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Abstract

The appearance-based approach to face detection has seg¢madvances in the last several years.
In this approach, we learn the image statistics descriliiegtéxture pattern (appearance) of the object
class we want to detect, e.g., the face. However, this apprbas had a limited success in providing
an accurate and detailed description of the internal fdegtures, i.e., eyes, brows, nose and mouth. In
general, this is due to the limited information carried bg tharned statistical model. While the face
template is relatively rich in texture, facial featuresg(eeyes, nose and mouth) do not carry enough
discriminative information to tell them apart from all pdds background images. We resolve this
problem by adding the context information of each faciatdeain the design of the statistical model.
In the proposed approach, the context information definesnitage statistics most correlated with the
surroundings of each facial component. This means that wieesearch for a face or facial feature we
look for those locations which most resemble the featureayetmost dissimilar to its context. This
dissimilarity with the context features forces the deted¢togravitate toward an accurate estimate of
the position of the facial feature. Learning to discrimandietween feature and context templates is
difficult however, because the context and the texture ofdbil features vary widely under changing
expression, pose and illumination, and may even resemldeannther. We address this problem with
the use of subclass divisions. We derive two algorithms toraatically divide the training samples of
each facial feature into a set of subclasses, each repirgentlistinct construction of the same facial
component (e.g., closed versus open eyes) or its context (Bfferent hairstyles). The first algorithm
is based on a discriminant analysis formulation. The se@gadrithm is an extension of the AdaBoost
approach. We provide extensive experimental results usiigmages and video sequences for a total
of 3,930 images. We show that the results are almost as good as thtarezbwith manual detection.

Keywords. Face detection, facial feature detection, shape extrgctiobclass learning, dis-
criminant analysis, adaptive boosting, face recognitmerican sign language, nonmanuals.

I. INTRODUCTION

Face detection is a fundamental task in computer visionh wibad applications in face
recognition, human-computer interaction, behaviorallyamis, and computer graphics, to name
but a few. Because of its many uses, face detection has eecednsiderable attention, especially
in the past several years [50], [16], [51]. By face detectiwa generally mean that a bounding
box (or an ellipsoid) enclosing the face (or faces) in an ienagapproximately the correct scale
needs to be specified. At present, several algorithms exXigthacan provide reliable detections
of faces in images. Furthermore, recent results demoastay face detectors can be made to
work faster and more accurately under varying conditiordd, [AL9], [49], [18], [48].

However, most of the applications named above require tieagxtract additional information
from the face image. For example, problems in human-compuoiteraction may require infor-
mation of the gaze direction for the design of smart intex$af$3] and lip movement for viseme
interpretation [12]. To this end, eyes and mouth detectax® lbeen developed in recent years.
In other applications, as in the recognition of identityngsthe appearance-based approach in
face recognition, we will require to warp the detected faweatnorm (or mean) shape before
comparing the texture maps [28]. In this case, additionfalrmation, such as the location of the
nose and chin will be necessary. And, in yet other applioatisuch as shape-based recognition
of expression requires an accurate extraction of the shipaah of the facial components.

Fueled by these needs and by the recent success of faceodgteesearch on this area is
now moving toward a more precise and detailed detection @firiternal facial components of
the face [9], [8], [20]. By internal facial components, weanehe brows, eyes, nose and mouth.



Fig. 1. Shown here are examples of accurate and detailed faceidatedn (a), we show the automatic detection
obtained with the algorithm defined in this paper. For congoar, (b) shows a manual detection of the same facial
components on the same images.

In addition, it is useful to provide a detection of the chindj which provides the lower limits
of the face.

To date, the facial feature that has received most attersidhe eye, because these play a
central role in human-computer interaction applicatiossweell as in psychophysical experi-
ments. In a recent paper, Moriyama et al. [35] demonstrate fitecise and detailed detection
and feature extraction from the eye region is already ptessi&though the algorithm is still
complex in comparison to current face detectors, it nickligtrates that the problem is in reach.
Unfortunately, this approach is tailored to do eye detectind cannot be easily extended to the
detection of other facial components.

Using other approaches, several authors have focusedati@ition on the detection of other
facial features, e.g. [45], [46], [15], [6]. Rather than yidbng a precise and detailed detection
of all major features, these alternative algorithms derrates that an estimate of the position
of the internal facial components (or their corners) is gaes For example, in a recent paper,
Heisele et al. [15] developed a system capable of detedtimgadrners and centers of the brows,
eyes, mouth and nose. To make these results more usefall, fie&iure trackers able to track the
detected facial components under varying expressionsniiiation and partial occlusions have
been developed over the years [8], [37], [39], [53].

Based on the results summarized above, the next naturairsteyge detection is to define
algorithms that can provide @etailedand accuratedetection of all the internal facial features
and the chin line. Bydetailed we mean that a complete description of the outline of eacialfa
component is to be provided. Fig. 1(a) shows an examplepBgise we mean that the results
automatically provided by the algorithm should be complaraéd those given by human manual
markings.

In the present paper, we introduce an approach that canvachieh detailed and precise
detection of the major facial components enumerated in theegling paragraphs. An example
of our automatic detection was shown in Fig. 1(a). In Fig.)l¢{ee show the results obtained
by manually delineating the same facial features in the samages. We will demonstrate that
the results obtained with the algorithm derived in this pege generally comparable to those
obtained by such a tedious manual marking.

To achieve such accurate detection and feature extractiengmploy the idea of context
features. To properly define this term, let us look at an exanimagine we want to design
an algorithm that detects the center of the eyes in an imalge.classical approach in pattern
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Fig. 2. Sample images of (a) faces, (b) non-faces (i.e., facgext), (c) eyes, and (d) non-eyes (i.e., eye context).

recognition would be to collect a set of training images oéwnd non-eyes. The non-eye
set is usually a collection of natural scenes. This allowgoudetermine which statistics best
discriminate between eye patches and patches of othertebjeageneral, this approach works
reasonably well, but it fails to provide accurateestimate of the center of the eyes, because
an image of a non-centered eye patch is more similar to thelags than to the non-eye class.
What we really want to design is a system that can discriraith@tween eye-looking patches
and (actual) well-centered eye windows. This can be reddbhyeusing patches containing non-
centered eyes as the non-eye class and correctly centezquhighes as the eye class. We refer
to these non-eye patches as ttentextof the feature to be detected, because they define the
context information of the eye itself. The same applies heofeatures, e.g., brows, nose, mouth
and, also, the face. Examples of faces versus their comextfaces) are shown in Fig. 2(a-b).
Examples of eyes versus their context are shown in Fig. R(blate that the definition ofontext
used in this paper is not the one employed in other publicatitn object recognition, context
usually refers to background features surrounding thecbbf®r example, a black blob placed
next to a computer would be interpreted as a mouse, whiledhee lob in a street scene is
generally perceived as a person [42]. In the present pamegre/ not interested in determining
the object’s class based on such contextual cues. Insteadjant to use the context of a facial
feature, which is quite constant across identities, to idewa precise estimate of the feature’s
location. Our approach is related to the probabilistic skmal context features approach of [3]
and the context-based detection of [47]. The main diffegeiscthat our goal is to provide as
precise and detailed a detection (of a known class) as pes3o other related works to ours
are those of [41] and [23]. The first uses negative samples fle face area. The second paper
employs misaligned samples as the negative class.

