, where the goal
is to understand the behavior variables that allow us to
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discriminate between these categories. For example, which
part of the manual sign discriminates between apple and
onion.

To better define these two problems, let us explore
the sign language example in more detail. The manual
signs in sign languages are a combination of handshapes,
hand motions and places of articulation [6]. In general, the
handshape, motion and place of articulation are discrete
variable whose values must be selected from a set of known
elements [43]. In computer vision, one uses algorithms to
extract image features from a video of a sentence that can
help discriminate between distinct handshapes, motions
and places of articulation [12, 33]. Two points need to
be addressed here: i) Each possible handshape, motion
and place of articulation is a categorical element. This
means that the computer vision system needs to learn to
identify the variability in handshape, motion and place of
articulation associated to each of these categories. ii) Each
sign language concept (e.g., each word) can be signed using
a slightly different combination of basic elements. The
computer vision system must learn which combinations
define the same category.

From the discussion above, we see that the manual
sign can be modeled using a labeled graph [50]. In this
model, the nodes of the graph represent the extracted
features (e.g., right hand moves from point a to point
b, middle finger and thumb touching), while the edges
between nodes represent the temporal structure of these
features (e.g., handshape “A" is used in both hands before
right hand moves from a to b; left hand moves from point c
to d at the same time as the right hand moves from e to f ).



0162-8828 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPAMI.2015.2481404, IEEE Transactions on Pattern Analysis and Machine Intelligence

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 2

This is shown on the left-most part of Figure 1. This model
can readily solve the two points defined in the preceding
paragraph by learning from sample sequences [12]. These
samples will include the distinct handshapes and signer
variability needed to address these two classification prob-
lems. This is illustrated in the middle section in Figure 1.

The model just outlined solves the representation prob-
lem, i.e., each sign language concept is represented by
a labelled graph. Classification of a sign in a test video
sequence is directly obtained by finding the graph that best
matches the observation in the test video. Unfortunately,
the complexity of this matching process grows exponen-
tially with the number of concepts (words) in the database.
We derive a classification algorithm to resolve this problem.

To resolve the complexity problem, we derive a labeled
graph kernel. A graph kernel is a measure of similarity [47].
A measure of similarity between two labeled graphs should
increase as their representations become more similar. This
is the same as identifying the number of identical paths
in both graphs for all possible paths (i.e., for all paths
of every possible length in each graph). We use dynamic
programming to derive an efficient, low-cost algorithm to
measure this graph similarity. This measure of similarity
is then used to derive a kernel-based classifier. For ex-
ample, we can use Support Vector Machine (SVM) [49] of
Regularized Kernel Logistic Regression (RKLR) [5] to learn
all the possible variations of a behavior (i.e., variations
in handshape, motion and place of articulation used to
express the same concept or grammatical function). We
call the resulting algorithm Labeled Graph Support Vector
Machine (LGSVM), because it corresponds to a SVM for
labeled graphs. This is shown on the right-most section in
Figure 1.

Thus far we have addressed the classification problem.
Let us now look into the decoding problem in more detail.
Linear SVM and other linear classifiers learn a linear dis-
criminant function that maximize the margin between the
samples of two classes. Moreover, the coefficients (weight
associated with each feature) represent the importance of
the features defining the discriminant function [23, 45].
Thus, to inverse the problem (i.e., to go from classification
to decoding), we need to identify the graph features asso-
ciated with the largest coefficients. We derive an efficient
algorithm to identify the graph features associated to the
largest coefficient and illustrate how it can be used in the
derived LGSVM.

1.1 Theoretical contribution
Despite the broad investigation of graph kernels in the

literature, our graph kernel is different in that it is a path
based graph kernel. Graphs can be decomposed into sub-
structures in multiple ways. We employ paths to compute
graph kernels while others use random walks [24, 27] or
tree walks [24]. A major drawback of walk kernels is that
a walk can repeatedly visit the same node, causing the
“tottering" problem [29]. This means that a small amount
of similar subgraphs can result in a very large kernel value.
Path kernels do not have this problem because path nodes
cannot be repeated. Unfortunately, this results in an NP-
hard problem [21]. In the present paper, we note that,

in the temporal domain, events can be ordered according
to their starting time and that this ordering allows us to
derive an efficient, low-cost algorithm. We show how a
dynamic programming implementation of this approach
yields polynomial time solutions.

The proposed behavior analysis approach is hierarchi-
cal [1] in that we decompose a complex behavior into
components called events. Before performing the hierar-
chical fusion task, we detect the events defining the action.
Such detection process is also an information compression
process, since we can convert a sequence of images or
time series into several events. This results in yet another
advantage of our approach, allowing us to incorporate
prior knowledge into the system.

Finally, it is well known that basic event detection and
their temporal segmentation are very challenging prob-
lems. The emergence of novel sensors, including 3D cam-
eras and Inertial Measurement Unit (IMU), facilitate this
task. The use of multiple sensors results in a novel problem
– the multimodal data fusion problem. This problem is
naturally solved by the proposed approach, yielding an
elegant, efficient solution for the analysis of behavior from
multimodal data. To see this note that events detected from
multiple sensors can be modeled as separate nodes in our
graph and that edges then describe relationships between
them. We show experimental results to illustrate the uses
of the derived algorithm in multimodal applications.

