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Abstract

The appearance-based approach to face detection has seen great advances in the last several years.
In this approach, we learn the image statistics describing the texture pattern (appearance) of the object
class we want to detect, e.g., the face. However, this approach has had a limited success in providing
an accurate and detailed description of the internal facialfeatures, i.e., eyes, brows, nose and mouth. In
general, this is due to the limited information carried by the learned statistical model. While the face
template is relatively rich in texture, facial features (e.g., eyes, nose and mouth) do not carry enough
discriminative information to tell them apart from all possible background images. We resolve this
problem by adding the context information of each facial feature in the design of the statistical model.
In the proposed approach, the context information defines the image statistics most correlated with the
surroundings of each facial component. This means that whenwe search for a face or facial feature we
look for those locations which most resemble the feature yetare most dissimilar to its context. This
dissimilarity with the context features forces the detector to gravitate toward an accurate estimate of
the position of the facial feature. Learning to discriminate between feature and context templates is
difficult however, because the context and the texture of thefacial features vary widely under changing
expression, pose and illumination, and may even resemble one another. We address this problem with
the use of subclass divisions. We derive two algorithms to automatically divide the training samples of
each facial feature into a set of subclasses, each representing a distinct construction of the same facial
component (e.g., closed versus open eyes) or its context (e.g., different hairstyles). The first algorithm
is based on a discriminant analysis formulation. The secondalgorithm is an extension of the AdaBoost
approach. We provide extensive experimental results usingstill images and video sequences for a total
of 3, 930 images. We show that the results are almost as good as those obtained with manual detection.

Keywords: Face detection, facial feature detection, shape extraction, subclass learning, dis-
criminant analysis, adaptive boosting, face recognition,American sign language, nonmanuals.

I. INTRODUCTION

Face detection is a fundamental task in computer vision, with broad applications in face
recognition, human-computer interaction, behavioral analysis, and computer graphics, to name
but a few. Because of its many uses, face detection has received considerable attention, especially
in the past several years [50], [16], [51]. By face detection, we generally mean that a bounding
box (or an ellipsoid) enclosing the face (or faces) in an image at approximately the correct scale
needs to be specified. At present, several algorithms exist which can provide reliable detections
of faces in images. Furthermore, recent results demonstrate how face detectors can be made to
work faster and more accurately under varying conditions [44], [19], [49], [18], [48].

However, most of the applications named above require that we extract additional information
from the face image. For example, problems in human-computer interaction may require infor-
mation of the gaze direction for the design of smart interfaces [53] and lip movement for viseme
interpretation [12]. To this end, eyes and mouth detectors have been developed in recent years.
In other applications, as in the recognition of identity using the appearance-based approach in
face recognition, we will require to warp the detected face to a norm (or mean) shape before
comparing the texture maps [28]. In this case, additional information, such as the location of the
nose and chin will be necessary. And, in yet other applications, such as shape-based recognition
of expression requires an accurate extraction of the shape of each of the facial components.

Fueled by these needs and by the recent success of face detectors, research on this area is
now moving toward a more precise and detailed detection of the internal facial components of
the face [9], [8], [20]. By internal facial components, we mean the brows, eyes, nose and mouth.
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(a)

(b)

Fig. 1. Shown here are examples of accurate and detailed face detections. In (a), we show the automatic detection
obtained with the algorithm defined in this paper. For comparison, (b) shows a manual detection of the same facial
components on the same images.

In addition, it is useful to provide a detection of the chin line, which provides the lower limits
of the face.

To date, the facial feature that has received most attentionis the eye, because these play a
central role in human-computer interaction applications as well as in psychophysical experi-
ments. In a recent paper, Moriyama et al. [35] demonstrate that precise and detailed detection
and feature extraction from the eye region is already possible. Although the algorithm is still
complex in comparison to current face detectors, it nicely illustrates that the problem is in reach.
Unfortunately, this approach is tailored to do eye detection and cannot be easily extended to the
detection of other facial components.

Using other approaches, several authors have focused theirattention on the detection of other
facial features, e.g. [45], [46], [15], [6]. Rather than providing a precise and detailed detection
of all major features, these alternative algorithms demonstrate that an estimate of the position
of the internal facial components (or their corners) is possible. For example, in a recent paper,
Heisele et al. [15] developed a system capable of detecting the corners and centers of the brows,
eyes, mouth and nose. To make these results more useful, facial feature trackers able to track the
detected facial components under varying expressions, illumination and partial occlusions have
been developed over the years [8], [37], [39], [53].

Based on the results summarized above, the next natural stepin face detection is to define
algorithms that can provide adetailedand accuratedetection of all the internal facial features
and the chin line. Bydetailed, we mean that a complete description of the outline of each facial
component is to be provided. Fig. 1(a) shows an example. Byprecise, we mean that the results
automatically provided by the algorithm should be comparable to those given by human manual
markings.

In the present paper, we introduce an approach that can achieve such detailed and precise
detection of the major facial components enumerated in the preceding paragraphs. An example
of our automatic detection was shown in Fig. 1(a). In Fig. 1(b), we show the results obtained
by manually delineating the same facial features in the sameimages. We will demonstrate that
the results obtained with the algorithm derived in this paper are generally comparable to those
obtained by such a tedious manual marking.