Using thesecontext featurgswe can now learn to discriminate between facial features an
their context. However, the discrimination of similar das (such as these features and their
contexts) is a challenging problem, because faces and facitures have a large within-class
variance. Faces, for example, come at different sizes,eshapd colors. Age, illumination and
expression also changes the image of a face. Eyes can be ¢argmaller, closed or open, and
the iris comes with a variety of stroma and can be orientedlgiogsible directions. Mouths
are also very different across individuals, and expresaitects them most. All these changes
combined make the within-class variations of facial comgras large, and very similar to the
between-class differences (which are now given by the zoféatures).

To resolve the problem of modeling large inter-class vemmtwe will use the idea of subclass
divisions in Subclass Discriminant Analysis (SDA) [56].$DA, the goal is to divide each class
(e.g., faces) into a set of subclasses, each having a snthalhvsubclassvariability. In the case
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Fig. 3. In the proposed approach, the features (e.g., eyesihair context (e.g., eye context) are divided into sugssa. Each
of the subclasses defines a different configuration of theufeeor context (e.g., open versus close eyes). In the appesar
based approach, the dimensions of the feature space aomcesp the brightness of each of the pixels of the image. Harly,
three dimensions representing the ones with largest \@iare shown for illustration. Additional illustrationseashown in the
Supplementary Documentation

of faces, one subclass may correspond to longer or thinmes favhile another subclass may
represent faces seen under different illuminations oresgons. Similarly, eyes will be divided
in many subclasses, one of which may represent close eyearaitder wide open eyes. The
same is true for the feature context class (e.g., non-e@e®.subclass will correspond to one
type of context, while a different subclass will representeay different type of context; e.qg.,
different eyebrows. Fig. 3 shows an example, where eachassis represented by a Gaussian
distribution. Following this approach, the subspace spdriy each subclass can be accurately
computed. The union of these feature spaces definefe#teres versus conteapproach.

Once the center and corner positions of each facial comparenknown, we can use the
same approach described above to estimate the featur@e.dnathis last step, we will use the
gradient and color information of each feature to learn &cuiminate these from non-feature
parts. This, in combination with the system described appvavides the precise and detailed
detections previously shown in Fig. 1(a).

Although the detailed detection is quite obvious from sinlgdoking at the image results
in Fig. 1, one may wonder how accurate these results reafly &ris is not an easy question
to answer, because the ground-truth is not (and cannot l@yrknOne approach would be to
compare the results obtained with the manual markings goyea person. The problem with
such an approach, is that we do not know how accurate humarat alelineating each of the
facial components. We resolved this issue as follows. Rivetdesigned a system which allows
users to zoom in at any specified locations to facilitatenggliion of each of the facial features.
Then, we asked three people (herein referred to as judgesiatually delineate each of the
facial components of all the face images used in the expataheesults section of this paper —
a total of3, 930 face images. A small selection of these manual markingsas/shn Fig. 1(b).
Next, we compared how the markings of each of the three judyesge from the other two.
The within-judge variability was (on averaggR pixels, corresponding to a percentage of error
of 1.2% in terms of the size of the face. This gives us an estimateeotituracy of the manual

4



detections. As we will see later in the paper, the averagw @frthe proposed algorithm was
7.3 pixels (or2.3%), almost as accurate as manual detection.

The results provided by the algorithm defined in this papdt thius be instrumental in
the applications outlined at the beginning of this sectionomputer vision, human-computer
interaction, behavioral analysis, and computer graph#gs.important application is in the
construction of active shape models [4] and in shape amsa[¢&] techniques, which require
large amounts of labeled data for training. Accurate andildet facial feature detection is also
necessary in the analysis of facial expressions with FAG®iéF Action Coding System) [10],
[53], behavioral analysis [7] and in the analysis of non-oas in American Sign Language
(ASL) [31]. ASL non-manuals are facial expressions thatvegngrammatical information in
a signed sentence. ASL non-manuals are crucial for the staaeting of ASL but difficult
to obtain due to large variations in expression and occhssi®We will demonstrate how the
proposed approach can be successfully applied to thisectyatig problem.

The rest of the paper is organized as follows. In Sectionéldescribe the key ideas underlying
the approach defined in this paper and provide derivationshi® modeling of the subspaces.
Section 1l provides detailed derivations of the face d&tecSection IV does the same for the
eyes and eyebrows. Section V describes the detection ofthaining facial components, i.e.,
nose, mouth and chin. An alternative formulation based @nidiea of subclass division with
AdaBoost is derived in Section VI. Extensive experimentaidation and applications are in
Section VII. We conclude in Section VIII.

[I. FEATURES VERSUSCONTEXT

The main goal of this section is to derive a classifier that dscriminate between patches
containing a certain feature (e.g., an eye center) and xbfgatures (e.g., eye corners). As
outlined in the introduction of this paper, this approachi ailow us to discriminate between
the context of the feature and the feature itself, yieldimg accurate detections we need.

Accurate detection of faces and facial features is still@lehging task, mainly because these
have a large variability. Adding the generative processg®ee, expression and illumination to
this problem makes the detection task extremely challendgdast shadows, glasses, and partial
occlusions also make our goal elusive.

The common approach to building a classifier that learns liigh variability of features
(e.g., eyes) has met with difficulties, even when powerfui-hoear algorithms and thousands
of training examples have been used [51]. This is due to tmeptexity of the subspace or
manifold defining each feature. As a consequence, the mggalassifier may be able to give an
estimate over the position of the feature’s location, biuttéaprovide an accurate detection of
its center and bounding box (i.e., correct estimate of tla¢ufe’s size). To resolve these issues
without resorting to complex algorithms, we will use theadsf SDA [56].

In the two-class classification problem, the goal of SDA igetirn to discriminate between the
samples in the two classes by dividing these into a set oflasthes. The algorithm starts with
a single subclass per class. If this division is not suffictensuccessfully separate the training
samples in the two specified classes, the algorithm divideh elass into two subclasses. This
division process is repeated until the training samplescareectly classified. A key concept in
SDA is how to know when the training and (potential) testiragadwill be correctly classified.
Some subclass divisions will provide an adequate classditaf the classes, while others will
not. To determine this, we employ a recent result [30] onrdigoant analysis (DA) methods.



First, recall that DA algorithms typically use a generalizsgenvalue decomposition equation
of the sortA™'BV = VA, where A and B are the metrics (given by symmetric, positive
semi-definite matrices) to be minimized and maximized, ¥nednd A are the eigenvectors and
eigenvalues defining the subspace where the classes artilhopest separated. In SDA, the
metric to be minimized is the covariance matbx = n=*> " | (x; — u) (x; — 1)", where

is the mean feature vector of thetraining sampleX = {x;,...,x,}, and the metric to be
maximized is the betweesibclassscatter matrix
K1 Ko

Yp = Z Z prj P (b — po) (g — pea) ™

j=1 I=1

where i; is the sample mean of the; feature vectors in thé&”" subclass of clasg p; = i
defines the prior of that subclass, afdis the number of subclasses in each of the two classes,
i={1,2}.

