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Abstract— Kernel mapping is one of the most used approaches
to intrinsically derive nonlinear classifiers. The idea is to use a
kernel function which maps the original nonlinearly separable
problem to a space of intrinsically larger dimensionality where
the classes are linearly separable. A major problem in the design
of kernel methods is to find the kernel parameters that make
the problem linear in the mapped representation. This paper
derives the first criterion that specifically aims to find a kernel
representation where the Bayes classifier becomes linear. We
illustrate how this result can be successfully applied in several
kernel discriminant analysis algorithms. Experimental results
using a large number of databases and classifiers demonstrate
the utility of the proposed approach. The paper also shows (the-
oretically and experimentally) that a kernel version of Subclass
Discriminant Analysis yields the highest recognition rates.

Index terms: Kernel functions, kernel optimization, feature
extraction, discriminant analysis, nonlinear classifiers, face recog-
nition, object recognition, pattern recognition, machine learning.

I. INTRODUCTION

Discriminant Analysis (DA) is one of the most popular ap-
proaches for feature extraction with broad applications in, for
example, computer vision and pattern recognition [10], gene
expression analysis [23] and paleontology [22]. The problem
with DA algorithms is that each of them makes assumptions on
the underlying class distributions. In his ground-breaking work,
Fisher [7], [8] derived a DA approach for the two Normally
distributed class problem, N(µ1,Σ1) and N(µ2,Σ2), under the
assumption of equal covariance matrices, Σ1 = Σ2. Here, µi

and Σi are the mean feature vector and the covariance matrix
of the ith class, and N(.) represents the Normal distribution.
The assumption of identical covariances (i.e., homoscedasticity)
implies that the Bayes (optimal) classifier is linear, which is
the reason why we refer to this algorithm as Linear Discrim-
inant Analysis (LDA). LDA thus provides the one-dimensional
subspace where the Bayes classification error is smallest in
the 2-class homoscedastic problem. A solution for finding the
one-dimensional space where the Bayes classification error is
minimized in the C-class homoscedastic problem (∀ C ≥ 2) was
recently derived in [12].

A major drawback of LDA and of [12] is that they assume
the class distributions are homoscedastic, Σi = Σj , ∀i, j. This
is rarely the case in practise. To resolve this problem, one can
first map the original data distributions (with unequal covariances)
into a space where these become homoscedastic. This mapping
may however result in a space of very large dimensionality. To
prevent this, one usually employs the kernel trick [27], [30]. In
the kernel trick, the mapping is only intrinsic, yielding a space
of the same dimensionality as that of the original representation
while still eliminating the nonlinearity of the data by making the
class distributions homoscedastic. This is the underlying idea in
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Fig. 1. Here we show an example of two non-linearly separable
class distributions, each consisting of 3 subclasses. (a) Classification
boundary of LDA. (b) SDA’s solution. Note how this solution is
piecewise linear (i.e., linear when separating subclasses, but non-
linear when classifying classes). (c) KDA’s solution.

Kernel DA (KDA) [25], [1] and variants [33], [32], [12]. The
need for nonlinear DA is illustrated in Fig. 1(a,c).

The approach described in the preceding paragraph resolves
the problem of nonlinearly separable Normal distributions, but
still assumes each class can be represented by a single Normal
distribution. In theory, this can also be learned by the kernel,
since multimodality includes nonlinearities in the classifier. In
practise however, it makes the problem of finding the appropriate
kernel much more challenging. One way to add flexibility to the
kernel is to allow for each class to be subdivided into several
subclasses. This is the underlying idea behind Subclass DA (SDA)
[35]. However, while SDA resolves the problem of multimodally
distributed classes, it assumes that these subclass divisions are
linearly separable. Note that SDA can actually resolve the prob-
lem of nonlinearly separable classes as long as there is a subclass
division that results in linearly separable subclasses – yielding a
non-linear classifier, Fig. 1(b). The approach will fail when there
is no such division. To resolve this problem, we require to derive a
subclass-based approach that can deal with nonlinearly separable
subclasses [4]. This can be done with the help of a kernel map. In
this approach, we need to find a kernel which maps the subclass
division into a linearly separable set. We refer to this approach as
Kernel SDA (KSDA). Note that KSDA has two unknowns – the
number of subclasses and the parameter(s) of the kernel. Hence,
finding the appropriate kernel parameters will generally be easier,
a point we will formally show in the present paper.

The kernel parameters are the ones that allow us to map a
nonlinearly separable problem into a linear one [27]. Surprisingly,
to the best of our knowledge, there is not a single method in
kernel DA designed to find the kernel parameters which map
the problem to a space where the class distributions are linearly
separable. To date, the most employed technique is k-fold cross-
validation (CV). In CV, one uses a large percentage of the data to
train the kernel algorithm. Then, we use the remaining (smaller)
percentage of the training samples to test how the classification
varies when we use different values in the parameters of the
kernel. The parameters yielding the highest recognition rates are
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kept. More recently, [31], [16] showed how one can employ the
Fisher criterion (i.e., the maximization of the ratio between the
kernel between-class scatter matrix and the kernel within-class
scatter matrix) to select the kernel parameters. These approaches
aim to maximize classification accuracy within the training set.
However, neither of them aims to solve the original goal of the
kernel map – to find a space where the class distributions (or the
samples of different classes) can be separated linearly.

In this paper, we derived an approach whose goal is to
specifically map the original class (or subclass) distributions into
a kernel space where these are best separated by a hyperplane
(wrt Bayes). The proposed approach also aims to maximize
the distance between the distributions of different classes, thus
maximizing generalization. We apply the derived approach to
three kernel versions of DA, namely LDA, Nonparametric DA
(NDA) and SDA. We show that the proposed techniques generally
achieves higher classification accuracies than the CV and Fisher
criteria defined in the preceding paragraph. Before we present the
derivations of our criterion, we introduce a general formulation
of DA common to most variants. We also derived kernel versions
for NDA and SDA.

II. THE METRICS OF DISCRIMINANT ANALYSIS

DA is a supervised technique for feature extraction and classifi-
cation. Theoretically, its advantage over unsupervised techniques
is given by it providing that representation where the underlying
class distributions are best separated. Unfortunately, due to the
number of possible solutions, this goal is not always fulfilled
in practice [23]. With infinite time or computational power, one
could always find the optimal representation. With finite time and
resources, it is generally impossible to account for all the possible
linear combinations of features, let alone a set of nonlinear
combinations. This means that one needs to define criteria that
can find an appropriate solution under some general, realistic
assumptions.