To achieve such accurate detection and feature extraction,we employ the idea of context
features. To properly define this term, let us look at an example. Imagine we want to design
an algorithm that detects the center of the eyes in an image. The classical approach in pattern

2



(a)

(b)

(c)

(d)

Fig. 2. Sample images of (a) faces, (b) non-faces (i.e., facecontext), (c) eyes, and (d) non-eyes (i.e., eye context).

recognition would be to collect a set of training images of eyes and non-eyes. The non-eye
set is usually a collection of natural scenes. This allows usto determine which statistics best
discriminate between eye patches and patches of other objects. In general, this approach works
reasonably well, but it fails to provide anaccurateestimate of the center of the eyes, because
an image of a non-centered eye patch is more similar to the eyeclass than to the non-eye class.
What we really want to design is a system that can discriminate between eye-looking patches
and (actual) well-centered eye windows. This can be resolved by using patches containing non-
centered eyes as the non-eye class and correctly centered eye patches as the eye class. We refer
to these non-eye patches as thecontextof the feature to be detected, because they define the
context information of the eye itself. The same applies to other features, e.g., brows, nose, mouth
and, also, the face. Examples of faces versus their context (non-faces) are shown in Fig. 2(a-b).
Examples of eyes versus their context are shown in Fig. 2(c-d). Note that the definition ofcontext
used in this paper is not the one employed in other publications. In object recognition, context
usually refers to background features surrounding the object. For example, a black blob placed
next to a computer would be interpreted as a mouse, while the same blob in a street scene is
generally perceived as a person [42]. In the present paper, we are not interested in determining
the object’s class based on such contextual cues. Instead, we want to use the context of a facial
feature, which is quite constant across identities, to provide a precise estimate of the feature’s
location. Our approach is related to the probabilistic semi-local context features approach of [3]
and the context-based detection of [47]. The main difference is that our goal is to provide as
precise and detailed a detection (of a known class) as possible. Two other related works to ours
are those of [41] and [23]. The first uses negative samples from the face area. The second paper
employs misaligned samples as the negative class.

Using thesecontext features, we can now learn to discriminate between facial features and
their context. However, the discrimination of similar classes (such as these features and their
contexts) is a challenging problem, because faces and facial features have a large within-class
variance. Faces, for example, come at different sizes, shapes and colors. Age, illumination and
expression also changes the image of a face. Eyes can be larger or smaller, closed or open, and
the iris comes with a variety of stroma and can be oriented at all possible directions. Mouths
are also very different across individuals, and expressionaffects them most. All these changes
combined make the within-class variations of facial components large, and very similar to the
between-class differences (which are now given by the context features).

To resolve the problem of modeling large inter-class variation, we will use the idea of subclass
divisions in Subclass Discriminant Analysis (SDA) [56]. InSDA, the goal is to divide each class
(e.g., faces) into a set of subclasses, each having a small within-subclassvariability. In the case
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Eyes

Eye context

Fig. 3. In the proposed approach, the features (e.g., eyes) and their context (e.g., eye context) are divided into subclasses. Each
of the subclasses defines a different configuration of the feature or context (e.g., open versus close eyes). In the appearance-
based approach, the dimensions of the feature space correspond to the brightness of each of the pixels of the image. Here,only
three dimensions representing the ones with largest variance are shown for illustration. Additional illustrations are shown in the
Supplementary Documentation.

of faces, one subclass may correspond to longer or thinner faces, while another subclass may
represent faces seen under different illuminations or expressions. Similarly, eyes will be divided
in many subclasses, one of which may represent close eyes andanother wide open eyes. The
same is true for the feature context class (e.g., non-eyes).One subclass will correspond to one
type of context, while a different subclass will represent avery different type of context; e.g.,
different eyebrows. Fig. 3 shows an example, where each subclass is represented by a Gaussian
distribution. Following this approach, the subspace spanned by each subclass can be accurately
computed. The union of these feature spaces defines thefeatures versus contextapproach.

Once the center and corner positions of each facial component are known, we can use the
same approach described above to estimate the feature’s shape. In this last step, we will use the
gradient and color information of each feature to learn to discriminate these from non-feature
parts. This, in combination with the system described above, provides the precise and detailed
detections previously shown in Fig. 1(a).

Although the detailed detection is quite obvious from simply looking at the image results
in Fig. 1, one may wonder how accurate these results really are. This is not an easy question
to answer, because the ground-truth is not (and cannot be) known. One approach would be to
compare the results obtained with the manual markings givenby a person. The problem with
such an approach, is that we do not know how accurate humans are at delineating each of the
facial components. We resolved this issue as follows. First, we designed a system which allows
users to zoom in at any specified locations to facilitate delineation of each of the facial features.
Then, we asked three people (herein referred to as judges) tomanually delineate each of the
facial components of all the face images used in the experimental results section of this paper –
a total of3, 930 face images. A small selection of these manual markings is shown in Fig. 1(b).
Next, we compared how the markings of each of the three judgesdiverge from the other two.
The within-judge variability was (on average)3.8 pixels, corresponding to a percentage of error
of 1.2% in terms of the size of the face. This gives us an estimate of the accuracy of the manual
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detections. As we will see later in the paper, the average error of the proposed algorithm was
7.3 pixels (or2.3%), almost as accurate as manual detection.