The between-subclass scatter matrix forces samples fréeratit classes to be projected as
far apart as possible in the subspace defined by thepfieggenvectors oV. At the same time,
the covariance matrix ensures that samples belonging teaime class fall close to one another.
The problem with this DA approach is that these two metricy ri@@or completely different
solutions forV. In [30], it is shown that a DA technique may not yield goodssiéications
whenever the sum of the inner products betweengthesigenvector given by the metric to be
maximized and the firsy eigenvectors given by the metric to be minimized is larganthkero.
The value given by these inner products is calledateflictbetween metrics, since this specifies
when the two metrics favor different solutions fer. Note that when these inner products equal
to one, it means that the metrics favor completely orthof(@pposite) solutions. When the inner
products are zero, they vote for the same solution and, heheee is no conflict. On average,
DA algorithms have been shown to work best when this conflidtier is low [30], [56], [54].

In this paper, we extend on this result to learn to discrin@nzetween the subclasses defining
the facial features and their context. This approach is keiydéntify an appropriate number
of subdivisions of the training samples. The ability to ané&bically determine the adequate
number of subdivisions for each of the two classes is whatesakur approach different from
other subclass-based algorithms such as [55], [11]. Fomplg the algorithm in [55] uses a
similar set of metrics to those of SDA, but requires that thenber of subclasses in each class
be known or specified by the user.

In our approach, each class will be divided into a number btksses using the well-known
K-means clustering algorithm, because this permits to mtuelmany non-linearities of the
training data efficiently. The value dft, that is, the number of subclassds & K + K5), is
given by the value which minimizes the conflict between thdrive of SDA, Fig. 3! Here,
we use theK-means algorithm to divide each class into a set of subdasather than the
nearest-neighbor approach presented in [56], becausattbe does not allow for the modelling
of the complex non-linearities observed in the face andafdeature data that we need to model.

The approach described thus far in this section addressegrtiiblem of modelling different
types of features (e.g., different shapes, illuminationd arientations of the same feature).
Therefore, we are now in a position to model the challengiety ®f face features and their

1This can be seen as a supervised approach to determine ap@agier number of clusters ii-means clustering.



context (i.e., surroundings). This processkey for the accurate detection of each class and is
defined next.

To better understand the role of context features in theratedetection of a facial component
recall that when a classifier does not precisely detect tbialféeature it has been trained on,
it usually provides a close estimate. This is because castosts, eyeglasses and others will
make a neighboring area look like the actual feature to thesdier. To resolve this, we train
the classifier to discriminate between the feature and iighbering areas — the cause of these
imprecise detections. This creates a pulling effect towthel desirable location, Fig. 3. The
pulling effect can be formally defined as a decrease of théahitity of the context features
(given by its mixture of Gaussians) and an increase of thegbility of the feature (given by
the other mixture).

The subspace where the feature and its context are besasahas simply given by the first
p eigenvectors of

Y5V = N VA,

whereV is a matrix whose columns are the eigenvectorEp’fZB, A =diag(A,...,),) IS @
diagonal matrix of corresponding eigenvalues, with> --- > X\, > 0, ¢ is the dimensionality
of the data (i.e., size of the patchy, € R?, andp < rank(X'S5) < q.

In the following sections we describe how this general agpinacan be applied to the accurate
detection of faces, eyes, noses and mouths.

[1l. FACE DETECTION

We first derive the general approach for the detection ofsfagestills. This is followed by
a description of how to improve these results when detedido be carried out over a video
sequence.

A. Detection in stills

We first collect a set of training images containing différeypes of faces and facial configu-
rations under different illuminations, with different eggsions, and at different poses. We limit
the faces to be nearly frontal views with rotation angle lgss130° in each direction. We will
use these images to do detection withid5°. The positions and sizes of the faces are obtained
from manual markings. These images are normalized to haweiading box of30 x 30 pixels.
The training set corresponds ¥, 664 images of cropped faces.

For clarity, let us label each image with the vectary, s)? representing the parameters of
a cropped image, withiz, y) the position of the face in the image patch ands scale; i.e.,

s = ?’1—0 where! is the length of the bounding box of the face. Following thigation, we
see that, in this first set representing the correctly laedlifaces, all images are labelled with
the center position of the image patch (denoteg y,)) and unit scale { = 1), because all
images have been normalized to be centered fac&® ef 30 pixels. In contrast, the non-face
training set contains image patches with different labkisparticular, we include two types
of context information. The first set corresponds to croppeages located in the neighboring
areas of the faces but at the correct scale=(1); that is, imprecisely localized faces. More
formally, (xo+9dx, yo+dy, 1), wheredz = oy = {—15,...,—6,—5,5,6,...,15}. The second set
of training images representing the non-face class casrefpto faces cropped at an incorrect
scale and at correct and incorrect locatiofis, + 0x,yo + dy, 1 + ds), wheredx = dy =



{-15,...,-2,—-1,0,2,1,...,15}, andds = {—.6, —.5, —.4,—.3, .3, .4, .5, .6}. The total number
of non-face samples generated using this approach Wa992. These training sets are illustrated
(for one of the training images) in Fig. 4. In this figure theage in the middle of the figure
(marked with a blue bounding box) corresponds to one of thimitrg samples in the face set.
The rest are training samples of the non-face (i.e., faceeggrset. Note the non-face set defines
wherenotto detect the face — precisely at those places and scaleg fduer detection algorithms
are known to have most of their errors.

To increase robustness to rotation, we extend the trairghfgysincluding the images obtained
by applying in-plane rotations within the range -e15° to 15°. The cropped images are mean-
and norm-normalized to make them invariant to the intensitthe light source.

Fig. 4. Training sample of the face class (shown within the blue tamg the non-face set (shown within the red
squares).

K-means clustering is applied to these training sets. Eagheans clustering is repeated five
times to be less sensitive to initializations. The numbeclaéters (subclassesl,, is obtained
as defined in Section Il, yielding; = 34 for the face class anfl’, = 12 for the non-face group
(recall, K = K; + K, = 46). Note that even though the non-face class had a larger nuafibe
samples, the number of subclasses is larger for the facggiiths reinforces the theoretical
observation made earlier on the high variability of the witblass measure of faces. We also
note that the number of subclasses does not tend to be langeenueven though the number of
samples is quite large. This suggests that the proposedagprs able to model the similarities
of the features and their context correctly.
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Fig. 5. A selection of the mean feature vectors representing (&sfdb) face context, (c) eyes, and (d) eye context.

The means and covariances of the resulting subclagses)d 32;, for the face and non-face
subclasses are then calculated, Fig. 5(a-b). To detecatiedri a new image, we do an exhaustive
search on all possible windows at multiple scales over th@neof pixels with skin color. The
skin color model is defined using a Gaussian distributioresgnting the HSV color space,
N(pte, Be), With . = (pg, ps, pv)? and B, = diag(oy, os,0v). Over 3 million skin-color
sample points were used to train the model. Morphologicarajons are used to fill in holes
in the face region and delete small isolated (non-face)saji2@].