The least-squares extension of Fisher’s criterion [8], [10]
is arguably the most known. In this solution, LDA employs
two symmetric, positive semi-definite matrices, each defining a
metric [23]. One of these metrics should measure within-class
differences and, as such, should be minimized. The other metric
should account for between-class dissimilarity and should thus be
maximized. Classical choices for the first metric are the within-
class scatter matrix SW and the sample covariance matrix ΣX ,
while the second metric is usually given by the between-class
scatter matrix SB . The sample covariance matrix is defined as
ΣX = n−1∑n

i=1 (xi − µ) (xi − µ)T , where X = {x1, . . . ,xn}
are the n training samples, xi ∈ Rp, and µ = n−1∑n

i=1 xi is
the sample mean. The between-class scatter matrix is given by
SB =

∑C
i=1 pi (µi − µ) (µi − µ)T , where µi = n−1

i

∑ni

j=1 xij

is the sample mean of class i, xij is the jth sample of class i,
ni is the number of samples in that class, C is the number of
classes, and pi = ni/n is the prior of class i. LDA’s solution is
then given by the generalized eigenvalue decomposition equation
Σ−1

X SBV = VΛ, where the columns of V are the eigenvectors,
and Λ is a diagonal matrix of corresponding eigenvalues.

To loosen the parametric restriction on the above defined
metrics, Fukunaga and Mantock defined NDA [11], where the
between-class scatter matrix is changed to a non-parametric
version, Sb =

∑C
i=1

∑C
j=1
j ̸=i

∑ni

l=1 αijl(xil − µj
il)(xil − µj

il)
T ,

where µj
il is the sample mean of the k-nearest samples to the

samples xil that do not belong to class i, and αijl is a scale
factor that deemphasizes large values (i.e. outliers). Alternatively,
Friedman [9] proposed to add a regularizing parameter to
the within-class measure, allowing for the minimization of
the generalization error. This regularizing parameter can
be learned using CV, yielding the method Regularized DA
(RDA). Another variant of LDA is given by Loog et al.
[20], who introduced a weighted version of the metrics in
an attempt to downplay the roles of the class distributions
that are farthest apart. More formally, they noted that the
above introduced Fisher criterion for LDA can be written
as

∑C−1
i=1

∑C
j=i+1 pipjβijtr

((
VTSWV

)−1 (
VTΣijV

))
,

where Σij = (µi − µj)(µi − µj)
T , and βij are the weights.

In Fisher’s LDA, all βij = 1. Loog et al. suggest to make
these weights inverse proportional to their pairwise accuracy
(defined as one minus the Bayes error). Similarly, we can
define a weighted version of the within-class scatter matrix
SW =

∑C
c=1

∑nc

k=1

∑nc

l=1 γckl(xck − xcl)(xck − xcl)
T . In

LDA, γckl are all equal to one. In its weighted version,
γckl are defined according to the importance of each
sample in classification. Using the same notation, we can
also define a nonparametric between-class scatter matrix as
SB =

∑C−1
i=1

∑ni

j=1

∑C
k=i+1

∑nk

l=1 ρijkl(xij −xkl)(xij −xkl)
T ,

where ρijkl are the weights. Note that in these two definitions,
the priors have been combined with the weights to provide a
more compact formulation.

All the methods introduced in the preceding paragraphs as-
sume the class distributions are unimodal Gaussians. To address
this limitation, Subclass DA (SDA) [35] defines a multimodal
between-subclass scatter matrix,

ΣB =

C−1∑
i=1

Hi∑
j=1

C∑
k=i+1

Hk∑
l=1

pijpkl(µij − µkl)(µij − µkl)
T , (1)

where pij = nij/n is the prior of the jth subclass of class i, nij

is the number of samples in the jth subclass of class i, Hi is
the number of subclasses in class i, µij = 1

nij

∑nij

k=1 xijk is the
sample mean of the jth subclass in class i, and xijk denotes the
kth sample in the jth subclass in class i.

The algorithms summarized thus far assume the class (or sub-
class) distributions are homoscedastic. To deal with heteroscedas-
tic (i.e., non-homoscedastic) distributions, [19] defines a within-
class similarity metric using the Chernoff distance, yielding an
algorithm we will refer to as Heteroscedastic LDA (HLDA).
Alternatively, one can use an embedding approach such as Lo-
cality Preserving Projection (LPP) [15]. LPP finds that subspace
where the structure of the data is locally preserved, allowing for
nonlinear classifications. An alternative to these algorithms is to
employ a kernel function which intrinsically maps the original
data distributions to a space where these adapt to the assumptions
of the approach in use. KDA [25], [1] redefines the within-
and between-class scatter matrices in the kernel space to derive
feature extraction algorithms that are nonlinear in the original
space but linear in the kernel one. This is achieved by means
of a mapping function ϕ(.) : Rp → F . The sample covariance
and between-class scatter matrices in the kernel space are given
by ΣΦ

X = n−1∑n
i=1(ϕ(xi) − µϕ)(ϕ(xi) − µϕ)T and SΦ

B =∑C
i=1 pi

(
µϕ
i − µϕ

)(
µϕ
i − µϕ

)T
, where µϕ = 1

n

∑n
i=1 ϕ(xi) is
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the kernel sample mean, and µϕ
i = 1

ni

∑ni

j=1 ϕ(xij) is the kernel
sample mean of class i.

Unfortunately, the dimensionality of F may be too large. To
bypass this problem, one generally uses the kernel trick, which
works as follows. Let AΦ and BΦ be two metrics in the kernel
space and VΦ the projection matrix obtained by AΦVΦ =

BΦVΦΛΦ. We know from the Representer’s Theorem [30] that
the resulting projection matrix can be defined as a linear combina-
tion of the samples in the kernel space Φ(X) with the coefficient
matrix Γ, i.e., VΦ = Φ(X)Γ. Hence, to calculate the projection
matrix, we need to obtain the coefficient matrix by solving AΓ =

BΓΛΦ, where A = Φ(X)TAΦΦ(X) and B = Φ(X)TBΦΦ(X)

are the two metrics that need to be maximized and minimized.
Using this trick, the metric for ΣΦ

X is given by BΣΦ
X

=

Φ(X)TΣΦ
XΦ(X) = n−1∑n

i=1 Φ(X)T (ϕ(xi) − µϕ)(ϕ(xi) −
µϕ)TΦ(X) = 1

nK(I − Pn)K, where K = Φ(X)TΦ(X) is the
kernel (Gram) matrix and Pn is the n × n matrix with each of
its element equal to 1/n.