The results provided by the algorithm defined in this paper will thus be instrumental in
the applications outlined at the beginning of this section –computer vision, human-computer
interaction, behavioral analysis, and computer graphics.An important application is in the
construction of active shape models [4] and in shape analysis [25] techniques, which require
large amounts of labeled data for training. Accurate and detailed facial feature detection is also
necessary in the analysis of facial expressions with FACS (Facial Action Coding System) [10],
[53], behavioral analysis [7] and in the analysis of non-manuals in American Sign Language
(ASL) [31]. ASL non-manuals are facial expressions that convey grammatical information in
a signed sentence. ASL non-manuals are crucial for the understanding of ASL but difficult
to obtain due to large variations in expression and occlusions. We will demonstrate how the
proposed approach can be successfully applied to this challenging problem.

The rest of the paper is organized as follows. In Section II, we describe the key ideas underlying
the approach defined in this paper and provide derivations for the modeling of the subspaces.
Section III provides detailed derivations of the face detector. Section IV does the same for the
eyes and eyebrows. Section V describes the detection of the remaining facial components, i.e.,
nose, mouth and chin. An alternative formulation based on the idea of subclass division with
AdaBoost is derived in Section VI. Extensive experimental validation and applications are in
Section VII. We conclude in Section VIII.

II. FEATURES VERSUSCONTEXT

The main goal of this section is to derive a classifier that candiscriminate between patches
containing a certain feature (e.g., an eye center) and context features (e.g., eye corners). As
outlined in the introduction of this paper, this approach will allow us to discriminate between
the context of the feature and the feature itself, yielding the accurate detections we need.

Accurate detection of faces and facial features is still a challenging task, mainly because these
have a large variability. Adding the generative processes of pose, expression and illumination to
this problem makes the detection task extremely challenging. Cast shadows, glasses, and partial
occlusions also make our goal elusive.

The common approach to building a classifier that learns thishigh variability of features
(e.g., eyes) has met with difficulties, even when powerful non-linear algorithms and thousands
of training examples have been used [51]. This is due to the complexity of the subspace or
manifold defining each feature. As a consequence, the resulting classifier may be able to give an
estimate over the position of the feature’s location, but fail to provide an accurate detection of
its center and bounding box (i.e., correct estimate of the feature’s size). To resolve these issues
without resorting to complex algorithms, we will use the idea of SDA [56].

In the two-class classification problem, the goal of SDA is tolearn to discriminate between the
samples in the two classes by dividing these into a set of subclasses. The algorithm starts with
a single subclass per class. If this division is not sufficient to successfully separate the training
samples in the two specified classes, the algorithm divides each class into two subclasses. This
division process is repeated until the training samples arecorrectly classified. A key concept in
SDA is how to know when the training and (potential) testing data will be correctly classified.
Some subclass divisions will provide an adequate classification of the classes, while others will
not. To determine this, we employ a recent result [30] on discriminant analysis (DA) methods.
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First, recall that DA algorithms typically use a generalized eigenvalue decomposition equation
of the sortA−1

BV = VΛ, whereA and B are the metrics (given by symmetric, positive
semi-definite matrices) to be minimized and maximized, andV andΛ are the eigenvectors and
eigenvalues defining the subspace where the classes are hopefully best separated. In SDA, the
metric to be minimized is the covariance matrixΣX = n−1

∑n

i=1
(xi − µ) (xi − µ)T , whereµ

is the mean feature vector of then training samplesX = {x1, . . . ,xn}, and the metric to be
maximized is the between-subclassscatter matrix

ΣB =

K1
∑

j=1

K2
∑

l=1

p1j p2l (µ1j − µ2l)(µ1j − µ2l)
T ,

whereµil is the sample mean of thenil feature vectors in thelth subclass of classi, pil = nil

n

defines the prior of that subclass, andKi is the number of subclasses in each of the two classes,
i = {1, 2}.

The between-subclass scatter matrix forces samples from different classes to be projected as
far apart as possible in the subspace defined by the firstp eigenvectors ofV. At the same time,
the covariance matrix ensures that samples belonging to thesame class fall close to one another.
The problem with this DA approach is that these two metrics may favor completely different
solutions forV. In [30], it is shown that a DA technique may not yield good classifications
whenever the sum of the inner products between theqth eigenvector given by the metric to be
maximized and the firstq eigenvectors given by the metric to be minimized is larger than zero.
The value given by these inner products is called theconflictbetween metrics, since this specifies
when the two metrics favor different solutions forV. Note that when these inner products equal
to one, it means that the metrics favor completely orthogonal (opposite) solutions. When the inner
products are zero, they vote for the same solution and, hence, there is no conflict. On average,
DA algorithms have been shown to work best when this conflict value is low [30], [56], [54].
In this paper, we extend on this result to learn to discriminate between the subclasses defining
the facial features and their context. This approach is key to identify an appropriate number
of subdivisions of the training samples. The ability to automatically determine the adequate
number of subdivisions for each of the two classes is what makes our approach different from
other subclass-based algorithms such as [55], [11]. For example, the algorithm in [55] uses a
similar set of metrics to those of SDA, but requires that the number of subclasses in each class
be known or specified by the user.

In our approach, each class will be divided into a number of subclasses using the well-known
K-means clustering algorithm, because this permits to modelthe many non-linearities of the
training data efficiently. The value ofK, that is, the number of subclasses (K = K1 + K2), is
given by the value which minimizes the conflict between the metrics of SDA, Fig. 3.1 Here,
we use theK-means algorithm to divide each class into a set of subclasses, rather than the
nearest-neighbor approach presented in [56], because the latter does not allow for the modelling
of the complex non-linearities observed in the face and facial feature data that we need to model.