To test the different scales, each test image patcty;, centered at thg” image pixel,
is resized to the appropriate scale 38f x 30 pixels and compared to the learned subclasses.
Formally,

arg miin(VTtSj —~ Vi) VIEIV(VTt, - V), (1)

with subclasses = 1 through K; representing the first class (face) and subclassed<; + 1
to Ky + K, the second class (non-face). The minimum of these distagives the class label
of the j** position at scales. Two examples of this process are shown in Fig. 6.

Note that at each scale, Fig. 6(a), one obtains a distineictdeh of the face. At large and
small scales there is generally no detection (as expecBad). at the correct scale, we will
normally have several detections, since a small (1-3 pixdtplacement of the image window
was considered a correct detection during training. We neednto define a mechanism to
combine these detections into a single one. To do this, lelenste the face detections at scale
s as (usj, vs;, s)7, where (ug;, vs;) is the position of the window image,; within the scaled
image. A two-step voting method is then applied. First, tbales with the most detections is
selected as the reference scale. Face patches detecterlstaties above or below this reference
scale are eliminated. In the second step, the remainingtiate are normalized by their scale
value (ug;/s,vs;/s,30/5)T before being combined together as

V(uj,v;) = Z(usj/s,vsj/s, 30/s)T.
This provides a voting over each image location. Detected fagions having a small overlap
with the top voted region are reclassified as non-faces. Tia distimation of the face position
(center and scaleju, v, s)T, is given by the mean over the remaining overlaps, Fig. §(b,d



Fig. 6. (a,c) Detection results as given by (1) at each of the passitéles. (b,d) Final face detection as given by
the mean window after outliers deletion.

B. Face detection in video

In many applications, as it is the case in the analysis ofmanuals in ASL, we are interested
in detecting faces in all frames of a video sequence. In ASL,ifistance, the variability in
facial expressions may contain grammatical cues on topetlhssical ones of intonation and
emotional content [31]. In such cases, we can apply our fatectbr derived in the preceding
section at each frame of the video sequence. Still, theteestibur face detector, as those of any
other algorithm, may be imprecise in a few of the frames. Thiparticularly true when there
are occlusions or large rotation angles. Since we are noectilet) faces in a video sequence,
we can make use of the continuity of the motion of the subjertsorrect the detection errors.

Let f; = (u,v,s)T, where(u,v) is the center of the detected facethe estimate of the scale,
andt the frame number. We fit a Gaussian model over the positiorsealg values given by all
frames, N (ug, X¢), With g = (ptu, tto, 1s)T the mean an®; = diag(o?, 0%, 0%) the variances.
We can now use the Mahalanobis distance,

By = (F — )" St (£, — )

to detect outliers. In our algorithm, we consider distaneeger than2.5 to correspond to false
detections. This value is chosen to set the (probabilitycof)fidence interval te- 90%.

Once the outliers have been excluded, those frames that hadsad detected face will not
have any estimate of the location of the face. In these cdkeslocation and scale of the
face is estimated using a linear interpolation of the neagimgy frames (i.e., those previous and
subsequent frames with correct detection). This will pdeva smooth transition between frames.
Examples of this process are shown in Fig. 7.

IV. EYES DETECTION

After (holistic) face detection, eyes are the facial feattor have received the largest attention,
mostly because these play a major role in face recognitidrhaman-computer interaction prob-
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Fig. 7. (a) Detection results on the individual frames, with ocidas larger than those learned by the algorithm.
Large occlusions can cause misdetections. (b) Misdetectiorrected using the Gaussian model.

(b)

lems. Unfortunately, accurate detection of the eye cetttassoften require highly sophisticated
methods [35]. In this section, we use the general approatihedeabove to derive a simple
algorithm to detect the eye center and its corners. Thesdtsesre then used to extract the
shape of the iris and the eye lids.

A. Detecting the center and corners of the eyes

A major reason behind the difficulty of precise eye deteci®the high variability of these.
Although most eyes may seem quite the same at first, closbrsiaf a set of cropped eyes (i.e.,
in isolation) reveals a different picture, Fig. 2(c). Eyeaynhave very distinct shapes (mostly
across ethnicity and race, but not exclusively), pupil sérel colors. Furthermore, cast shadows,
glasses, and lighting have a strong influence on how eyesagppan image. In addition, eyes
can be open, closed or any way in between, and the iris may inéingpat any direction. For
now, we are interested in finding the eye center, regardlesiseoposition of the iris, and its
bounding box.

To detect the center of each eye, we use the main approaclkediisection Il. Here, the first
class is well-centered eyes, represented by images of edogyes at the correct positions, while
the second class corresponds to cropped images of the sam@4sk 30 pixels) located in the
neighboring areas of the eye. Fig. 8 shows how the eye windavemtered (class 1) while the
eight accompanying background windows (class 2) are |daaffecenter. To increase robustness
to scale and rotation, we expanded the training set by inofuthe images obtained when re-
scaling the original training images from to 1.1 at intervals of.1, and by adding in-plane
rotated versions of them within the range-ef5° to 15°. This yields a total o5, 780 samples
for class 1 (the eye class) and, 248 samples for class 2 (non-eyes). Examples are shown
in Fig. 2(c-d). Images are mean- and norm-normalized to ntla&en invariant to the intensity
of the light source. We only train a left eye detector. Detexs of the right eye are done by
generating a mirror image of the right eye region. As above,used the stability criterion
of [30] to determine the most appropriate number of subekstustered withi-means. This
yields K; = 23 and K, = 11, Fig. 5.

To detect the eyes in a new image, we do an exhaustive seaacpraispecified region within
the face detection box. These potential eye regions werardat from a statistical analysis of
the eye location over the manually detected eyes previousdy to train our classifiers. The
goal is to establish where the eyes are with respect to thadmog box found by the holistic
face detector. These regions are shown in Fig. 9(a). Theefighows two eye regions per eye.
To detect the eye centers in a previously unseen face, wesdesth for them within the smaller
green region (since this includes 90% of the eye centers in our training set). If no eye is
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Fig. 8. The red star in the figure corresponds to the center of the éydow used to generate the training data
for eyes. The blue dots represent the window centers of thkgnaund samples. The distance from the eye center
and the background window is set 2d pixels.

detected in this region, we move our search to the wider béggon (which includesl00%
of the training instances). These regions are in effect timgof our classifier, and although
one could also estimate the distribution within them, a sgmmiform probability provides the
results we need. Note that these search regions are notumayl to the classifiers previously
defined, they also make the search much faster and robuse(pieg the search to move over
shadowed regions that may resemble an eye).

As in training, the test image is also re-scaledste: {.9,1,1.1}. At each scale, each of the
cropped images,;, of 24 x 30 pixels and centered at thé" pixel within the eye-search region,
is compared to the learned subclasses using Eq. (1).