1.2 Related work

Bag of Visual Words (BoVW) models [53] have been
used in action recognition [25, 35, 51, 52]. The major
drawback of Bag of Visual Words models is that they are
incapable of capturing spatio-temporal information. Prob-
abilistic graphical models, including Bayesian Networks
[41] and Hidden Markov Models [28, 30, 32], solve this
problem by including some information about the tempo-
ral structure of the data. However, probabilistic graphical
models cannot readily model concurrent temporal rela-
tions. The conditional probabilities can only model two
predicates: before and meet. Other predicates, such as finish
and overlap, cannot be properly modeled, limiting the
applicability of these algorithms.

In [37], the authors exploit a data mining approach
where each video is discretized into a sequence of temporal
bins. In combination with the LPBoost classifier, they si-
multaneously learn the classification function and perform
feature selection over the space of all possible sequences.
Yet, while sequential temporal information is maintained
in their representation, concurrent structures are not. One
potential solution is given in [19] which attempts to iden-
tify hierarchical temporal structures. However, this method
cannot work with large feature spaces and, hence, has to
depend on several non-optimal thresholds to prune the
feature space before classification is even attempted. This
results in sub-optimal classifications.

Finally, the majority of the algorithms described above
only address the classification problem. The decoding
problem is however equally important. In the sign language
example described above, we want to understand which
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Fig. 1: From left to right: A sign language concept can be described as a labeled graph, which specifies handshapes,
motions and/or places-of-articulation. Each video of a sign language concept is a labeled graph. The labeled graphs
corresponding to all sample videos form the training set. Our approach is very general and can be plugged into any
kernel-based classification method. When using Support Vector Machines, for instance, we obtained a Labeled Graph
Support Vector Machine (LGSVM) algorithm which is used to discriminate between samples of different concepts in
this set as shown in the image above. The classification of a test graph is readily given by this LGSVM algorithm or the
kernel-based classifier of our choosing.

behavior variables code for a word. For example, apple and
onion use the same handshape and are distinguished only
by their place-of-articulation. Similarly, in biology, one may
wish to understand the variables of aggressive behavior in
flies [17]. We show how the derived algorithm can readily
solve this decoding problem.

1.3 Paper organization

The rest of the paper is organized as follows. Section 2
defines the labeled graph model. Section 3 derives the
labeled graph kernel. Section 4 presents the LGSVM al-
gorithm. Section 5 derives the decoding algorithm. Experi-
mental results are in Section 6.7.

2 MODELING SAMPLES OF AN ACTION WITH
LABELED GRAPHS

We decompose actions (e.g., a sign language concept)
into events. For instance, the action of a person waving
both his hands can be decomposed into four events: left
hand moves up, hand moves left to right (which occurs
several times), right hand moves up, and hand moves right
to left (several times).

In general, the term “action" is used to define what
needs to be modeled, while the term “event" is employed
to specify the concepts that can be readily detected by
a computer vision algorithm. An event will in general
be defined by a time interval, during which the event is
true (e.g., the time during which the left hand is moving
left to right). Then, an action is a combination of events
that follow a specific temporal structure. This temporal
structure is defined by the temporal relationships between
the set of events defining the action. In our example above,
handshape “A" happens before right hand moves from a to

b; happens before is what we call a temporal relationship
(i.e., predicate).

As shown in [2], we can define first-order temporal
relationships between two events using seven predicates:
before to specify that an event happens before another
and that there is a non-empty time interval between these
two events; meets to indicate that the time between these
two events is zero; overlap when an event vki starts and
finishes before another event vk j ends but vk j starts before
vki ends; during to define when an event vki starts before
another event vk j and finishes after vk j ; starts to indicate
that both events start at the same time but end at different
times; finishes to specify that both events end at the same
time but start at different times; equal to indicate that the
two events start and end at the same time; Figure 2.

To define the temporal structure of an action, we use
a graph where the nodes specify the events and the edges
the temporal relationships between events. This is thus a
labeled graph [7]. Specifically we will use directed labeled
graphs which are defined as follows.

Definition 1. A Directed Labeled Graph is given by a 4-
tuple Gk = (Vk ,Ek ,L, fk ), where Vk = {vk1, . . . , vknk

} is a set of
nodes, Ek = {ek12,ek13, . . . ,ek1nk

,ek23, . . . ,eknk−1nk
} is the set

of edges (eki j , with i < j ), L = {l1 . . . , lp } is a set of labels and
fk : Vk ∪Ek → L is a function that assigns labels to the nodes
and edges of the graph Gk .

The possible labels assigned to an edge are the seven
temporal predicates given in Figure 2. The label assigned to
a node is the event category it belongs to. Event categories
may be different in each application. For example, in sign
language recognition, an event category can be right hand
moves up or right hands moves down.