The approach described thus far in this section addresses the problem of modelling different
types of features (e.g., different shapes, illuminations and orientations of the same feature).
Therefore, we are now in a position to model the challenging sets of face features and their

1This can be seen as a supervised approach to determine an appropriate number of clusters inK-means clustering.
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context (i.e., surroundings). This process iskey for the accurate detection of each class and is
defined next.

To better understand the role of context features in the accurate detection of a facial component
recall that when a classifier does not precisely detect the facial feature it has been trained on,
it usually provides a close estimate. This is because cast shadows, eyeglasses and others will
make a neighboring area look like the actual feature to the classifier. To resolve this, we train
the classifier to discriminate between the feature and its neighboring areas – the cause of these
imprecise detections. This creates a pulling effect towardthe desirable location, Fig. 3. The
pulling effect can be formally defined as a decrease of the probability of the context features
(given by its mixture of Gaussians) and an increase of the probability of the feature (given by
the other mixture).

The subspace where the feature and its context are best separated, is simply given by the first
p eigenvectors of

ΣBV = ΣXVΛ,

whereV is a matrix whose columns are the eigenvectors ofΣ−1

X ΣB, Λ = diag(λ1, . . . , λq) is a
diagonal matrix of corresponding eigenvalues, withλ1 ≥ · · · ≥ λq ≥ 0, q is the dimensionality
of the data (i.e., size of the patch),xi ∈ R

q, andp ≤ rank(Σ−1

X ΣB) ≤ q.
In the following sections we describe how this general approach can be applied to the accurate

detection of faces, eyes, noses and mouths.

III. FACE DETECTION

We first derive the general approach for the detection of faces in stills. This is followed by
a description of how to improve these results when detectionis to be carried out over a video
sequence.

A. Detection in stills

We first collect a set of training images containing different types of faces and facial configu-
rations under different illuminations, with different expressions, and at different poses. We limit
the faces to be nearly frontal views with rotation angle lessthan30◦ in each direction. We will
use these images to do detection within±25◦. The positions and sizes of the faces are obtained
from manual markings. These images are normalized to have a bounding box of30× 30 pixels.
The training set corresponds to51, 664 images of cropped faces.

For clarity, let us label each image with the vector(x, y, s)T representing the parameters of
a cropped image, with(x, y) the position of the face in the image patch ands its scale; i.e.,
s = 30

l
, where l is the length of the bounding box of the face. Following this notation, we

see that, in this first set representing the correctly localized faces, all images are labelled with
the center position of the image patch (denoted(x0, y0)) and unit scale (s = 1), because all
images have been normalized to be centered faces of30 × 30 pixels. In contrast, the non-face
training set contains image patches with different labels.In particular, we include two types
of context information. The first set corresponds to croppedimages located in the neighboring
areas of the faces but at the correct scale (s = 1); that is, imprecisely localized faces. More
formally, (x0+δx, y0+δy, 1), whereδx = δy = {−15, . . . ,−6,−5, 5, 6, . . . , 15}. The second set
of training images representing the non-face class corresponds to faces cropped at an incorrect
scale and at correct and incorrect locations,(x0 + δx, y0 + δy, 1 + δs), where δx = δy =
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{−15, . . . ,−2,−1, 0, 2, 1, . . . , 15}, andδs = {−.6,−.5,−.4,−.3, .3, .4, .5, .6}. The total number
of non-face samples generated using this approach was114, 992. These training sets are illustrated
(for one of the training images) in Fig. 4. In this figure the image in the middle of the figure
(marked with a blue bounding box) corresponds to one of the training samples in the face set.
The rest are training samples of the non-face (i.e., face context) set. Note the non-face set defines
wherenot to detect the face – precisely at those places and scales where face detection algorithms
are known to have most of their errors.

To increase robustness to rotation, we extend the training set by including the images obtained
by applying in-plane rotations within the range of−15◦ to 15◦. The cropped images are mean-
and norm-normalized to make them invariant to the intensityof the light source.

Fig. 4. Training sample of the face class (shown within the blue box)and the non-face set (shown within the red
squares).

K-means clustering is applied to these training sets. EachK-means clustering is repeated five
times to be less sensitive to initializations. The number ofclusters (subclasses),K, is obtained
as defined in Section II, yieldingK1 = 34 for the face class andK2 = 12 for the non-face group
(recall, K = K1 + K2 = 46). Note that even though the non-face class had a larger number of
samples, the number of subclasses is larger for the face group. This reinforces the theoretical
observation made earlier on the high variability of the within-class measure of faces. We also
note that the number of subclasses does not tend to be large number, even though the number of
samples is quite large. This suggests that the proposed approach is able to model the similarities
of the features and their context correctly.
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(a)

(b)
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Fig. 5. A selection of the mean feature vectors representing (a) faces, (b) face context, (c) eyes, and (d) eye context.

The means and covariances of the resulting subclasses,µi andΣi, for the face and non-face
subclasses are then calculated, Fig. 5(a-b). To detect the face in a new image, we do an exhaustive
search on all possible windows at multiple scales over the region of pixels with skin color. The
skin color model is defined using a Gaussian distribution representing the HSV color space,
N(µc,Σc), with µc = (µH , µS, µV )T and Σc = diag(σH , σS, σV ). Over 3 million skin-color
sample points were used to train the model. Morphological operations are used to fill in holes
in the face region and delete small isolated (non-face) areas [28].