Similarly, BSΦ
W

= 1
C

∑C
i=1 Φ(X)TΣΦ

i Φ(X) =
1
C

∑C
i=1

1
ni

Ki(I − Pni)K
T
i , where ΣΦ

i = 1
ni

∑ni

j=1(ϕ(xij) −
µϕ
i )(ϕ(xij)−µϕ

i )
T is the kernel within-class covariance matrix of

class i, and Ki = Φ(X)TΦ(Xi) is the subset of the kernel matrix
for the samples in class i. The metric for SΦ

B can be obtained as
ASΦ

B
=

∑C
i=1 pi(Ki1ni −K1n)(Ki1ni −K1n)

T , where 1ni is
a vector with all elements equal to 1/ni. The coefficient matrix
for KDA is given by B−1

KDAAKDAΓKDA = ΓKDAΛKDA,
where BKDA can be either BΣΦ

X
or BSΦ

W
and AKDA = ASΦ

B
.

We can similarly derive kernel approaches for the other meth-
ods introduced above. For example, in Kernel NDA (KNDA), the
metric A is obtained by defining its corresponding scatter matrix
in the kernel space as

AKNDA = Φ(X)TSΦ
b Φ(X)

=

C∑
i=1

C∑
j=1
j ̸=i

ni∑
l=1

αϕ
ijl(kil −Mj

il1k)(kil −Mj
il1k)

T ,

where kil = Φ(X)Tϕ(xil) is the kernel space representation of
the sample xil , Mj

il = Φ(X)TΦ(Xj
il) is the kernel matrix of the

k-nearest neighbors of xil, Xj
il is a matrix whose columns are

the k-nearest neighbors of xil, and αϕ
ijl is the normalizing factor

computed in the kernel space.
Kernel SDA (KSDA) maximizes the kernel between-subclass

scatter matrix ΣΦ
B [4]. This matrix is given by replacing the

subclass means of (1) with the kernel subclass means µϕ
ij =

n−1
ij

∑nij

k=1 ϕ(xijk). Now, we can use the kernel trick to obtain
the matrix to be maximized, AKSDA =

C−1∑
i=1

Hi∑
j=1

C∑
k=i+1

Hk∑
l=1

pijpkl(Kij1ij −Kkl1kl)(Kij1ij −Kkl1kl)
T ,

where Kij = Φ(X)TΦ(Xij) is the kernel matrix of the samples
in the jth subclass of class i, and 1ij is a nij × 1 vector with all
elements equal to 1/nij .

If we are to successfully employ the above derived approaches
in practical settings, it is imperative that we define criteria to
optimize these parameters. The classical approach to determine
the parameters of the kernel is CV, where we divide the training
data into k parts: (k− 1) of them for training the algorithm with
distinct values for the parameters of the kernel, and the remaining

one for validating which of these values results in higher (average)
classification rates. This solution has three major drawbacks. First,
the kernel parameters are only optimized for the training data, not
the distributions [36]. Second, CV is computationally expensive
and may become very demanding for large data-sets. Third, not
all the training data can be used to optimize the parameters of
the kernel. To avoid these problems, [31] defines a criterion to
maximize the kernel between-class difference and minimize the
kernel within-class scatter – as Fisher had originally proposed
but now applied to the selection of the kernel parameters. This
method was shown to yield higher classification accuracies than
CV in a variety of problems. A related approach [16] is to redefine
the kernelized Fisher criterion as a convex optimization problem.
Alternatively, Ye et al. [34] have proposed a kernel version of
RDA where the kernel is learned as a linear combination of
a set of pre-specified kernels. However, these approaches do
not guarantee that the kernel or kernel parameters we choose
will result in homoscedastic distributions in the kernel space.
This would be ideal, because it would guarantee that the Bayes
classifier (which is the one with the smallest error in that space)
is linear.

The main contribution of this paper is to derive a criterion
to find a kernel which maps the original class distributions
to homoscedastic ones while keeping them as far apart from
each other as possible. This criterion is related to the approach
presented in [13] where the goal was to optimize a distinct version
of homoscedasticity defined in the complex sphere. The criterion
we derive in this paper could be extended to work in the complex
sphere and is thus a more general approach.

III. MAXIMIZING HOMOSCEDASTICITY

To derive our homoscedastic criterion, we need to answer the
following question. What is a good measure of homoscedasticity?
That is, we need to define a criterion which is maximized when all
class covariances are identical. The value of the criterion should
also decrease as the distributions become more different. We now
present a key result applicable to this end.

Theorem 1: Let ΣΦ
i and ΣΦ

j be the kernel covariance matrices
of two Normal distributions in the kernel space defined by the
function ϕ(.). Then, Q1 =

tr(ΣΦ
i ΣΦ

j )

tr(ΣΦ2
i )+tr(ΣΦ2

j )
takes the maximum

value of .5 when ΣΦ
i = ΣΦ

j , i.e., when the two Normal
distributions are homoscedastic in the kernel space.

Proof: ΣΦ
i and ΣΦ

j are two p × p positive semi-definite
matrices with spectral decompositions ΣΦ

i = VΦ
i Λ

Φ
i V

ΦT

i , where
VΦ

i =
(
vϕ
i1
, . . . ,vϕ

ip

)
and ΛΦ

i = diag
(
λϕi1 , . . . , λ

ϕ
ip

)
are the

eigenvector and eigenvalue matrices.
The denominator of Q1, tr(ΣΦ2

i ) + tr(ΣΦ2

j ), only depends on
the selection of the kernel. For a fixed kernel (and fixed kernel
parameters), its value is constant regardless of any divergence
between ΣΦ

i and ΣΦ
j . Hence, tr(ΣΦ2

i ) + tr(ΣΦ2

j ) = tr(ΛΦ2

i ) +

tr(ΛΦ2

j ). We also know that tr(ΣΦ
i Σ

Φ
j ) ≤ tr(ΛΦ

i Λ
Φ
j ), with the

equality holding when VΦT

i VΦ
j = I [28], i.e., the eigenvectors

of ΣΦ
i and ΣΦ

j are not only the same but are in the same order,
vϕ
ik

= vϕ
jk

. Using these two results, we can write

Q1 ≤
∑p

m=1 λ
ϕ
im

λϕjm∑p
m=1 λ

ϕ2

im
+
∑p

m=1 λ
ϕ2

jm

.
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Fig. 2. Three examples of the use of the homoscedastic criterion, Q1. The examples are for two Normal distributions with equal covariance
matrix up to scale and rotation. (a) The value of Q1 decreases as the angle θ increases. The 2D rotation between the two distributions θ is
in the x axis. The value of Q1 is in the y axis. (b) When θ = 0o, the two distributions are homoscedastic, and Q1 takes its maximum value
of .5. Note how for distributions that are close to homoscedastic (i.e., θ ≈ 0o), the value of the criterion remains high. (c) When θ = 45o,
the value has decreased about .4. (d) By θ = 90o, Q1 ≈ .3.