Note that we use a directed labeled graph because
knowing the predicate describing the temporal relationship
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Fig. 2: Shown here are the seven possible temporal relationships between two events. Here, k specifies the action and i
and j specify the event.

between events vki and vk j (i.e., L(eki j ) for some i < j )
automatically defines the predicate between vk j and vki .
E.g., if vki is before vk j , then vk j is after vki , predicates like
after are called inverse predicates. Such predicates would
however not add additional information to our model and
are therefore omitted.

Since events are in the temporal domain, it is imper-
ative that nodes in the graph be ordered based on their
starting time. This can be readily accomplished with the
following easy rules: 1. If event vki starts before vk j (in
time), then vki will be before vk j in a way that there is
an edge from vki to vk j but not vice-versa, i.e., i < j . For
example, in Figure 2, before, meets, overlaps, during and
finish will have an edge from vki to vk j but not from vk j

to vki . 2. If vki and vk j start at the same time, then we
define an edge from the event that ends earlier to the one
that ends later. For example, in Figure 2, starts will only
have an edge from vki to vk j . 3. When both events start
and end at the same time, there are two edges, one from
vki to vk j and another from vk j to vki . Note, however, that
since both edges are identical (i.e., both are labeled equal),
in reality we only need to store the information of one of
these two edges, yielding a single directed edge. This edge
can be selected at random and fixed for all the graphs.

Let the resulting model be called a Sample Action
Graph, Gk , with k = 1, . . . ,m, m the number of samples,
and eki j defining a directed edge from event vki to event
vk j in Gk . Let the adjacency matrix of this action graph
be Mk , with entry mki j equal to one of the seven possible
temporal predicates given in Figure 2. The resulting graph
is fully connected and, thus, Mk is upper-triangular with
nk (nk−1)

2 entries. The set of all sample graphs is defined as
G = {G1, . . . ,Gm}.

3 LABELED GRAPH KERNEL

In the previous section, we have shown how to define a
sample of an action as a directed labeled graph. We call the
resulting representation a sample action graph and assume
there are m such sample graphs. We now wish to calculate
the similarity between any two sample action graphs. This
can be achieved with the use of a kernel matrix defining
the similarity between every pair of sample graphs.

To do this, let a be the total number of possible paths in
all m sample action graphs. A path is a non-empty graph
P = v1e12v2e23 . . .e(q−1)q vq , with ei (i+1) defining the edge
between vi and vi+1, and vi 6=

∀i 6= j
v j . We define a labeled

path as P = f (v1) f (e12) f (v2) f (e23) . . . f (e(q−1)q ) f (vq ).

A sample graph Gk can now be defined as a feature
vector xk ∈Ra , with each entry in xk specifying the number
of times a path P occurs in Gk [11, 24, 27].

Specifically, let P z
b be a path of length z ≥ 0,

b = 1, . . . ,rz , with rz the total number of paths of
this length in the set of all sample graphs G . Thus,
xk = (

xk11, . . . , xk1r0 , . . . , xkw1, . . . , xkwrw

)T , where xkzb is the
number of times the path P z

b occurs in Gk , w is the longest
path in G , b = 1, . . . ,rz , z = 0, . . . , w , and

∑w
z=0 rz = a.

The similarity of any two graphs, Gk1 and Gk2 in thus
given by the inner-product of their feature vectors,

K (Gk1 ,Gk2 ) = xT
k1

xk2 =
w∑

z=0

rz∑
b=1

xk1zb xk2zb

=
w∑

z=0
K z (Gk1 ,Gk2 ). (1)

In this equation, K (., .) measures the similarity of two
graphs, while K z (., .) specifies their similarity for a given
path length z. K (., .) and K z (., .) are of course the kernels
defining the metric used to measure graph similarity.

Direct computation of K z (., .) is however computation-
ally demanding – the number of directed paths rz may
grow exponentially with z. We instead employ a dynamic
programming technique to only calculate K z (., .) implicitly.
We do this, by noting that xkzb can be calculated using
a function that computes the number of times P z

b starts
at node vki , 1 ≤ i ≤ nk . Let this function be C z

b (vki ), then
xkzb =∑nk

i=1 C z
b (vki ). We can thus write,

K z (Gk1 ,Gk2 ) =
rz∑

b=1
xk1zb xk2zb

=
rz∑

b=1

[ nk1∑
i1=1

C z
b (vk1i1 )

][ nk2∑
i2=1

C z
b (vk2i2 )

]

=
nk1∑
i1=1

nk2∑
i2=1

rz∑
b=1

C z
b (vk1i1 )C z

b (vk2i2 )

=
nk1∑
i1=1

nk2∑
i2=1

Γz (vk1i1 , vk2i2 ). (2)

The function Γz (vk1i1 , vk2i2 ) is computed recursively as
follows. First, initialize the functions,{

Γ0(vk1i1 , vk2i2 ) = 1, if f (vk1i1 ) = f (vk2i2 ),

Γ0(vk1i1 , vk2i2 ) = 0, otherwise.
(3)

Then, for z = 1, . . . , w , when min(nk1 − i1 + 1,nk2 − i2 +
1) < z or f (vk1i1 ) 6= f (vk2i2 ), Γz (vk1i1 , vk2i2 ) = 0. Otherwise
Γz (vk1i1 , vk2i2 ) use the recursion described next.