To test the different scaless, each test image patchtsj, centered at thejth image pixel,
is resized to the appropriate scale of30 × 30 pixels and compared to the learned subclasses.
Formally,

arg min
i

(VT
tsj − V

Tµi)
T
V

T
Σ

−1

i V(VT
tsj − V

Tµi), (1)

with subclassesi = 1 throughK1 representing the first class (face) and subclassesi = K1 + 1
to K1 + K2 the second class (non-face). The minimum of these distancesgives the class label
of the jth position at scales. Two examples of this process are shown in Fig. 6.

Note that at each scale, Fig. 6(a), one obtains a distinct detection of the face. At large and
small scales there is generally no detection (as expected).But, at the correct scale, we will
normally have several detections, since a small (1-3 pixels) displacement of the image window
was considered a correct detection during training. We now need to define a mechanism to
combine these detections into a single one. To do this, let usdenote the face detections at scale
s as (usj, vsj, s)

T , where(usj, vsj) is the position of the window imagetsj within the scaled
image. A two-step voting method is then applied. First, the scale with the most detections is
selected as the reference scale. Face patches detected at two scales above or below this reference
scale are eliminated. In the second step, the remaining detections are normalized by their scale
value(usj/s, vsj/s, 30/s)T before being combined together as

V (uj, vj) =
∑

s

(usj/s, vsj/s, 30/s)T .

This provides a voting over each image location. Detected face regions having a small overlap
with the top voted region are reclassified as non-faces. The final estimation of the face position
(center and scale),(u, v, s)T , is given by the mean over the remaining overlaps, Fig. 6(b,d).
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(b)
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s7 s8 s9 s10 s11 s12

(c)

(d)

Fig. 6. (a,c) Detection results as given by (1) at each of the possible scales. (b,d) Final face detection as given by
the mean window after outliers deletion.

B. Face detection in video

In many applications, as it is the case in the analysis of non-manuals in ASL, we are interested
in detecting faces in all frames of a video sequence. In ASL, for instance, the variability in
facial expressions may contain grammatical cues on top of the classical ones of intonation and
emotional content [31]. In such cases, we can apply our face detector derived in the preceding
section at each frame of the video sequence. Still, the results of our face detector, as those of any
other algorithm, may be imprecise in a few of the frames. Thisis particularly true when there
are occlusions or large rotation angles. Since we are now detecting faces in a video sequence,
we can make use of the continuity of the motion of the subjectsto correct the detection errors.

Let ft = (u, v, s)T , where(u, v) is the center of the detected face,s the estimate of the scale,
andt the frame number. We fit a Gaussian model over the position andscale values given by all
frames,N(µf ,Σf ), with µf = (µu, µv, µs)

T the mean andΣf = diag(σ2
u, σ

2
v , σ

2
s) the variances.

We can now use the Mahalanobis distance,

d2

Mh = (ft − µf)
T
Σ

−1

f
(ft − µf ) ,

to detect outliers. In our algorithm, we consider distanceslarger than2.5 to correspond to false
detections. This value is chosen to set the (probability of)confidence interval to∼ 90%.

Once the outliers have been excluded, those frames that had amissed detected face will not
have any estimate of the location of the face. In these cases,the location and scale of the
face is estimated using a linear interpolation of the neighboring frames (i.e., those previous and
subsequent frames with correct detection). This will provide a smooth transition between frames.
Examples of this process are shown in Fig. 7.

IV. EYES DETECTION

After (holistic) face detection, eyes are the facial feature to have received the largest attention,
mostly because these play a major role in face recognition and human-computer interaction prob-
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(a)

(b)

Fig. 7. (a) Detection results on the individual frames, with occlusions larger than those learned by the algorithm.
Large occlusions can cause misdetections. (b) Misdetections corrected using the Gaussian model.

lems. Unfortunately, accurate detection of the eye centershas often require highly sophisticated
methods [35]. In this section, we use the general approach defined above to derive a simple
algorithm to detect the eye center and its corners. These results are then used to extract the
shape of the iris and the eye lids.

A. Detecting the center and corners of the eyes

A major reason behind the difficulty of precise eye detectionis the high variability of these.
Although most eyes may seem quite the same at first, closer analysis of a set of cropped eyes (i.e.,
in isolation) reveals a different picture, Fig. 2(c). Eyes may have very distinct shapes (mostly
across ethnicity and race, but not exclusively), pupil size, and colors. Furthermore, cast shadows,
glasses, and lighting have a strong influence on how eyes appear in an image. In addition, eyes
can be open, closed or any way in between, and the iris may be pointing at any direction. For
now, we are interested in finding the eye center, regardless of the position of the iris, and its
bounding box.

To detect the center of each eye, we use the main approach defined in Section II. Here, the first
class is well-centered eyes, represented by images of cropped eyes at the correct positions, while
the second class corresponds to cropped images of the same size (24× 30 pixels) located in the
neighboring areas of the eye. Fig. 8 shows how the eye window is centered (class 1) while the
eight accompanying background windows (class 2) are located off center. To increase robustness
to scale and rotation, we expanded the training set by including the images obtained when re-
scaling the original training images from.9 to 1.1 at intervals of.1, and by adding in-plane
rotated versions of them within the range of−15◦ to 15◦. This yields a total of25, 780 samples
for class 1 (the eye class) and41, 248 samples for class 2 (non-eyes). Examples are shown
in Fig. 2(c-d). Images are mean- and norm-normalized to makethem invariant to the intensity
of the light source. We only train a left eye detector. Detections of the right eye are done by
generating a mirror image of the right eye region. As above, we used the stability criterion
of [30] to determine the most appropriate number of subclasses clustered withK-means. This
yields K1 = 23 andK2 = 11, Fig. 5.