Now, let us define every eigenvalue of ΣΦ
i as a multiple of

those of ΣΦ
j , i.e., λϕim = kmλϕjm , km ≥ 0, ∀m = 1, . . . , p. This

allows us to rewrite our criterion as

Q1 ≤
∑p

m=1 kmλϕ
2

jm∑p
m=1 λ

ϕ2

jm
(k2m + 1)

.

From the above equation, we see that Q1 ≥ 0, since all its
variables are positive. The maximum value of Q1 will be attained
when all km = 1, which yields Q1 = .5. We now note that having
all km = 1 implies that the eigenvalues of the two covariance
matrices are the same. We also know that the maximum of Q1

can only be reached when the eigenvectors are the same and in
the same order, as stated above. This means that the two Normal
distributions are homoscedastic in the kernel space defined by
ϕ(.) when Q1 = .5.

From the above result, we see that we can already detect
when two distributions are homoscedastic in a kernel space. This
means that for a given kernel function, we can find those kernel
parameters which give us Q1 = .5. Note that the closer we get to
this maximum value, the more similar the two distributions ought
to be, since their eigenvalues will become closer to each other.
To show this, we would now like to prove that when the value of
Q1 increases, then the divergence between the two distributions
decreases.

Divergence is a classical mechanism used to measure the
similarity between two distributions. A general type of divergence
employed to calculate the similarity between samples from con-
vex sets is the Bregman divergence [3]. Formally, for a given
continuously-differentiable strictly convex function G : Rp×p →
R, the Bregman divergence over real symmetric matrices is
defined as

BG(X,Y) = G(X)−G(Y)− tr(∇G(Y)T (X−Y)), (2)

where X,Y ∈ {Z |Z ∈ Rp×p, and Z = ZT }, and ∇ is the
gradient.

Note that the definition given above for the Bregman divergence
is very general. In fact, many other divergence measures (such
as the Kullback-Leibler) as well as several commonly employed
distances (e.g. Mahalanobis and Frobenius) are a particular case
of Bregman’s. Consider the case where G(X) = tr(XTX), which
computes the trace of the covariance matrix, i.e., the Frobenius
norm. In this case, the Bregman divergence is BG(Σ1,Σ2) =

tr(Σ2
1) + tr(Σ2

2) − 2tr(Σ1Σ2), where, as above, Σi are the

covariance matrices of the two distributions that we wish to
compare. We can also rewrite this result using the covariances
in the kernel space as,

BG(ΣΦ
1 ,Σ

Φ
2 ) = tr(ΣΦ2

1 ) + tr(ΣΦ2

2 )− 2tr(ΣΦ
1 Σ

Φ
2 ),

where now G(X) = tr(Φ(X)TΦ(X)).
Note that to decrease the divergence (i.e., the value of BG),

we need to minimize tr(ΣΦ2

1 ) + tr(ΣΦ2

2 ) and/or maximize
tr(ΣΦ

1 Σ
Φ
2 ). The more we lower the former and increase the latter,

the smaller the Bregman divergence will be. Similarly, when we
decrease the value of tr(ΣΦ2

1 ) + tr(ΣΦ2

2 ) and/or increase that of
tr(ΣΦ

1 Σ
Φ
2 ), we make the value of Q1 larger. Hence, as the value

of our criterion Q1 increases, the Bregman divergence between
the two distributions decreases, i.e., the two distributions become
more alike. This result is illustrated in Fig. 2. We can formally
summarize this result as follows.

Theorem 2: Maximizing Q1 is equivalent to minimizing the
Bregman divergence BG(ΣΦ

1 ,Σ
Φ
2 ) between the two kernel co-

variance matrices ΣΦ
1 and ΣΦ

2 , where G(X) = tr(Φ(X)TΦ(X)).
We have now shown that the criterion Q1 increases as any two

distributions become more similar to one another. We can readily
extend this result to the multiple distribution case,

Q1(ϕ) =
2

C(C − 1)

C−1∑
i=1

C∑
k=i+1

tr(ΣΦ
i Σ

Φ
k )

tr(ΣΦ2

i ) + tr(ΣΦ2

k )
, (3)

where ΣΦ
i is the sample covariance matrix of the ith class. This

criterion measures the average homoscedasticity of all pairwise
class distributions.

This criterion can be directly used in KDA, KNDA and others.
Moreover, the same criterion can be readily extended to work in
KSDA,

Q1(ϕ,H1, . . . , HC) =
1

h

C−1∑
i=1

Hi∑
j=1

C∑
k=i+1

Hk∑
l=1

tr(ΣΦ
ijΣ

Φ
kl)

tr(ΣΦ2

ij ) + tr(ΣΦ2

kl )
,

where ΣΦ
ij is the sample covariance matrix of the jth subclass of

class i, and h is the number of summing terms.
The reason we needed to derive the above criterion is because,

in the multi-class case, the addition of the Bregman divergences
would cancel each other out. Moreover, the derived criterion is
scale invariant, while Bregman is not.

It may now seem that the criterion Q1 is ideal for all kernel
versions of DA. To study this further, let us define a particu-
lar kernel function. An appropriate kernel is the RBF (Radial
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Basis Function), because it is specifically tailored for Normal
distributions. We will now show that, although homoscedasticity
guarantees that the Bayes classifier is linear in this RBF kernel
space, it does not guarantee that the class distributions will be
separable. In fact, it can be shown that Q1 may favor a kernel map
where all (sub)class distributions become the same, i.e., identical
covariance matrix and mean. Indeed a particular but useless case
of homoscedasticity in classification problems.

Theorem 3: The RBF kernel is k(xi,xj) = exp
(
−∥xi−xj∥2

σ

)
,

with scale parameter σ. In the two class problem, C = 2, let
the pairwise between class distances be {D11, D12, . . . , Dn1n2},
where Dij = ∥xi − xj∥22 is the (squared) Euclidean distance
calculated between two sample vectors, xi and xj , of differ-
ent classes, and n1 and n2 are the number of elements in
each class. Similarly, let the pairwise within class distances be
{d111, d112, . . . , d1n1n1

, d211, d
2
12, . . . , d

2
n2n2

}, where dckl = ∥xck −
xcl∥22 is the Euclidean distances between sample vectors of the
same class c. And, use SW with the normalized weights

γckl =
exp

(
− 2dc

kl
σ

)
∑2

c=1

∑nc

k=1

∑nc

l=1 exp
(
− 2dc

kl
σ

)
and SB with the normalized weights

ρ1i2j =
exp

(
− 2Dij

σ

)
∑n1

i=1

∑n2

j=1 exp
(
− 2Dij

σ

) .