The minimum of the distances given by (1) provides the clabsllof the;*" position at scale
s within the eye region, Fig. 9(b). Let us denote this claselléb,;, v,;, s)*, where(ug;, v;)T is
the center position of the window imagg;, ands is the scale. The results obtained at different
scales are normalized and addéd, D(us;/s,vs;/s,s/s). This provides a voting over each
location, Fig. 9(b). Detected eye regions having a smalllapewith the top voted region are
reclassified as background. The final estimation of the e#ipn (center and bounding box)
is given by the mean of all remaining detections, Fig. 9(d)isTvoting approach may remind
the reader of a generalized Hough transform, where the sbiape object is detected using a
similar approach.

If a video sequence is available, as it is the case in the ASilicgtion presented earlier,
we can further refine the detection as we did in Section Illfeares. Here, we use a similar
Gaussian model to that employed earlier. The only diffeeeschat this modeling includes the
positions of the two eyes as well as the angléefined between the horizontal axis and the
line connecting the two eye centers. Detected outliers, faése detections) are eliminated and
substituted by a linear interpolation between the previaod subsequent frames with correct
detection.

B. Eye and eyebrows shape

With the face and eyes detected, we can move to the next pliasdracting the detailed
information we need. The very first thing we need to do is tedwsine the left and right margins
for each eye. This we can do by detecting the eye corners.Hieacthis, we repeat the process
defined above for detecting the center of the eyes but appytite detection of their corners.
The same process is needed here because eye corners atsonctné large variety of shapes,
textures and colors (makeup and eyeglasses being a majoleprdhat needs to be learned).
We build two detectors: one to detect inner corners and andtr the outer. We train on the

12



50
100
150
200
250

Fig. 9. (a) Priors: region where the eye centers are in the traimmages. (b) Voting: results of the detection of
the center of the eyes at different scales. (c) Final detedif the eye region.

left eye and apply it to detect both — right and left. To detbet corners of the right eye we
simply flip the image (i.e., mirror image). Two results of es@ner detection are shown in Fig.
10.

The iris can generally be readily detected as the minimumnil ¢he average circle areas. This

can be defined as a convolution,
P = convI, H)

(up, vpy) = arg min P(u, v),
wherel is the grayscale images arfdl is a circle mask of radius;. This method could have
false detection if the image included heavy shadows or daakemp around the eye area. To
prevent these false detections, we first obtain all localimmnand then select the one that has
the largest gradient between each detected local minimwhtheneye. The highest gradient will
be given when moving from the darkness of the iris to the wieiss of the conjunctiva, making
it a robust detector. Fig. 10 shows the detected iris as &cilc the above equation, the image
I corresponds to a crop of the detected face. In this caseatieeHas also been normalized to
have the line connecting the eye centers parallel tarthais.

While the iris region is dark, the eye lids are of skin coldnisTis especially true for the lower
lid, since this has a very limited mobility and is not highlffeated by deformations, shadows
and others. However, the lids need closer analysis becuakeup and small occlusions (such as
eyeglasses) may present some difficulties. To addressvibigpply a correlation with various
line orientationsd. The one that gives the highest average gradient in its rodimection is
chosen as the best match. Then, the lid contours can be ddfinegeans of a cubic spline
passing through the detected points. The final result istited in Fig. 10.

Once the shape of the eyes has been determined, we move tattaetien of the brow’s
shape. With the position and shape of the eyes known, thetawteof the brows is made much
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Fig. 10. Eye corners are represented with an asterisk. The iris iwrstas a circle, of which, the red segment is
the visible part. The upper and lower contours of the shapgbe®ye are shown in blue.

easier. For instance, theposition of the eyebrows is very restrictive, since this tabe very
similar to that of the eyes. Similarly, theposition of the eyebrows is always above the eyes and
its position range is very limited. Since the eyebrows atleeeidarker or lighter than the skin,
it is easy to detect these by searching for non-skin colohénrégion above the eyes. We define
the eyebrow search window as follows. First, the distaice, between the two eye centers
is calculated. Then, two search windows are defined, eachidihw,,.; and height2d.,.,/3,
which ensures the inclusion of 100% of the training samplé® bottom limits of these two
windows are set to be equal to that of the line connecting Yleés eenters. To avoid confusion
with the eyes region, the eye regions are eliminated fromwimelows. This deletion can be
readily accomplished, because we already know the eyepesha

To detect the eyebrows in the search window defined above usilor information, we use
the same HSV color space defined earli®i.., X.). Using this model, the pixels above the
eye regions that fit to the color model are eliminated. Theaiaing set of pixels defines the
potential region for the brows. To obtain a detailed and eateudescription of their shape, we
use the gradient information. A Laplacian operator is agptio the non-skin color region. The
pixels with highest gradient in each column are kept as piatedescriptors of the eyebrow’s
shape. Binary image morphology is applied to the result teeggte a uniform region. Only the
largest, continuous region is kept. Two example resultgiobt with this approach are shown
in Fig. 11.

(b)

Fig. 11. Two examples of eyebrow detection. (a) Binary descriptibthe brow. (b) Final contour detection.

V. DETECTION OFOTHER FACIAL FEATURES

The approach defined above can also be used to detect thefathadrfeatures. Moreover,
with a good detection of the face and the eyes, the locatioth@frest of features is already
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Fig. 12. (a) Shown here is an example of nose detection using theassapproach defined in this paper. Refinement
is done with a voting approach over various scales. (b) Frefintd right and top to bottom: gradient of the nose
region found in (a)y projection of the gradient; projection, and final detection of the nose shape and nastril

Voting

approximately known. We start by detecting the nose, themento the mouth and conclude
with the detection of the chin line.

A. Nose

The position of the nose is arguably the easiest to estineat@use, as opposed to other features
such as the eyes, brows and mouth, the nose cannot undeggo daformations. However,
extracting the contour of the nose is still challenging.csirthis is highly influenced by cast
shadows or smooth texture. Cast shadows are especialhygstoo caucasians, who have larger
noses. Smoothness is more prominent in Asian faces. Whaovkaalv is that the nose should
be within the two eye centers about thexis and below these about thexis. The nose search
region is thus defined as that below the lower eye lid and batwke two eye centers.

We train a nose classifier following the procedure detaite8ection Il. Here, we use?l 765
samples to represent the nose classandd4 image patches corresponding to the nose context,
yielding K; = 14 (for the nose class) andl, = 10 (the nose context class). We see that, as
expected and consistent with our theory and previous sestiieé number of subclasses in the
nose class is larger, since noses have a larger varialhitity their context. Even more interesting
is to note that the number of subclasses in the nose classaiéesitinan that of the face or eye
classes. This is also consistent with the claim made at thenbieg of this section where we
noted that noses are less variable than faces and eyes.

We test detection at scale$, 1 and 1.1 and combine the results using the voting approach
defined earlier, Fig. 12(a). To extract the nose contour, aleutate the gradient of the image
and generate its projection onto thendy axes, Fig. 12(b). This gives us two histograms of the
gradient,G,, andG,. To eliminate outliers, such as shadows and makeup, we fathdhinding
box containingnaz(G,)/2 andmaz(G,)/2. This provides a tighter, more precise estimate of the
location of the nose. The nostrils are detected as the twkedg(i.e., two minima in graylevel)
points within this tighter bounding box, Fig. 12(b). The eugradient curve is taken to be the
nose edge. The final result is shown in Fig. 12(b).
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Fig. 13. (@) Mouth corner detection. (b) Gradient of the mouth winditsv:: andy projection, and the final result.