To detect the eyes in a new image, we do an exhaustive search ina pre-specified region within
the face detection box. These potential eye regions were obtained from a statistical analysis of
the eye location over the manually detected eyes previouslyused to train our classifiers. The
goal is to establish where the eyes are with respect to the bounding box found by the holistic
face detector. These regions are shown in Fig. 9(a). The figure shows two eye regions per eye.
To detect the eye centers in a previously unseen face, we firstsearch for them within the smaller
green region (since this includes∼ 90% of the eye centers in our training set). If no eye is
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Fig. 8. The red star in the figure corresponds to the center of the eye window used to generate the training data
for eyes. The blue dots represent the window centers of the background samples. The distance from the eye center
and the background window is set to24 pixels.

detected in this region, we move our search to the wider blue region (which includes100%
of the training instances). These regions are in effect the priors of our classifier, and although
one could also estimate the distribution within them, a simple uniform probability provides the
results we need. Note that these search regions are not only tuned to the classifiers previously
defined, they also make the search much faster and robust (preventing the search to move over
shadowed regions that may resemble an eye).

As in training, the test image is also re-scaled tos = {.9, 1, 1.1}. At each scale, each of the
cropped imagestsj, of 24×30 pixels and centered at thejth pixel within the eye-search region,
is compared to the learned subclasses using Eq. (1).

The minimum of the distances given by (1) provides the class label of thejth position at scale
s within the eye region, Fig. 9(b). Let us denote this class label (usj, vsj, s)

T , where(usj, vsj)
T is

the center position of the window imagetsj, ands is the scale. The results obtained at different
scales are normalized and added,

∑

s D(usj/s, vsj/s, s/s). This provides a voting over each
location, Fig. 9(b). Detected eye regions having a small overlap with the top voted region are
reclassified as background. The final estimation of the eye position (center and bounding box)
is given by the mean of all remaining detections, Fig. 9(c). This voting approach may remind
the reader of a generalized Hough transform, where the shapeof an object is detected using a
similar approach.

If a video sequence is available, as it is the case in the ASL application presented earlier,
we can further refine the detection as we did in Section III forfaces. Here, we use a similar
Gaussian model to that employed earlier. The only difference is that this modeling includes the
positions of the two eyes as well as the angleθ defined between the horizontal axis and the
line connecting the two eye centers. Detected outliers (i.e., false detections) are eliminated and
substituted by a linear interpolation between the previousand subsequent frames with correct
detection.

B. Eye and eyebrows shape

With the face and eyes detected, we can move to the next phase of extracting the detailed
information we need. The very first thing we need to do is to determine the left and right margins
for each eye. This we can do by detecting the eye corners. To achieve this, we repeat the process
defined above for detecting the center of the eyes but apply itto the detection of their corners.
The same process is needed here because eye corners also conform to a large variety of shapes,
textures and colors (makeup and eyeglasses being a major problem that needs to be learned).
We build two detectors: one to detect inner corners and another for the outer. We train on the
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Fig. 9. (a) Priors: region where the eye centers are in the training images. (b) Voting: results of the detection of
the center of the eyes at different scales. (c) Final detection of the eye region.

left eye and apply it to detect both – right and left. To detectthe corners of the right eye we
simply flip the image (i.e., mirror image). Two results of eyecorner detection are shown in Fig.
10.

The iris can generally be readily detected as the minimum of all the average circle areas. This
can be defined as a convolution,

P = conv(I,H)

(up, vp) = arg min
u,v

P(u, v),

whereI is the grayscale images andH is a circle mask of radiusrI . This method could have
false detection if the image included heavy shadows or dark makeup around the eye area. To
prevent these false detections, we first obtain all local minima and then select the one that has
the largest gradient between each detected local minimum and the eye. The highest gradient will
be given when moving from the darkness of the iris to the whiteness of the conjunctiva, making
it a robust detector. Fig. 10 shows the detected iris as a circle. In the above equation, the image
I corresponds to a crop of the detected face. In this case, the face has also been normalized to
have the line connecting the eye centers parallel to thex-axis.

While the iris region is dark, the eye lids are of skin color. This is especially true for the lower
lid, since this has a very limited mobility and is not highly affected by deformations, shadows
and others. However, the lids need closer analysis becuase makeup and small occlusions (such as
eyeglasses) may present some difficulties. To address this,we apply a correlation with various
line orientationsθ. The one that gives the highest average gradient in its normal direction is
chosen as the best match. Then, the lid contours can be definedby means of a cubic spline
passing through the detected points. The final result is illustrated in Fig. 10.