Then, if tr(SB) > tr(SW ), Q1(.) monotonically increases with
σ, i.e., ∂Q1

∂σ ≥ 0.
Proof: Note that both of the numerator and

denominator of Q1 can be written in the form of∑
i

∑
j exp

(
−2∥xi − xj∥22/σ

)
. Its partial derivative with

respect to σ is,
∑

i

∑
j
2∥xi−xj∥2

2

σ2 exp
(
−2∥xi − xj∥22/σ

)
.

Substituting for Dij and dkl, we have ∂Q1

∂σ equal to∑n1

i=1

∑n2

j=1 exp
(
− 2Dij

σ

)
2Dij

σ2

∑2
c=1

∑nc

k=1

∑nc

l=1 exp
(
− 2dc

kl
σ

)
[∑2

c=1

∑nc

k=1

∑nc

l=1 exp
(
− 2dc

kl
σ

)]2
−

∑2
c=1

∑nc

k=1

∑nc

l=1 exp
(
− 2dc

kl
σ

)
2dc

kl

σ2

∑n1

i=1

∑n2

j=1 exp
(
− 2Dij

σ

)
[∑2

c=1

∑nc

k=1

∑nc

l=1 exp
(
− 2dc

kl
σ

)]2 .

We want to know when ∂Q1/∂σ ≥ 0, which is the same as∑n1

i=1

∑n2

j=1 exp
(
− 2Dij

σ

)
Dij∑n1

i=1

∑n2

j=1 exp
(
− 2Dij

σ

)
>

∑2
c=1

∑nc

k=1

∑nc

l=1 exp
(
− 2dc

kl
σ

)
dckl∑2

c=1

∑nc

k=1

∑nc

l=1 exp
(
− 2dc

kl
σ

)
The left hand side of this inequality is the estimate of the between
class variance, while the right hand side is the within class
variance estimate, since Dij and dcij can be rewritten as the trace
of the outer product tr((xi − xj)(xi − xj)

T ). Substituting for
the above defined γckl and ρ1i2j , we have ∂Q1/∂σ ≥ 0 when
tr(SB) > tr(SW ).

This latest theorem shows that when σ approaches infinity, ∂Q1

∂σ
approaches zero and, hence, Q1 tends to its maximum value of
.5. Increasing σ to infinity in the RBF kernel will result in a

space where the two class distributions become identical. This
will happen whenever tr(SB) > tr(SW ). This is a fundamental
theorem of DA because it shows the relation between KDA, the
weighted LDA version of [20] and the NDA method of [11].
Theorem 3 shows that these variants of DA are related to the idea
of maximizing homoscedasticity as defined in this paper. It also
demonstrates the importance of the metrics in weighed LDA and
NDA. In particular, the above result proves that if, after proper
normalization, the between class differences are larger than the
within class differences, then classification in the kernel space
optimized with Q1 will be as bad as random selection. One
indeed wants the class distributions to become homoscedastic in
the kernel space, but not at the cost of classification accuracy,
which is the underlying goal.

To address the problem outlined in Theorem 3, we need to
consider a second criterion which is directly related to class
separability. Such a criterion is simply given by the trace of
the between-class (or -subclass) scatter matrix, since this is
proportional to class separability, Q2(ϕ) =

tr
(
SΦ
B

)
= tr

C−1∑
i=1

C∑
k=i+1

pipk(µ
ϕ
i − µϕ

k)(µ
ϕ
i − µϕ

k)
T


=

C−1∑
i=1

C∑
k=i+1

pipk∥µ
ϕ
i − µϕ

k∥
2. (4)

Again, we can readily extend this result to work with subclasses,

Q2(ϕ,H1, . . . , HC) = tr
(
ΣΦ

B

)
=

C−1∑
i=1

Hi∑
j=1

C∑
k=i+1

Hk∑
l=1

pijpkl∥µ
ϕ
ij − µϕ

kl∥
2.

Since we want to maximize homoscedasticity and class sepa-
rability, we need to combine the two criteria of (3) and (4),

Q(.) = Q1(.)Q2(.). (5)

The product given above is an appropriate way to combine
independent measures of different magnitude as is the case with
Q1 and Q2.

Using the criterion given in (5), the optimal kernel function,
ϕ∗, is

ϕ∗ = argmax
ϕ

Q(ϕ).

In KSDA, we optimize the number of subclasses and the kernel
as

ϕ∗, H∗
1 , . . . , H

∗
C = arg max

ϕ,H1,...,HC

Q(ϕ,H1, . . . , HC).

Also, recall that in KSDA (as in SDA), we need to divide the data
into subclasses. As stated above we assume that the underlying
class distribution can be approximated by a mixture of Gaussians.
This assumption, suggests the following ordering of the samples:
X̂ = {x̂1, . . . , x̂n}, where x̂1 and x̂n are the two most dissimilar
feature vectors and x̂k is the k − 1th feature vector closest to
x̂1. This ordering allows us to divide the set of samples into H

subgroups, by simply dividing X̂ into H parts. This approach has
been shown to be appropriate for finding subclass divisions [35].

As a final note, it is worth emphasizing that, as opposed
to CV, the derived criterion will use the whole data in the
training set for estimating the data distributions because there
is no need for a verification set. With a limited number of
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(a) (b) (c) (d)

Fig. 3. Here we show a two class classification problem with multi-modal class distributions. When σ = 1 both KDA (a) and KSDA (b)
generate solutions that have small training error. (c) However, when the model complexity is small, σ = 3, KDA fails. (d) KSDA’s solution
resolves this problem with piecewise smooth, nonlinear classifiers.

training samples, this will generally yield better estimates of
the unknown underlying distribution. The other advantage of
the derived approach is that it can be optimized using gradient
descent, by taking ∂Q(k(xi,xj))/∂σ. In particular, we employ
a quasi-Newton approach with a Broyden-Fletcher-Goldfarb-
Shanno Hessian update [6], yielding a fast convergence. The
derivations are in the Supplementary File. The initial value for the
kernel parameter is set to be the mean of the distances between
all pairwise training samples.