B. Mouth

The mouth is highly deformable, making an accurate and geedetection of it challenging.
Sophisticated algorithms have been recently defined toeaddhis problem [7]. Here, we use
our methodology to derive a fast, accurate and detailedctiete A mouth corner detector is
defined using the subclass-based classifier presented iioiséc We use4, 600 mouth corner
samples and, 360 images to represent the context. This yieldéd= 17 and K, = 7. We only
train a left corner classifier. To detect the right corners, aeate mirror images of the testing
windows. An example detection is given in Fig. 13(a). Oncaimgwe test at scale9, 1 and
1.1 and combine the results with the proposed voting method.btending box of the mouth
is then obtained following the same procedure describedh®mose, Fig. 13(b).

Mouths are rich in color, which makes the final process ofraglting them feasible. Here,
we use a similar process to that employed earlier — skin aotdr Laplacian edge detection. In
particular, we extract three features, given by saturatme, and Laplacian edges. These three
masks are thresholded at valugs 7;, and 7, before being combined into a single response.
The three values are determined as follows. Since the lips eoakes the saturation of the
lips higher than that of skin[ is set as the average saturation value. To be able to deal with
different kinds of lips, an adaptivé), is computed using a valley seeking algorithm as was
done in [29]. In this approach, the valleys (i.e., minima)tle histogram are searched using
an iterative procedure. At the initial step, the histogranpartitioned using a large number of
regions. Each region boundary (i.e., threshold) is movadid the closest minimum using the
gradient of the histogram. As more than one threshold elildo the same minimum, these
are combined into a single one, reducing the number of alist®hen the algorithm converges
to a final solution (i.e., all the thresholds are at one of theimm), the lip hue is defined by
the largest of the resulting cluster, which yiel@is. Finally, to determin€l,, we note that the
boundary of the mouth, especially around the corners, masgedge response when compared
with the face regions of the cheek. Therefdfg,is set to be the mean of the gradient of all the
pixels within the face region. The final extraction of the wam of the upper and lower lips are
given by the outer contour of the mouth mask, Fig. 13(b).
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Fig. 14. A few examples of chin detection with partial occlusions.

C. Detecting the chin line

The chin is given by a slightly curved edge below the mouthweler, this can be easily
occluded by cast shadows or by the hand and clothing. In s@®escthe chin line is unclear,
because the texture of the neck or lower lip is too smooth twide a clear delineation. To
address these issues, we first extract the edges from a Inguinolk located immediately below
the mouth and then find the best match between the edge poidta guadratic (ellipsoidal)
curve. The shortest distances from the edge points to tmerdifit, d, are calculated and assigned
positive or negative labels depending on whether theselmreeaor beneath this current fit. A
Gaussian model is fitted to this resuM( 4, 04). The edge points with distan¢é| larger thanl
pixels are eliminated, witli; being the larger 010 and20,. This fitting process is repeated over
the remaining of the points, until no points are excludeck Tésulting set of points corresponds
to the detection of the chin. Examples of the final fit were giueFig. 1. Three examples with
occlusions are now shown in Fig. 14.

VI. SUBCLASS ADABOOST

In the formulation defined in the preceding sections, we rewployed the idea of subclass
divisions in discriminant analysis to derive our algorith@ther techniques could have been
used. Among them boosting, and especially Adaptive BogsfidaBoost) [13], has shown
its potential in several computer vision problems [24],][4&6], [43]. AdaBoost-based face
detection [44] is generally regarded as one of the most dipgeapproaches, since it provides
robust, real-time detections. However, this approach lsbeen successfully applied to the
accurate detection of the internal facial components, ime#he same AdaBoost approach does
not work well when used to detect the internal facial compdsieTo resolve this problem, we
will now derive a subclass-based AdaBoost algorithm andituséhin our general approach of
features versus context.

To begin with, let us reformulate the AdaBoost feature selacapproach of [44] within the
idea of subclasses. In this approach, which we will refeist8abclass AdaBoost (SubAdaBoost),
the goal is to divide the training samples in each class ihertumber of subclasses which
maximizes classification. Here, thé training sample is usually referred to &s;,y;), where
x; is the sample image ang equals zero if the sample belongs to the first class and ore if i
corresponds to the second class.

In feature selection with AdaBoost, we iteratively seldug §i** feature associated to the
lowest classification error. By combining the different tiea selections, we obtain a more
accurate (stronger) classifier. At each iteration, thiscisieved by training a classifiér;(x;),

Vi, for each of the possible featurgs The classification error for each of these classifiers is
simply given bye; = > w;|h;(x;) — y;|, wherew; is the weight associated to ti#é sample. In
AdaBoost, each sample is weighted according to its relevémcbuilding the classifier. In the
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first iteration, all samples in the same class are weighte@lsg that isw,; = 1/2a if y; =0
andw,; = 1/2b wheny, = 1, wherea andb are the number of samples in the first and second
class, respectively. These weights are to describe a pipabstribution and, hence, at each
iteration t, they are normalizedy,; = w,;/ >, w.,. Then, after selecting the feature which
minimizese; at iterationt, we update the weights as

Wit1,5 = wt+1,zﬂt1_ei7
wheree; = 0 when thei’* samplex; is correctly classified and;, = 1 otherwise, and?, =
€;/1 —€f, with €f = min; ¢;. This reweighting ensures that at the next run of the algarjtthe
samples that are still misclassified will be given more intgoce than those that have already
been successfully classified.

The procedure defined above provides the set of featureshande, weak-classifiers needed
to correctly classify (most of) the training data. These kvekssifiers can now be combined
to generate the strong classifigfx), which is set tol if >, auh, > 1>, o, and0 otherwise;
wherea; = log 3; .

When each class is divided into subclasses, the resultasgifiers can be combined with a
union operator. First, we apply the above algorithm to abtae strong classifier for each of
the subclasses. The strong classifier of subdlassgiven by

hc,k;:{ 1, Etatht > %Ztat

0, otherwise.

Here, h. . is the strong classifier that discriminates betweenitfiesubclass in class and the
samples in the other class (i.&.,x; with y; # ¢), ¢ = 0,1. The final classifier is given by
H, = U,;K;1 her, WhereK, is the total number of subclasses in class

Note that, since in our case we have two-class classificgtioblems (e.g., hon-faces versus
faces), we only need to train for the strong classifiers, which discriminates between ti#té"
subclass in classand all the samples in the other class (ivex; with y; = 0). The final classifier
isH, = U,f:ll hy . There is no need to determit& or train forhy i, sinceH, = ﬂkK:llm. Note
also that unlike classical AdaBoost, SubAdaBoost can heatiscriminate classes containing
disjoint subsets.