Once the shape of the eyes has been determined, we move to the extraction of the brow’s
shape. With the position and shape of the eyes known, the detection of the brows is made much
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Fig. 10. Eye corners are represented with an asterisk. The iris is shown as a circle, of which, the red segment is
the visible part. The upper and lower contours of the shape ofthe eye are shown in blue.

easier. For instance, thex position of the eyebrows is very restrictive, since this hasto be very
similar to that of the eyes. Similarly, they position of the eyebrows is always above the eyes and
its position range is very limited. Since the eyebrows are either darker or lighter than the skin,
it is easy to detect these by searching for non-skin color in the region above the eyes. We define
the eyebrow search window as follows. First, the distancedeyes between the two eye centers
is calculated. Then, two search windows are defined, each of width deyes and height2deyes/3,
which ensures the inclusion of 100% of the training samples.The bottom limits of these two
windows are set to be equal to that of the line connecting the eye’s centers. To avoid confusion
with the eyes region, the eye regions are eliminated from thewindows. This deletion can be
readily accomplished, because we already know the eyes’ shape.

To detect the eyebrows in the search window defined above using color information, we use
the same HSV color space defined earlier,N(µc,Σc). Using this model, the pixels above the
eye regions that fit to the color model are eliminated. The remaining set of pixels defines the
potential region for the brows. To obtain a detailed and accurate description of their shape, we
use the gradient information. A Laplacian operator is applied to the non-skin color region. The
pixels with highest gradient in each column are kept as potential descriptors of the eyebrow’s
shape. Binary image morphology is applied to the result to generate a uniform region. Only the
largest, continuous region is kept. Two example results obtained with this approach are shown
in Fig. 11.

(a)

(b)

Fig. 11. Two examples of eyebrow detection. (a) Binary description of the brow. (b) Final contour detection.

V. DETECTION OFOTHER FACIAL FEATURES

The approach defined above can also be used to detect the otherfacial features. Moreover,
with a good detection of the face and the eyes, the location ofthe rest of features is already
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Fig. 12. (a) Shown here is an example of nose detection using the subclass approach defined in this paper. Refinement
is done with a voting approach over various scales. (b) From left to right and top to bottom: gradient of the nose
region found in (a),y projection of the gradient,x projection, and final detection of the nose shape and nostrils.

approximately known. We start by detecting the nose, then move to the mouth and conclude
with the detection of the chin line.

A. Nose

The position of the nose is arguably the easiest to estimate because, as opposed to other features
such as the eyes, brows and mouth, the nose cannot undergo large deformations. However,
extracting the contour of the nose is still challenging, since this is highly influenced by cast
shadows or smooth texture. Cast shadows are especially strong for caucasians, who have larger
noses. Smoothness is more prominent in Asian faces. What we do know is that the nose should
be within the two eye centers about thex axis and below these about they axis. The nose search
region is thus defined as that below the lower eye lid and between the two eye centers.

We train a nose classifier following the procedure detailed in Section II. Here, we used2, 765
samples to represent the nose class and4, 424 image patches corresponding to the nose context,
yielding K1 = 14 (for the nose class) andK2 = 10 (the nose context class). We see that, as
expected and consistent with our theory and previous results, the number of subclasses in the
nose class is larger, since noses have a larger variability than their context. Even more interesting
is to note that the number of subclasses in the nose class is smaller than that of the face or eye
classes. This is also consistent with the claim made at the beginning of this section where we
noted that noses are less variable than faces and eyes.

We test detection at scales.9, 1 and 1.1 and combine the results using the voting approach
defined earlier, Fig. 12(a). To extract the nose contour, we calculate the gradient of the image
and generate its projection onto thex andy axes, Fig. 12(b). This gives us two histograms of the
gradient,Gx andGy. To eliminate outliers, such as shadows and makeup, we find the bounding
box containingmax(Gx)/2 andmax(Gy)/2. This provides a tighter, more precise estimate of the
location of the nose. The nostrils are detected as the two darkest (i.e., two minima in graylevel)
points within this tighter bounding box, Fig. 12(b). The outer gradient curve is taken to be the
nose edge. The final result is shown in Fig. 12(b).
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Fig. 13. (a) Mouth corner detection. (b) Gradient of the mouth window, its x andy projection, and the final result.

B. Mouth

The mouth is highly deformable, making an accurate and precise detection of it challenging.
Sophisticated algorithms have been recently defined to address this problem [7]. Here, we use
our methodology to derive a fast, accurate and detailed detection. A mouth corner detector is
defined using the subclass-based classifier presented in Section II. We use4, 600 mouth corner
samples and7, 360 images to represent the context. This yieldedK1 = 17 andK2 = 7. We only
train a left corner classifier. To detect the right corners, we create mirror images of the testing
windows. An example detection is given in Fig. 13(a). Once again, we test at scales.9, 1 and
1.1 and combine the results with the proposed voting method. Thebounding box of the mouth
is then obtained following the same procedure described forthe nose, Fig. 13(b).

Mouths are rich in color, which makes the final process of delineating them feasible. Here,
we use a similar process to that employed earlier – skin colorand Laplacian edge detection. In
particular, we extract three features, given by saturation, hue, and Laplacian edges. These three
masks are thresholded at valuesTs, Th and Tg before being combined into a single response.
The three values are determined as follows. Since the lips color makes the saturation of the
lips higher than that of skin,Ts is set as the average saturation value. To be able to deal with
different kinds of lips, an adaptiveTh is computed using a valley seeking algorithm as was
done in [29]. In this approach, the valleys (i.e., minima) inthe histogram are searched using
an iterative procedure. At the initial step, the histogram is partitioned using a large number of
regions. Each region boundary (i.e., threshold) is moved toward the closest minimum using the
gradient of the histogram. As more than one threshold collide into the same minimum, these
are combined into a single one, reducing the number of clusters. When the algorithm converges
to a final solution (i.e., all the thresholds are at one of the minima), the lip hue is defined by
the largest of the resulting cluster, which yieldsTh. Finally, to determineTg, we note that the
boundary of the mouth, especially around the corners, has strong edge response when compared
with the face regions of the cheek. Therefore,Tg is set to be the mean of the gradient of all the
pixels within the face region. The final extraction of the contour of the upper and lower lips are
given by the outer contour of the mouth mask, Fig. 13(b).
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Fig. 14. A few examples of chin detection with partial occlusions.