IV. GENERALIZATION

A major goal in pattern recognition is to find classification
criteria that have small generalization error, i.e., small expected
error on the unobserved data. This mainly depends on the number
of samples in our training set, training error and the model
(criterion) complexity [14]. Since the training set is usually fixed,
we are left to select a proper model. Smooth (close to linear)
classifiers have a small model complexity but large training error.
On the other hand wiggly classifiers may have a small training
error but large model complexity. To have a small generalization
error, we need to select a model that has moderate training error
and model complexity. Thus, in general, the simpler your classifier
is, the smaller the generalization error. However, if the classifier
is too simple, the training error may be very large.

KDA is limited in terms of model complexity. This is mainly
because KDA assumes each class is represented with unimodal
distributions. If there is a multimodal structure in each class,
KDA would select wiggly functions in order to minimize the
classification error. To avoid this, the model complexity may be
limited to smooth solutions, which would generally result in large
training errors and, hence, large generalization errors.

This problem can be solved by using an algorithm that consid-
ers multimodal class representations, e.g., KSDA. While KDA can
find wiggly functions to separate multimodal data, KSDA can find
several functions which are smoother and carry smaller training
errors. We can illustrate this theoretical advantage of KSDA with
a simple 2-class classification example, Fig. 3. In this figure,
each class consists of 2 nonlinearly separable subclasses. Fig. 3(a)
shows the solution of KDA obtained with the RBF kernel with
σ = 1. Fig. 3(b) shows the KSDA solution. KSDA can obtain a
classification function that has the same training error with smaller
model complexity, i.e., smoother classification boundaries. When
we reduce the model complexity by increasing σ to 3, KDA
leads to a large training error, Fig. 3(c). This does not occur
in KSDA, Fig. 3(d). A similar argument can be used to explain
the problems faced with Maximum Likelihood (ML) classification
when modeling the original data as a Mixture of Gaussians (MoG)

in the original space. Unless one has access to a sufficiently large
set (i.e., proportional to the number of dimensions of this original
feature space), the results will not generalize well. In the section
to follow, we will show experimental results with real data that
verify the observation discussed in this section.

V. EXPERIMENTAL RESULTS

In this section, we will use our criterion to optimize the kernel
parameter of KDA, KNDA and KSDA. We will give comparative
results with CV, the Fisher criterion of [31] the use of the
Bregman divergence, and to other nonlinear methods – Kernel
PCA (KPCA), HLDA and LPP – and related linear approaches
– LDA, NDA, RDA, SDA, and aPAC. The dimensionality of the
reduced space is taken to be the rank of the matrices used by
the DA approach and to keep 90% of the variance in PCA and
KPCA. We also provide comparisons with Kernel Support Vector
Machines (KSVM) [29] and the use of ML in MoG [24], two
classical alternatives for nonlinear classification.

A. Databases and notation

The first five data-sets are from the UCI repository [2]. The
Monk problem is given by a 6-dimensional feature space defining
six joints of a robot and two classes. Three different case scenarios
are considered, denoted Monk 1, 2 and 3. The Ionosphere set
corresponds to satellite imaging for the detection of two classes
(structure or not) in the ground. And, in the NIH Pima set, the
goal is to detect diabetes from eight measurements.

We also use the ETH-80 [18] database. It includes a total of
3, 280 images of the following 8 categories: apples, pears, cars,
cows, horses, dogs, tomatoes and cups. Each category includes
10 objects (e.g., ten apples). Each of the (80) objects has been
photographed from 41 orientations. We resized all the images to
25× 30 pixels. The pixel values in their vector form (x ∈ R750)
are used in the appearance-based recognition approach. As it is
typical in this database, we will use the leave-one-object-out test.
That is, the images of 79 objects are used for training, those of
the remaining object for testing. We test all options and calculate
the average recognition rate.

We also use 100 randomly selected subjects from the AR face
database [21]. All images are first aligned with respect to their
eyes, mouth and jaw line before cropping and resizing them
to a standard size of 29 × 21 pixels. This database contains
images of two different sessions, each taken two weeks apart.
The images in the first and second session contain the same
facial expressions and occlusions and were taken under the same
illumination conditions. We use the images in the first session for
training and those in the second session for testing.
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We also use the Sitting Posture Distribution Maps data-set
(SPDM) of [36]. Here, samples were collected using a chair
equipped with a pressure sensor sheet located on the sit-pan and
back-rest. The pressure maps provide a total of 1, 280 pressure
values. The database includes samples of 50 individuals. Each
participant provided five samples of each of the ten different
postures. Our goal is to classify each of the samples into one
of the ten siting postures. This task is made difficult by the
nonparametric nature of the samples in each class [36]. We
randomly selected 3 samples from each individual and posture
for training, and used the rest for testing.

The Modified National Institute of Standards and Technology
(MNIST) database of [17] is a large collection of various sets
of handwritten digit (0-9). The training set consists of 60,000
samples. The test set has 10,000 samples. All the digits have been
size-normalized to 28×28. We randomly select 30,000 samples for
training, with 3,000 samples in each class. This is done to reduce
the size of the Gram matrix, allowing us to run the algorithm on
a desktop.

As defined above, we employe the RBF kernel. The kernel
parameter σ in KPCA is optimized with CV. CV is also used
in KDA, KNDA and KSDA, denoted: KDACV , KNDACV and
KSDACV . The kernel parameter is searched in the range [m −
2st,m+2st], where m and st are the mean and standard deviation
of the distances between all pairwise training samples. We use
10-fold cross validation in the UCI data-sets and 5-fold cross
validation in the others. In KNDA and KSDA, the number of
nearest neighbors and subclasses are also optimized. In KSDA,
we test partitions from 1 to 10 subclasses. We also provide
comparative results when optimizing σ with the approach of
[31], denoted: KDAF , KNDAF and KSDAF . The two param-
eters of LPP (i.e., the number of nearest neighbors, and the
heat kernel) are optimized with CV. The DA algorithms with
our Homoscedastic-based optimization will be denoted: KDAH ,
KNDAH and KSDAH . The same algorithms optimized using
Bregman are denoted: KDAB , KNDAB and KSDAB .

B. Results

The algorithms summarized above are first employed to find the
subspace where the feature vectors of different classes are most
separated according to the algorithm’s criterion. In the reduced
space we employ a variety of classification methods.

In our first experiment, we use the nearest mean (NM) classifier.
The NM is an ideal classifier because it provides the Bayes opti-
mal solution whenever the class distributions are homoscedastic
Gaussians [10]. Thus, the results obtained with the NM will
illustrate whether the derived criterion has achieved the desirable
goal. The results are shown in Table I. We see that the kernel
algorithms optimized with the proposed Homoscedastic-based
criterion generally obtain higher classification rates. To further
illustrate this point, the table includes a rank of the algorithms
following the approach of [5]. As predicted by our theory, the
additional flexibility of KSDA allows it to achieve the best results.