It is known that AdaBoost algorithms reduce the classificaterror in a number of steps
proportional to the sample size[2]. This means that the selection of an adequate partition o
classes into subclasses is proportionakto, wheres is the number of partitions to be tested.
We use cross-validation to do the selection of the subclassber K;. The training data-set
is first randomly divided intaV disjoint subsetsN — 1 of these subsets are used for training
the SubAdaBoost classifier defined above. At this stagelassifiers are obtained, each with
K, subclasses, i.e{l, ..., s}. The remaining subset is then used for validation, regyitinthe
classification accuracieR;, i = {1,...,s}. The number of subclassés, is taken to be that
yielding the minimum classification error, i.efs; = argmin; R;. Using this approach on the
same training set described earlier, we obtaingd= 9 for faces,K; = 10 for eyes,K; = 15
for noses, and<; = 12 for mouth corners. The only difference to the previous aEtisDA
formulation, is that we now use the Haar-like features ol,[#hich have been shown to provide
good results in detection tasks such as these.

VIl. EXPERIMENTAL RESULTS

We tested the proposed approach with images (stills) arebwequences. Before we do this,
we define how to estimate the accuracy of the proposed method.
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A. Accuracy of the manual versus automatic detections

To properly compare our results with those obtained with ua&detection, we need to have
a representation that is common to both. To this end, we fgst uhe approach derived in this
paper to find the shape of each of the internal facial featanesthe chin. We then resample
these curves with a total ¢f8 equally distanced feature points. The corner points spehi
beginning and end of a curve. The rest of the points are unifolocated on each of the curves
to facilitate comparison with the manual markings.

The basic error measurement used in our experiments is tlha Beclidean distance. It is
defined as follows. Each detection result is represented2ag & matrix F;, corresponding to
the 2D coordinates of thefeature points. Let = {1, 2} define two detections, which can be
obtained either manually or automatically. Also, ¥f(k) represent the 2D coordinates of the
k" feature point. Then, a comparison of the two detections\isrgby

d(F,Fy) = |F1(k) — Fa(k)]2,

~| =
MN

B
Il

1

with || - || is the2-norm of a vector. Also, note that in our case- 98.

To perform a fair comparison with the manual detection tsswbe provided three “judges”
with specific instructions on how to mark39 feature points around the same facial features
detected by our algorithm. The judges had the option to nfiagmy portion of the image.
After manually marking each of the images, the facial featoontours were obtained with a
least-squares fit over the fiducials defining each of the fée&ures. All resulting curves were
then resampled to a total @B feature points to yield the same detection as that given by th
proposed algorithm.

To determine how accurate these manual detections wereyoeeau as follows. The mean
detection error for the manual detections, denatgd was estimated by comparing the results
given by the three judges. L&1;; € R?** denote the manual marking of th# image as
given by the;* judge. Then,

1 m
r==— Y d(M;;, M) + d(M;;, My3) + d(Mja, M;3),
enm 3m;( 1 9) +d(M;; 3) + d(M;y 3)

wherem is the total number of manually delineated faces. Also, tetize standard deviation
of this value asst,,.
Another common way to represent the above result, is as @&mge of the error in terms
of the size of the face, which can be calculated as
By — BN zm: d(Mi1, Miz) + d(Mi1, Mis) + d(Miz, Mi3)

om
i=1

T
wherer; is the face radius (in pixels) of th#" face image, which is estimated manually. A
typical alternative for the percentage of error is to usdf (bf) the intra eye distancé,,.,/2
in lieu of the radius in our last equation [6], [33], withspecifying the image. We denote this
alternative error measurgy,.

After obtaining the mean detection error of the manual dites, we can calculate the mean
detection error of the proposed algorithm, denotgd In order to do that, we compare the
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automatic detections\; € R?*% to each of the results given by the three juddds;, where,
as abovej specifies the image andthe judge. This is the same as We have

1 m
€A — 3—m ; d(Al, le) + d(AZ, Mlg) —+ d(Al, Mlg)
The standard deviation of of this value is denoted and the percentage of the error in terms
of the size of the face i, = 1/6m > ", (d(A;; M) + d(A;, M) + d(A;, M;3)) /r;. Again,
E¥ is obtained by substituting; with d.,., in the above equation.
Ideally, we wantey ~ ey, sta ~ sty, Ea =~ Ey and £ ~ Ef,. This would indicate that
the proposed algorithm is as accurate as the human judges.

B. Detection in stills

The test images used in this first experiment were obtained the AR and XM2VT face
databases. The AR face database [26] includes four differguressions (neutral, happy, anger
and scream). Each expression appears twice. We use thédeneames for a totab0 subjects,
yielding a first set of400 test images. To increase the variability in face shape, we ated
the eight images for a total afo0 subjects from the XM2VT database [32], which provides a
second set 0800 images and a combined total ©f200.

The face and facial feature detections given by the propafgpatithm are compared to the
manual markings given by the three judges. The judges’ medecton error ise,; = 3.1
pixels with standard deviatiost,, = .8 pixels, which corresponds to a mean percentage error
Ey = 1.1% (B, = 3%).

We repeated the same analysis using the manual detectioss lgy the three judges on the
1,200 imagesandthose obtained by the proposed algorithm. Several examapéegiven in Fig.
15. The results were, = 8.4 pixels andst, = 1.2 pixels, or £, = 2.7% (£ = 6.9%).

C. Detection in video

Our next experiment considers the video sequences of ASImannals. These video se-
guences were selected because the variability in expressid pose is large. We collect&d
sequences of approximat€ely frames each, providing a total 8f 730 frames. These sequences
were signed by’ different subjects. Each face is approximataly) x 250 pixels.

In some applications, such as in the modeling of ASL nonmianwaclusions can be very
large. To gain robustness to these, a Kalman filter [17] isley@d to smooth each of the
detected fiducials. An example of our detection results weasva in Fig. 1(a). We now show
ten additional examples in Fig. 16. The error wag = 4.1 pixels with standard deviation
styr = 1, which means a percentage of errorfof; = 1.3% in terms of the size of the face. An
example of manual detection was shown in Fig. 1(b). In compar the proposed algorithm
yielded e, = 6.9 pixels andst4, = 1.5 pixels. This corresponds té&, = 2.2%. Similarly,
ES, = 3.1% and ES = 5.1%. Again, the accuracy provided by the proposed approachlis on
slightly below that of an automatic detection.
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Fig. 15. Shown here are the automatic face and facial feature detectbtained in the images of the AR and
XM2VT face databases.

D. Facial feature detection using SubAdaBoost

SubAdaBoost is utilized to detect the the internal faciatdees. Then, we employed the same
algorithms described in Section IV-V to get the outline offeaf them. For testing, we used the
samel, 200 still images from the AR and XM2VT face databases describdsl@ The mean
detection error for SubAdaBoost is; = 9.0 pixels with standard deviatiost, = 1.3 pixels.
This yields a percentage of error for the automatic detectibE, = 2.8%. We also used the
2,730 frames from the ASL video sequences described earlier., Hleeemean detection error
wase, = 7.8 pixels (F4 = 2.4%) with standard deviationt, = 1.9. We see that the face
detection algorithm based on SubAdaBoost provides onbh#li lower classification results
than that of the SDA-based algorithm. This further dematss the generality of the features-
vs-context framework described in this paper. Nevertlseldse SDA implementation does not
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Fig. 16. Shown here are ten examples of the automatic detection esfand facial features as given by the
proposed approach.
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Fig. 17. Comparative results of the proposed algorithm implememitigh SDA, SubAdaBoost (denoted SAB in
the figure), LDA, AdaBoost (denoted AB) and PCA. The left ptboimmarizes the percentage of errby. The
right plot summarizes the detection rate of each of the dlgos. These results are the average over all the images
in the AR, XM2VT and ASL databases.

only result in slightly superior results, but carries a lowining time.