The recursion of Γz (vk1i1 , vk2i2 ) is due to the fact that
P z

b = f (vk1i1 ) f (ek1i1 j1 )P z−1
b̂

. If a common path of Gk1 and
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Gk2 starts at vk1i1 and vk2i2 , respectively, its second node
can be at vk1 j1 , i1 +1 ≤ j1 ≤ nk1 in Gk1 and vk2 j2 , i2 +1 ≤
j2 ≤ nk2 in Gk2 . Therefore, we can write

Γz (vk1i1 , vk2i2 ) =
rz∑

b=1

nk1∑
j1=i1+1

nk2∑
j2=i2+1

(
C z−1

b̂
(vk1 j1 )C z−1

b̂
(vk2 j2 )Ii1,i2 ( j1, j2)

)
=

nk1∑
j1=i1+1

nk2∑
j2=i2+1

Ii1,i2 ( j1, j2)
rz−1∑
b̂=1

C z−1
b̂

(vk1 j1 )C z−1
b̂

(vk2 j2 )

=
nk1∑

j1=i1+1

nk2∑
j2=i2+1

Ii1,i2 ( j1, j2)Γz−1(vk1 j1 , vk2 j2 ), (4)

where Ii1,i2 ( j1, j2) is a function that indicates whether the
label of the edge ek1i1 j1 is equal to the label of the edge
ek2i2 j2 ,

Ii1,i2 ( j1, j2) =
{

1, f (ek1i1 j1 ) = f (ek2i2 j2 )

0, otherwise.

Since the number of nodes in Gk1 and Gk2 effect the
value of this kernel, K z (Gk1 ,Gk2 ), we need to normalize
the resulting kernel by the size of the two graphs being
compared. Formally,

K z (Gk1 ,Gk2 ) = 〈
xk1z ,xk2z

〉
= 1∥∥xk1z

∥∥∥∥xk2z
∥∥ 〈

xk1z ,xk2z
〉

= K z (Gk1 ,Gk2 )√
K z (Gk1 ,Gk1 )

√
K z (Gk2 ,Gk2 )

, (5)

where xkz = (
xkz1,xkz2, . . . ,xkzrz

)T , xkz = xkz
‖xkz‖ and ‖.‖ de-

notes the 2−norm of a vector.
The computation complexity of the above derived

kernel is polynomial; specifically, the complexity of
K z (Gk1 ,Gk2 ) is O(zn2

k1
n2

k2
), because we need to compute

all Γβ(i1, i2), 0 ≤ β ≤ z, 1 ≤ i1 ≤ nk1 , 1 ≤ i2 ≤ nk2 and each
Γβ(i1, i2) needs at most O(nk1 nk2 ) operations.

4 CLASSIFICATION

The approach derived above is general and can be
directly plugged into any kernel-based classifier. In our
experiments we use Support Vector Machines (SVM) [49]
and Regularized Kernel Logistic Regression (RKLR) [5].
A binary Support Vector Machine [49] classifier learns a
hyperplane (i.e., (w,o), its norm and bias) that maximizes
the margin between two classes of training data. In the dual
problem in SVM, we maximize the Lagrangian multipliers
αk

,s. After solving the dual problem with respect to αk
,s,

we can obtain w as a function of αk
,s in the primal

problem,

w =
m∑

k=1
αk yk xk (6)

To make a prediction on a test sample labeled graph
Gt representing an unknown action, we need to calculate〈

xt ,w
〉 + o. Replacing w using (6), we can rewrite this

quantity as

〈xt ,w〉+o =
m∑

k=1
αk yk〈xt ,xk〉+o. (7)

Since only a few αk correspond to non-zero support
vectors, classification is given by a simple inner product
between xt and a few support vectors. Hence, this yields
an efficient algorithm for the classification of actions. We
call this algorithm Labeled Graph Support Vector Machine
or LGSVM for short. Equivalently, we can use Regularized
Kernel Logistic Regression (RKLR) to yield a Labeled Graph
Logistic Regression (LGLR).

5 DECODING ALGORITHM

By decoding one generally means we are interested
in finding out the most discriminant features from our
model. This is explicitly given in the vector w defining the
hyperplane of the LGSVM. To see this note that the i th

element wi of w = (w1, . . . , wa )T defines the contribution
of the i th feature (i.e., path) to the overall classification. Of
course, one does not have w, since this is only computed
implicitly. This means we need to compute the value of
those elements of w (i.e., wi ) that may be discriminant
before we select the largest value.

The key here is to note that we only need to compute
a small number of wi . This is because most of the paths
P are not consistently found in the sample graphs we have
used to compute the LGSVM. Note that a path P could
be discriminant if the sample graphs of class +1 include it
but the sample graphs of class −1 do not. This means that
P is present in about 50% of the sample graphs. Another
option is for a combination of graphs to be discriminant.
For example, ether P1, P2 or P3 are present in the samples
of class +1, but none of these are found in the samples
of class −1. In this case, these path are present in about
16% of the samples. More generally, a path can only be
discriminant if it is present in a minimum number of
sample graphs, λ%. For our purposes, we will select all
paths that occur in at least 5% of the graphs (λ = 5).
Typically, this means that only a few dozen paths are
selected.