Our second choice of classifier is the classical nearest neighbor
(NN) algorithm. Its classification error is known to be less than
twice the Bayes error. This makes it appropriate for the cases
where the class distributions are not homoscedastic. These results
are in Table II. A recently proposed classification algorithm
[26] emphasizes smoother classification boundaries in the NN
framework. This algorithm is based on the approximation of the

TABLE I
RECOGNITION RATES (IN PERCENTAGES) WITH NEAREST MEAN

DATA SET KSDAH KSDAF KSDAB KSDACV KDAH KDAF KDAB KDACV KNDAH
ETH-80 82.6* 73.5 61.7 77.4 82.6* 81.6 61.7 71.6 76.2
AR DATABASE 88.1* 78.2 65.5 84.2 87.5* 86.7 69.5 84.2 71.3
SPDM 84.6* 80.1 67.9 83.9* 84.6* 83.2 67.9 83.3 82.4
MONK1 88.2* 85.0 71.1 88.0* 84.0 89.6* 65.3 83.1 70.1
MONK2 76.6 82.2* 56.7 74.5 80.1 75.2 55.6 70.1 73.5
MONK3 96.3* 88.7 85.4 94.0 93.1 89.7 85.7 82.4 67.6
IONOSPHERE 93.4 84.8 88.1 96.0* 93.4 86.1 67.6 80.8 74.8
PIMA 80.4* 77.4 70.2 80.4* 78.6 75.0 75.0 72.6 65.5
MNIST 98.0* 96.9 92.0 97.4 98.1* 96.6 92.0 97.2 94.6
RANK 1.9* 7.0 13.3 3.6 2.8 5.4 14.2 9.2 12.2

DATA SET KNDAF KNDAB KNDACV MOG KSVM KPCA PCA LDA HLDA

ETH-80 74.6 65.6 73.6 69.2 81.8 56.9 56.5 63.3 58.2
AR DATABASE 61.4 72.5 74.3 75.5 86.7 42.2 24.0 79.3 67.4
SPDM 82.9 53.4 75.6 73.4 84.7* 62.6 66.4 44.5 68.0
MONK1 65.7 50.0 63.4 80.3 83.6 67.4 66.0 64.6 66.2
MONK2 64.8 61.8 71.8 75.9 82.6* 53.7 53.5 55.1 53.5
MONK3 63.7 77.8 66.4 89.4 93.5 78.9 80.6 63.9 81.3
IONOSPHERE 62.3 65.6 78.2 82.1 96.0* 89.4 62.3 57.0 90.1
PIMA 67.3 70.8 66.7 75.0 79.2 50.0 56.0 61.3 77.4
MNIST 94.3 93.1 96.4 88.6 97.6 80.6 82.2 86.7 85.5
RANK 14.7 15.8 13.3 9.8 2.7 18.0 19.1 18.3 14.1

Note that the results obtained with the Homoscedastic criterion are
generally better than those given by the Fisher, Bregman and CV
criteria. The best of the three results in each of the discriminant

methods is bolded. The symbol * is used to indicate the top result
among all algorithms. Rank goes from smallest (best) to largest.

TABLE II
RECOGNITION RATES (%) WITH NEAREST NEIGHBOR

DATA SET KSDAH KSDAF KSDAB KSDACV KDAH KDAF KDAB KDACV KNDAH
ETH-80 82.8* 73.6 62.3 76.8 82.8* 81.0 62.3 71.6 76.2
AR DATABASE 96.7* 78.3 66.9 84.2 88.3 87.5 71.3 84.2 69.2
SPDM 84.9* 80.1 68.2 83.7 84.9* 84.2 68.2 83.3 73.9
MONK1 89.1* 84.5 78.2 87.5 84.3 89.6* 72.5 83.1 78.2
MONK2 77.8 83.1 86.1* 75.7 80.1 75.2 77.6 70.1 85.0*
MONK3 94.4* 87.7 81.5 89.8 93.5 88.0 89.4 82.4 82.1
IONOSPHERE 94.4 84.8 91.4 94.0 94.4 86.5 70.9 80.8 87.4
PIMA 75.0 73.8 66.7 76.8 70.2 69.8 64.9 72.6 67.3
MNIST 97.8* 96.9 91.8 97.2 97.2 97.1 91.8 96.7 95.6
RANK 2.9* 8.0 13.6 5.3 3.7 7.7 15.4 10.8 11.3

DATA SET KNDAF KNDAB KNDACV MOG KSVM KPCA PCA LDA HLDA

ETH-80 74.6 68.0 70.6 69.2 81.8 62.2 64.3 64.3 56.5
AR DATABASE 64.2 70.6 70.2 75.5 86.7 42.5 58.6 77.7 67.5
SPDM 75.6 33.5 70.3 73.4 84.7 75.0 81.5 66.5 65.3
MONK1 77.1 74.5 72.2 80.3 83.6 90.3* 81.3 69.0 84.2
MONK2 81.0 79.9 78.5 75.9 82.6 68.3 66.7 67.4 83.6
MONK3 81.3 77.6 80.3 89.4 93.5 87.8 87.3 70.6 84.5
IONOSPHERE 86.1 90.1 86.1 82.1 96.0* 89.4 92.1 74.8 88.7
PIMA 67.3 66.1 69.1 75.0 79.2* 56.0 64.3 57.7 68.5
MNIST 95.4 92.1 95.5 88.6 97.6 94.1 90.2 89.8 80.6
RANK 12.7 15.7 14.1 12.6 3.2 14.2 14.3 18.4 14.3

nonlinear decision boundary using the sample points closest to the
classification boundary. The classification boundary is smoothed
using Tikhonov regularization. Since our criterion is used to make
the classifier in the kernel space as linear as possible, smooth
(close to linear) classifiers are consistent with this goal and should
generally lead to better results. We present the results obtained
with this alternative approach in Table III.

Finally, recall that the goal of the Homoscedastic criterion
is to make the Bayes classifier in the kernel space linear. If
this goal were achieved, one would expect a linear classifier
such as linear Support Vector Machines (SVM) to yield good
classification results in the corresponding subspace. We verified
this hypothesis in our final experiment, Table IV.

Note that regardless of the classifier used in the reduced space,
KSDAH consistently yields the best results. It is followed by
KDAH and KSVM. See the supplementary file for details.

As mentioned earlier, the advantage of the proposed criterion
is not only that it achieves higher classification rates, but that it
does so at a lower computational cost, Table V. Note that the
proposed approach generally reduces the running time by one
order of magnitude.