A final outstanding question is to demonstrate the utilitytteg subclass divisions advanced
in this paper, Fig. 3. If such subdivisions were indeed n&ags then the results obtained with
the sub-class-based methods defined above should provige &ror rates than those gener-
ated when SDA and SubAdaBoost are substituted by their uhaincounterparts, i.e., Linear
Discriminant Analysis (LDA) and AdaBoost. In the followingve provide such a comparison.
We also present the error rates obtained when we substitetsubclass-based approach with a
simple Principal Component Analysis (PCA). We use all 3h@30 images described above.

In Fig. 17 we show the results. The figure includes two plotse Tirst one summarizes the
percentage of error ratdZ(;) given by each of the algorithms. We see that SDA provides the
smallest error, followed by SubAdaBoost as predicted bytbaory. In the second plot of this
figure, we show the detection rate achieved by each of theeirmgxhtations of the algorithm.The
detection rate is defined as the percentages of times eathifgaoint is successfully detected
by the algorithn?. Again, SDA and SubAdaBoost provide the best detection, asagd. The
error rates for each of the facial components are also giniahe SDA-based implementation
we have: (6.36,2.12) for the face,(4.51,1.53) for the eyes,(4.36,1.50) for the nose, and
(10.31,3.41) for the mouth; with(e4, E4). The corresponding errors in SubAdaBoost are:
(10.06, 3.44), (8.45,2.94), (8.58,2.92), and (9.67, 3.18).

E. Training active appearance models

As summarized in the introduction of this paper, the preeisé detailed detection of facial
features has a large number of applications. In the expetsnabove, we have shown an
application to do detection of facial expressions of emoéind grammar. We now turn to another
application — modeling and tracking of facial shape andulextA typical way to achieve this is
by means of the Active Appearance Model (AAM) approach [5heéD related approaches are
the early work on deformable models of [52], the componexsteld model of [21], the two-level
shape model of [22], the extended active shape model of {B8]edge-based shape model of
[34], and the generative shape regularization model of, [a4Jong others.

’Recall that one could achievél¥; error by defining an algorithm that never detects the feailgg 0% detection.
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Fig. 18. Shown here are the cumulative error distributidrth® face detection error and the percentage of error of thpgsed
algorithm. The results are calculated over the 3,930 imalgssribed in the text.

All these approaches have proven their potential in seegalications and in particular in face
modeling. However, their major general drawback is thatréntsubject-independent models,
we usually require of a large number of manually annotatedpsas — typically thousands. The
labeled data must include the location of each of the fidaaiad want to add to the face model.

In this section, we show that the detections obtained wiéhgioposed algorithm are better
or similar to those obtained with AAMs. Even then, howeveAMs have the advantage of
providing a model of the face, which can be used to furthelyaeaor synthesize images. For
this reason, we show that we can employ the detections mrduig the proposed algorithm to
train a AAM. This eliminates the need for manual interventio

In Fig. 18, we plot the cumulative error distribution of theae (in pixels) and percentage of
error of the detailed face detection results of the prop@dgdrithm over all the3, 930 images.
The cumulative error distribution,(z) is formally defined as the probability that the ertoris
smaller thanz, i.e., P(Z < z). Close analysis of the results in this figure show they aréebet
than or comparable to some of the most advanced AAM-baseatditlns such as that of [6],
[33].

Since the databases used in the literature and those usediteenot always the same, we
also conducted a second experiment using the proposedthig@and AAMs. Here, we selected
50 subjects from the AR face database. the imagef)%f of the subjects were used for training
an AAM. Testing was conducted over the remaining imagess @hiision was done randomly
for a total of five times to test the viability of subject-inpEndence. The average error was
eqs = 11.8, B4 = 4.3%, with an AAM fitting converge rate 091%. We see that the error rates
are above those given by our algorithm (which wer@.7%).

As anticipated above, we could also employ the detectionltesf our algorithm to train
an AAM, since these models can then be used to resolve adalitproblems. We used two
of the sequences from the ASL database described in thedangcsections for each of the
subjects to train subject-specific AAMs. We then used eadhefrained AAMs to detect and
track the same fiducials on the other three sequences of ourdagbase. Examples of the
AAM fitting results are shown in Fig. 19. In (a) we show the leswbtained when the AAM
is trained using the automatic labeling given by the al@onitdefined in this paper. In (b) we
show the results obtained after training with the manuallyeled set. The average error over
all the testing images (for all subjects) when using the raliyilabeled data is 4, = 5.5 pixels,
with st4, = 1.8 pixels, £, = 1.8%. The same average error and standard deviation obtained
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when training the AAM with the automatic annotations givendur algorithm aree, = 7.8
pixels, st = 1.7 pixels, andE 4 = 2.5%, respectively. We see that the results obtained with the
automatically labeled data are almost as small as those ¢ye¢he manually labeled data.

Fig. 19. (a) Fitting results given by the AAM trained with the autoioatly labeled data. The training data was
generated fully automatically as described in this pag®r.Qomparison results obtained with the AAM trained
with the manual data given by the average of the three judges.

VIIl. CONCLUSIONS

The development of face detection algorithms using the ajapee-based approach has re-
sulted in the design of quite accurate methods. By face tieteave understand that a bounding
box of approximately the correct size is located around dacé in the image.

To move the field forward, research is now emphasizing thiereint and equally important
fronts. The first is to provide a detection of the internalidacomponents, i.e., brows, eyes,
nose, mouth, and chin. The second effort is directed toward/idg algorithms that generate
detections as accurate as manual markings. And, the thabigéo move from the estimate of
the bounding box to a detailed extraction of the shape of e&the facial features detected by
the algorithm. The present paper has defined an approachdtessdthese three problems.

These problems have been resolved using a common approlaete we learn to discriminate
between the actual facial features and their context. Thigicontrast to most algorithms
designed to date, where it is learned to discriminate betwaenples of the features and samples
of natural scenes. However, when using this latter apprdackes and their facial features tend
to be detected imprecisely, because a crop image of a nderednface is more similar to the
face class than to the non-face (natural scenes) class.

Learning to discriminate between similar classes is howevehallenging task, especially
when the within-class variability is large. To resolve tphi®blem we have taken advantage of
the idea of subclass divisions. Here, the goal is to dividehedass into a group of subclasses
until each subclass can be readily distinguished from tihelasses of the other class. We have
derived two algorithms to select the most adequate numbesub€lasses. The first of these
algorithms is based on a discriminant analysis framewothkilenthe second extends on the
AdaBoost formulation. We have shown that the former yiellighly better results and at a
lower computational cost.

Our experimental results (on a total 2930 images) demonstrates that the detections obtained
with this approach are almost as small as those obtainedmatfual annotations.
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