The selection of these paths can be made really efficient
by noting that if P is a non-frequent path (i.e., it is present
in less than λ% of our sample graphs) and P is a subpath of
path Q, then Q is not frequent [42]. For example, if P = vk1

is not frequent, then Q = vk1ek12vk2 is not frequent either.
This suggests a simple search algorithm of frequent paths
as follows. Start with all possible options of a path having
only one node. Eliminate all those that are not frequent.
Then, iteratively add an edge and node to the remaining
paths and prune those that are not frequent. This efficient
procedure thus returns those paths that occur in at least
λ% of the sample graphs.

Once we have the frequent paths, we can compute
the feature vectors xki , its normalized form xki , and their
discriminant factor as

wi =
m∑

k=1
αk yk xki . (8)

Ordering the frequent paths from largest to smallest wi

yields the list of most to least discriminant paths (features).
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6 EXPERIMENTAL RESULTS

We provide experimental evaluation of the proposed
classification and decoding algorithms on a variety of
databases. First, we show experimental results on three
different sign language recognition problems. We then pro-
vide experimental results on two additional action recog-
nition problems – one describing generic human behavior
and one to demonstrate the use of the derived approach
in multimodal modeling and classification. Comparative
results with state of the art algorithms demonstrate the
accuracy, robustness and low computational cost of the
proposed approach. All of our experiments are performed
on a 3.40 GHz Intel Core i7 CPU machine using Matlab.

6.1 Graph model for sign language analysis

The three sign language databases used in the exper-
iments below are multi-channel time series. Before com-
puting our graph kernel, we need to extract events from
each sample and represent them as an action graph. This
is the model to be used in classification and decoding.

The events correspond to a set of three possible move-
ments observed in each channel of a time series. Each
tracked fiducial point defines a curve as it moves from one
point to another. The three options we consider in each
channel are: increasing, flat and decreasing. An interval
between a minimum point and a maximum point increases
while an interval between a maximum point and a mini-
mum point decreases. Considering noise, if an interval has
length less than a threshold and amplitude less than an-
other threshold, its trend cannot be robustly determined; in
such cases, the same category as its predecessor is assigned
to the current section. A flat interval has amplitude less
than the second threshold just mentioned.

Next, adjacent intervals that have the same curve trend
are described as a single event. This means that the curve
trends of every pair of neighboring intervals are distinct.
Thus, each interval and its starting and ending time corre-
spond to an event.

The action graph is given by the ordered events based
on their starting time (Section 2). Finally, we compute
pairwise temporal relationships of all the events (Figure 2).
To handle uncertainty in temporal segmentation, we allow
for soft interval, i.e., event A meets event B if and only if
|(start of B)− (end of A)| <α, for a small α.

We use the two classification algorithms described in
Section 4, LGSVM and LGLR. To determine the optimal
length of path z as well as the penalization factor C , we
use the leave-one-sample-out cross-validation approach
using only the samples in the training set. Grid search
is applied in this process, with z = {1,2,3,4,5,6} and C =
{10,100,1000,10000,10000}. The same z and C are used for
all binary classifiers to avoid overfitting. A one-versus-all
approach is used for multi-class classification. Specifically,
if there are n classes, we build n binary classifiers. The
k th (k = 1, ...,n) classifier is trained with data from the
k th class (i.e., the positive class) and training data of all
the other k − 1 classes correspond to the samples of the
negative class. To make a prediction on a testing sample,
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Fig. 3: To determine place-of-articulation of a sign, we
discretize the image space into twenty regions. The limits
of these regions are defined by the skeleton points of
the signer. For example, as seen in the figure above, the
skeleton point representing the head of the signer divides
the space into left and right columns, the average shoulder
position separates the top two rows from the bottom
three as well as the left- and right-most columns, and the
bottom-most points of the torso separate the bottom row
from the top four.

we compute
〈

xt ,wk
〉+ok and use the label of the largest

value as the predictor.
Furthermore, in RKLR, we provide results obtained with

the l1 and l2 regularizers. Also, a 4-fold cross-validation on
the training data is done to compute the optimal regu-
larization term from the set {10−6, 10−2.5, 101}. Addition-
ally, we provide comparative results against the random
walk kernel algorithm presented in [24] with SVM as the
classifier. Statistical significance is computed using a t-
test and p values are given in all experiments. As shown
below, the approach derived in the present paper yields
statistically significantly better results than those reported
in the literature.

6.2 Australian Sign Language (Auslan) dataset
This dataset is included in the UCI Machine Learning

repository [20]. Samples of 95 Auslan signs from a single
signer (a native Auslan signer) were collected over a period
of nine weeks using high-quality position trackers. Three
samples of each sign were captured each day. Thus, in
total, there are 2,565 samples, with 27 samples per sign.
Each sample is a 22-channel time series representing the
(X ,Y , Z ) position as well as the roll, yaw and pitch of
each hand, and bending measurements of all fingers. The
average length of each sample video is 57 frames. We
detect curve trends in all the 22 channels, yielding 66 event
categories. Experimental results are done as follows.