VI. CONCLUSIONS

This paper has presented the derivations of a first approach to
optimize the parameters of a kernel whose function is to map the
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TABLE III
RECOGNITION RATES (%) WITH THE CLASSIFICATION METHOD OF [26]
DATA SET KSDAH KSDAF KSDAB KSDACV KDAH KDAF KDAB KDACV KNDAH
ETH-80 83.5* 73.9 62.3 76.4 83.5* 82.8 62.3 72.9 76.2
AR DATABASE 96.6* 78.5 66.9 85.1 90.6 86.7 71.3 85.1 70.9
SPDM 84.3* 75.3 68.2 83.9* 84.3* 83.4 68.2 82.6 75.6
MONK1 90.2* 76.6 71.5 82.9 89.6 87.7 72.2 88.7 65.2
MONK2 83.3* 77.5 60.6 75.7 80.6 82.9 73.8 78.5 74.1
MONK3 94.6* 83.3 86.1 86.3 93.5 92.4 89.4 91.2 68.5
IONOSPHERE 94.3 84.8 84.8 86.1 94.3 86.8 80.1 86.8 80.8
PIMA 80.4* 76.8 79.2 76.2 78.6 73.0 64.9 69.0 72.0
MNIST 97.8* 96.9 91.8 97.3 97.2 97.2 91.8 96.7 95.6
RANK 1.2* 9.4 14.4 6.7 2.7 4.6 15 6.9 14.2

DATA SET KNDAF KNDAB KNDACV MOG KSVM KPCA PCA LDA HLDA

ETH-80 74.2 68.2 71.2 69.2 81.8 60.3 67.1 64.3 59.1
AR DATABASE 63.2 70.6 72.6 75.5 86.7 49.5 44.5 70.9 67.5
SPDM 77.9 35.6 71.5 73.4 84.7* 75.1 77.0 56.2 53.4
MONK1 62.0 61.4 62.3 80.3 83.6 77.3 78.2 67.4 71.5
MONK2 64.8 62.3 56.9 75.9 82.6 58.6 56.7 70.6 58.3
MONK3 64.8 85.4 66.2 89.4 93.5 91.2 89.7 70.8 93.8
IONOSPHERE 82.8 77.5 78.1 82.1 96.0* 82.1 82.1 74.8 94.0
PIMA 67.9 69.0 67.9 75.0 79.2 60.7 70.2 57.7 72.6
MNIST 95.4 92.1 95.6 88.6 97.6 94.1 90.2 89.8 82.7
RANK 14.7 17.6 16.1 11.6 2.7 15.6 14.6 17.8 14.9

TABLE IV
RECOGNITION RATES (%) WITH LINEAR SVM

DATA SET KSDAH KSDAF KSDAB KSDACV KDAH KDAF KDAB KDACV KNDAH
ETH-80 83.0* 73.6 61.9 77.4 83.0* 82.2 61.9 71.3 75.6
AR DATABASE 88.1* 79.6 65.5 83.1 87.5* 86.7 69.5 83.1 79.4
SPDM 82.1 84.6* 67.5 82.3 82.1 83.6 67.5 82.6 82.2
MONK1 89.1* 88.2 50.0 86.1 84.7 89.7* 52.1 86.1 69.9
MONK2 77.1 81.5 67.1 73.8 80.1 75.2 67.1 75.1 67.1
MONK3 95.6* 91.9 47.2 94.4 92.8 89.1 47.2 81.5 81.7
IONOSPHERE 93.4 86.1 82.1 96.7* 93.4 86.1 82.1 82.1 82.1
PIMA 79.8* 78.6 64.9 79.8* 78.0* 75.0 64.3 72.8 64.3
MNIST 97.9 96.9 92.0 97.3 98.1* 96.7 92.0 97.2 94.7
RANK 2.8* 5.6 17.8 4.3 4.1 5.8 17.7 9.5 11.9

DATA SET KNDAF KNDAB KNDACV MOG KSVM KPCA PCA LDA HLDA

ETH-80 75.2 65.6 74.6 69.2 81.8 65.3 60.1 65.3 68.4
AR DATABASE 75.7 72.5 78.6 75.5 86.7 42.1 66.7 79.3 70.1
SPDM 82.9 52.7 84.0 73.4 84.7* 66.7 76.5 50.3 69.3
MONK1 62.5 50.0 63.4 80.3 83.6 88.4* 67.8 65.6 68.5
MONK2 83.1* 67.1 67.1 75.9 82.6 50.0 67.1 67.1 67.1
MONK3 81.7 47.2 81.0 89.4 93.5 94.4 81.3 63.9 81.9
IONOSPHERE 82.1 82.1 82.1 82.1 96.0 82.1 84.8 84.8 93.4
PIMA 64.3 64.3 64.3 75.0 79.2* 64.3 68.6 64.9 76.2
MNIST 94.3 93.3 96.2 88.6 97.6 81.0 82.2 87.0 85.5
RANK 11.6 17.3 13.0 11.5 3.3 16.1 16.1 15.8 12.5

original class distributions to a space where these are optimally
(wrt Bayes) separated with a hyperplane. We have achieved this
by selecting the kernel parameters that make the class Normal
distributions most homoscedastic while maximizing class sepa-
rability. Experimental results in a large variety of datasets has
demonstrated that this approach achieves higher recognition rates
than most other methods defined to date. We have also shown that
adding the subclass divisions to the optimization process (KSDA)
allows the DA algorithm to achieve better generalizations. And,
we have formally defined the relationship between KDA and other
variants of DA, such as weighted DA, NDA and SDA. Extensions
to work with very large datasets will be considered in future work.
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TABLE V
TRAINING TIME (IN SECONDS)

DATA SET KSDAH KSDACV KDAH KDACV KNDAH KNDACV KSVM

ETH-80 7.3×104 3.6×105 1.8×103 9.0×104 7.9×104 8.5×105 1.8×104

AR DATABASE 4.2×104 3.5×105 3.1×103 9.0×104 1.5×104 1.7×105 1.2×104

SPDM 1.8×104 6.5×104 1.8×102 4.6×104 2.1×104 1.6×105 9.6×103

MONK1 4.4 51.3 0.7 6.8 26.4 504.8 3.7
MONK2 4.6 88.1 1.2 11.5 41.3 978.1 17.8
MONK3 3.2 50.7 0.7 6.4 23.1 516.0 2.2
IONOSPHERE 6.6 134.8 1.3 15.7 76.6 1479.5 10.1
PIMA 80.2 2521.7 12.1 380.1 374.4 10889.7 150.6
MNIST 3.6×105 2.0×106 1.9×105 1.1×106 3.2×105 4.6×106 4.5×105
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