Each time we randomly select the data of three weeks
and use it for training while using the rest (six weeks) for
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testing. We repeat this process 10 times. This is a more
challenging setup than those previously used in [10, 34],
since, in these works, the authors use some of the data
of each week for training and some for testing. With
the LGSVM approach, the mean accuracy and standard
deviation are 91.60% and 1.50%. When we use the same
experiment setting as [10], our algorithm achieves mean
accuracy of 93.44% and standard deviation of 0.30%. The
average time of our algorithm for classifying a testing
sample from raw data using Matlab is 1.62 seconds. We
also run the Matlab implementation of two state-of-the-
art algorithms [10, 34] using the same computer. The
results, which are in Table 1, show favorable results for our
approach in accuracy as well as computational time. Our
method is not only more accurate, but also much faster
than alternative algorithms.

Next, we compute the results using the LGLR algorithm,
Table 1. The results are comparable to those obtained with
the SVM classifier, demonstrating the effectiveness of the
proposed path kernel approach, i.e., the proposed algo-
rithm yields superior results independently of our choice
of classifier. A paired-sample t-test to compare our path
kernel with the walk kernel algorithm shows our results are
significantly better, with a p-value smaller or equal than
0.018.

Method Accuracy Time/Sample

OSCM [34] 70.46% ± 1.73% 9.43 s

TGAK [10] 88% ± 0.5% 14.35 s

RW Kernel + SVM [24] 89.70% ± 1.78% 2.27 s

Path Kernel + RKLR (l1) 89.69% ± 1.73% –

Path Kernel + RKLR (l2) 90.42% ± 0.67% –

Path Kernel + SVM 91.60% ± 1.50% 1.62 s

TABLE 1: Classification accuracies on the Auslan database
for the proposed approach as well as several state-of-
the-art methods. OSCM: Order-preserving Sparse Coding
Method. TGAK: Triangular Global Alignment Kernels. RW:
Random Walk. RKLR: Regularized Kernel Logistic Regres-
sion. Also shown are the computational times of three of
the algorithms for which the code is available.

We can now use the decoding algorithm of Section 5 to
identify the most discriminant features in Auslan signing.
For example, this process identifies moving the right hand
down without any side movement as the most discrimi-
nant feature to express and visually recognize the concept
(word) “alive." Additional results are given in Table 2. This
is useful, for example, to study grammatical function of
behavior in linguistics [4].

6.3 DGS Kinect dataset
This dataset is a collection of 40 German Sign Language

signs. Each of the 14 subjects performed each of the signs
5 times. The dataset is captured with a KinectTM camera.

Each sample in the dataset is a 33-channel time series
representing how the 3D coordinates of 11 joints in the
upper part of the body change across time. This dataset
is challenging due to large variations of inter- and intra-
subject signing styles.

We divide the subject’s torso and head into multiple
regions, Figure 3. This is used to define discrete categories
specifying the place-of-articulation [12]. Events are defined
as the 3D movement of each hand, the region that each
hand is located at, the joint that each hand is closest to,
the 3D relative movement of the two hands plus the relative
location of the two hands in 3D space (e.g. right hand is
above left hand).

Experiments are performed using the more challenging
leave-one-signer-out cross-validation approach as in [40].
This means we train the classifier with the samples of all
subjects but one and use the samples of the left-out subject
for testing. This process is repeated for each of the subjects
we can leave out. Our path kernel combined with SVM clas-
sifier yields a mean classification accuracy of 70.17% with
standard deviation 8.3%. The average time for classifying a
testing sign is 4.33 seconds. We report comparative results
with state-of-the-art algorithms in Table 3. A t-test shows
our improvement is statistically significant, with p < 10−10.

As in our previous experiment, we can now use the
decoding algorithm presented in Section 5 to find the
most discriminate paths in our model. Table 4 shows a
few examples.

6.4 ASLLVD dataset
The ASL Lexicon Video Dataset [3] is an extensive

database of many glosses signed by several native ASL sign-
ers. The videos are captured using four cameras providing
two frontal views, one side view and a face view. This is a
comprehensive database with samples belonging to many
different glosses. Each gloss has at most 15 samples. We
select glosses with at least 5 samples, resulting in 1,612
samples corresponding to 231 classes. These videos include
data from 7 signers with signs collected over 24 different
sessions. Each of these sessions was filmed on a different
month and includes a single signer. No hand tracking is
available in this database. To be able to use our algorithm,
we manually annotate the positions of both hands in the
first and last frame of each sample video and use the
tracking algorithm of [9] to determine the movement of
the hands in the other frames. We also use the annotated
handshapes of the first and last frame which are included
in the database.

This database is extremely challenging because of the
large number of classes (concepts) and the small number
of samples per class.

Events in ASLLVD are defined as the 2D movement of
each hand, the region that each hand is located at, the joint
that each hand is closest to, the 2D relative movement of
the two hands and the relative location of the two hands
in 2D space. We also use the handshapes in the first and
last frames of each sample video. Place of articulation is
defined as above, Figure 3.

We use the leave-one-sample out procedure in each
class; i.e., one sample from each class is left out and used
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Sign Most discriminant paths

Cold
(right hand moves up) meets (right pitch increases) before (right roll does not change)
(right hand moves up) meets (right pitch increases) before (right yaw does not change)
(right hand moves to right) meets (right hand moves up) meets (right pitch decreases)

Different
(left hand roll still) during (right hand roll increases) meets (right hand does not move in depth)

(left hand roll still) equals (left little finger bend does not change) meets (right hand roll increases)
(left hand yaw still) during (left little finger bend does not change) meets (right hand roll increases)

Danger
(right hand moves up) meets (right pitch increases) before (right hand still about y)
(right hand moves down) meets (right pitch decreases) before (right hand still in y)

(right hand moves up) meets (right pitch increases) before (right thumb bend does not change)

TABLE 2: Most discriminant paths for three Auslan signs. The decoding algorithm of Section 5 returns the most
discriminant paths which are readily interpretable and can thus be used to understand a problem or, in this case,
teach sign language to novice.

Method Accuracy Time/Sample

Markov Chain [40] 50.6% ± 7.1% –

SPBoost [39] 54.6% ± 8.2% –

SPTree [40] 55.4% ± 8.4% –

RW Kernel + SVM [24] 68.87% ± 8.60% 3.86 s

Path Kernel + RKLR (l1) 63.72% ± 10.26% –

Path Kernel + RKLR (l2) 66.97% ± 9.35% –

Path Kernel + SVM 70.17% ± 8.3% 2.68 s

TABLE 3: Classification accuracies on the DGS dataset for
the proposed approach as well as several state-of-the-art
methods. SPBoost/Tree: Sequential Pattern Boosting/Tree.
RW: Random Walk.

for testing. We repeat this procedure 6 times. The mean
classification accuracy of the derived approach using SVM
is 81.31% with standard deviation 1.53%. The average time
for classifying a testing sample is 0.96 seconds.

As with the other sign language datasets, we can now
use the derived decoding algorithm to identify the most
discriminant paths in our model. A few example results are
shown in Table 6. These results are highly interpretable. For
instance, “afraid" is signed with handshape 5 (i.e., spread
out fingers as if indicating the number 5) with hands in
regains 10 (right hand) and 11 (left hand) and a shaking
movement. As seen in the table, the discriminant paths
define these actions quite accurately.

6.5 UCF Kinect dataset
Next, we provide comparative results with a database of

generic human actions. This experiment is to demonstrate
the versatility and generalization of the derived approach.
We used the UCF Kinect database of [15].

This database includes 16 distinct actions as performed
by 16 subjects. Each subject performs each action 5 times,
resulting in 1,280 samples. The dataset is collected using a
Microsoft KinectTM camera to capture 3D videos and the
OpenNI platform to estimate skeleton joints. Subjects are
defined by the 3D position of 15 joints in each frame. A

45-channel time series represents how the 3D coordinates
change with time.

The events in the UCF dataset are also defined as curve
trends in each channel. We use a 4-fold cross-validation
test to determine the effectiveness of the proposed algo-
rithm. We repeat the experiment 10 times. Average classifi-
cation accuracies for the derived approach as well as other
state-of-the-art algorithms are given in Table 7. When using
Support Vector Machine classifier our method achieves
98.70% ± 0.16% accuracy with a mean time of 1.76 seconds.
A t-test yields a p-value < 10−10.

One may wonder how the behaviors in this database
were discriminated by the derived algorithm. A couple of
examples are provided in Table 8.

6.6 Multimodal Motion Gesture Dataset
The 6D Motion Gesture dataset (6DMG) [8] contains

motion data, including the position, orientation, accelera-
tion, and angular speed information of a set of common
motion gestures performed by different users. It combines
optical sensing and inertial sensing. The former measures
the 3D position of the optical tracker, and the latter
estimates the orientation of the tracking device in yaw,
pitch and roll. WorldViz PPT-X4 is used as the optical
tracking system and MEMS accelerometers and gyroscope
embedded in Wii Remote Plus (Wiimote) are used as the
inertial sensors. The dataset includes people handwriting
by moving their hands in space. Twenty-five (25) people
handwrote the uppercase letters, A to Z.

We first do experiments on the position and orientation
modality separately. Then, we conduct a third experiment
to combine the two modalities. For the position modal-
ity we only use the X and Y coordinates, because the
Z dimension provides no discriminative information. We
detect curve trends in the X and Y coordinates, the relative
location of the optical tracker as compared to the initial
frame (below or above for X coordinate, left or right for Y
coordinate), the optical tracker is close to the top, close
to the bottom, between the top and the bottom, the
optical tracker is close to the leftmost or rightmost point
or between the two. In the orientation modality, we detect
curve trends in the orientation of the tracking device in
yaw, pitch and roll. Similar to the position modality, events
are defined as the orientation of the tracking device relative
to its position in the first frame (angle increase/decrease).
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Sign Most discriminant paths

Armchair
(right hand in region 17) during (right hand moves up)

(right hand moves down) meets (right hand moves up) meets (left hand moves down)

Always
(left hand moves forward) meets (both hands moves away horizontally) before (right hand moves below left hand)

(left hand moves forward) before (both hands move away from each other about z) before (right hand below left hand)

Swim
(both hands move away about x) meets (right hand moves to the center of the torso) before (right elbow moves left)

(right hand moves left) meets (right hand moves to the center of the torso) before (right elbow moves left)

TABLE 4: Discriminant paths for a few sample concepts in the DGS dataset.

Method Accuracy Time/Sample

RW Kernel + SVM [24] 83.55% ± 2.03% 1.44

Path Kernel + RKLR (l1) 73.09% ± 2.23% –

Path Kernel + RKLR (l2) 76.19% ± 2.21% –

Path Kernel + SVM 81.31%± 1.53% .96

TABLE 5: Classification accuracies on the ASLLVD dataset
for the proposed approach as well as the Random Walk
Kernel. RW: Random Walk. Computational time needed to
classify a sample using our algorithm is given in seconds.
The results of the RW kernel and the path kernel are
statistically identical.

We use leave-one-subject-out cross-validation for test-
ing. The average classification accuracy and standard de-
viation is 99.08% and 0.90% for the position modality,
95.32% and 3.85% for the orientation modality, and 99.22%
and 0.82% when using both modalities. This suggests that
combing information from different modalities can lead to
better classification accuracies. Comparative classification
results are in Table 9. Note that [8] uses leave-one-sample-
out cross-validation for testing, which is a much easier
experiment than the one used herein. The p-values of the
corresponding t-tests are 0.014, 10−10 and 0.005, respec-
tively.

6.7 Noisy features
To demonstrate the robustness of our algorithm with

respect to noise, we test the derived algorithm with additive
zero-mean Gaussian noise and standard deviation σ (with
σ= 10−4, . . . ,1). We test our algorithms on the Auslan, DGS,
UCF Kinect and 6DMG dataset described above. Figure 4
shows the classification accuracy of our algorithm on these
four datasets under additive Gaussian noise. As can be seen
in the figure, realistic levels of data noise typically found in
real-world applications do not deteriorate the performance
of the proposed algorithm.

We also test Uniform noise to simulate the complete
failure of a detector. To do this, for each sample we
randomly select 10% of the fiducial points and add zero-
mean Uniform noise U (a,b) (with b − a = 10−4, . . . ,1).
The results are in Figure 5. As above, we see that
realistic levels of data noise (typically found in real-world
applications) do not deteriorate the performance of the
proposed algorithm.

7 CONCLUSIONS

Automatically classifying and decoding behavior is a
challenging problem. Major difficulties include being able
to represent the spatio-temporal structure of the data
using a model that leads to efficient classification and
decoding algorithms, allowing for multiple descriptions of
each behavior category, and working with multimodal data.

The present paper derived an algorithm to resolve
these problems. This was done by describing behavior
categories using a labeled graph. Each graph can represent
the multiple ways each category is performed by multiple
subjects. Classification is then as simple as graph match-
ing. Unfortunately, graph matching generally comes with a
very high computational cost. To resolve this issue, we de-
rived a graph kernel algorithm to only implicitly compute
graph similarity. A dynamic programing implementation
of this approach is shown to have a low, polynomial-time
complexity. This kernel can then be readily plugged into
any kernel-based classifier. We have applied it to SVM and
RKLR and shown that the results are superior to those re-
ported in the literature regardless of our choice of classifier.
Furthermore, the resulting model and classifier are read-
ily interpretable, yielding an efficient decoding algorithm.
Experimental results on several databases demonstrated
the uses and superior classification abilities of the derived
algorithm. Experimental results have also illustrated how
the proposed approach can be naturally used to model
and classify multimodal data.
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Shape 10 is hand as in a fist. Shape B-L is hand open [3].
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both modalities and, hence, this corresponds to twice the amount of noise tested in other datasets.
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Path Kernel + RKLR (l2) 97.78% ± 0.22% –

Path Kernel + SVM 98.70% ± 0.16% 1.76 s

TABLE 7: Results on the UCF human action database.
Comparative results with state-of-the-art methods are ob-
tained using a subset of 10 joints, which can be computed
extremely fast. The derived approach outperforms state-of-
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Actions Most discriminant paths

Duck
(right shoulder moves down) equals (left shoulder moves down)

(left butt moves down) meets (left shoulder moves back)
(right hand moves down) equals (left shoulder moves down)

Step front
(right foot moves up) meets (right foot does not move in y)

(left foot moves up) meets (left foot does not move in y)

TABLE 8: Most discriminant paths for a couple of the actions in the UCF dataset.

Method P O P+O Time/Sample (P+O)

HMM [8] 96.28 96.19 – –
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Path Kernel + RKLR (l2) 97.98% ± 1.90% 91.99% ± 5.68% 98.08% ± 1.58% –

Path Kernel + SVM 99.08 ± 0.90 95.32 ± 3.85 99.22 ± 0.82 2.93 s

TABLE 9: Classification accuracies for the 6DMG dataset. P: modality to detect position. O: modality to estimate
orientation. P+O are the results of modeling the two modalities together using the proposed approach. Comparative
results are not available for both modalities in the literature. KSS is the kernel structured sparse algorithm of [26]. RW:
Random Walk. Computational time is given in seconds.
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