C. Detecting the chin line

The chin is given by a slightly curved edge below the mouth. However, this can be easily
occluded by cast shadows or by the hand and clothing. In some cases, the chin line is unclear,
because the texture of the neck or lower lip is too smooth to provide a clear delineation. To
address these issues, we first extract the edges from a bounding box located immediately below
the mouth and then find the best match between the edge points and a quadratic (ellipsoidal)
curve. The shortest distances from the edge points to the current fit,d, are calculated and assigned
positive or negative labels depending on whether these are above or beneath this current fit. A
Gaussian model is fitted to this result,N(µd, σd). The edge points with distance|d| larger thanTd

pixels are eliminated, withTd being the larger of10 and2σd. This fitting process is repeated over
the remaining of the points, until no points are excluded. The resulting set of points corresponds
to the detection of the chin. Examples of the final fit were given in Fig. 1. Three examples with
occlusions are now shown in Fig. 14.

VI. SUBCLASS ADABOOST

In the formulation defined in the preceding sections, we haveemployed the idea of subclass
divisions in discriminant analysis to derive our algorithm. Other techniques could have been
used. Among them boosting, and especially Adaptive Boosting (AdaBoost) [13], has shown
its potential in several computer vision problems [24], [44], [36], [43]. AdaBoost-based face
detection [44] is generally regarded as one of the most appealing approaches, since it provides
robust, real-time detections. However, this approach has not been successfully applied to the
accurate detection of the internal facial components, because the same AdaBoost approach does
not work well when used to detect the internal facial components. To resolve this problem, we
will now derive a subclass-based AdaBoost algorithm and useit within our general approach of
features versus context.

To begin with, let us reformulate the AdaBoost feature selection approach of [44] within the
idea of subclasses. In this approach, which we will refer to as Subclass AdaBoost (SubAdaBoost),
the goal is to divide the training samples in each class into the number of subclasses which
maximizes classification. Here, theith training sample is usually referred to as(xi, yi), where
xi is the sample image andyi equals zero if the sample belongs to the first class and one if it
corresponds to the second class.

In feature selection with AdaBoost, we iteratively select the jth feature associated to the
lowest classification error. By combining the different feature selections, we obtain a more
accurate (stronger) classifier. At each iteration, this is achieved by training a classifierhj(xi),
∀i, for each of the possible featuresj. The classification error for each of these classifiers is
simply given byǫj =

∑

i wi|hj(xi)− yi|, wherewi is the weight associated to theith sample. In
AdaBoost, each sample is weighted according to its relevance for building the classifier. In the
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first iteration, all samples in the same class are weighted equally, that isw1,i = 1/2a if yi = 0
andw1,i = 1/2b whenyi = 1, wherea andb are the number of samples in the first and second
class, respectively. These weights are to describe a probability distribution and, hence, at each
iteration t, they are normalized,wt,i = wt,i/

∑

k wt,k. Then, after selecting the feature which
minimizesǫj at iterationt, we update the weights as

wt+1,i = wt+1,iβ
1−ei

t ,

where ei = 0 when theith samplexi is correctly classified andei = 1 otherwise, andβt =
ǫ∗t /1− ǫ∗t , with ǫ∗t = minj ǫj. This reweighting ensures that at the next run of the algorithm, the
samples that are still misclassified will be given more importance than those that have already
been successfully classified.

The procedure defined above provides the set of features and,hence, weak-classifiers needed
to correctly classify (most of) the training data. These weak classifiers can now be combined
to generate the strong classifierh(x), which is set to1 if

∑

t αtht ≥
1

2

∑

t αt, and0 otherwise;
whereαt = log β−1

t .
When each class is divided into subclasses, the resulting classifiers can be combined with a

union operator. First, we apply the above algorithm to obtain the strong classifier for each of
the subclasses. The strong classifier of subclassk is given by

hc,k =

{

1,
∑

t αtht ≥
1

2

∑

t αt

0, otherwise.

Here,hc,k is the strong classifier that discriminates between thekth subclass in classc and the
samples in the other class (i.e.,∀ xi with yi 6= c), c = 0, 1. The final classifier is given by
Hc =

⋃Kc

k=1
hc,k, whereKc is the total number of subclasses in classc.

Note that, since in our case we have two-class classificationproblems (e.g., non-faces versus
faces), we only need to train for the strong classifiersh1,k, which discriminates between thekth

subclass in class1 and all the samples in the other class (i.e.,∀ xi with yi = 0). The final classifier
is H1 =

⋃K1

k=1
h1,k. There is no need to determineK0 or train forh0,k, sinceH0 =

⋂K1

k=1
h1,k. Note

also that unlike classical AdaBoost, SubAdaBoost can readily discriminate classes containing
disjoint subsets.

It is known that AdaBoost algorithms reduce the classification error in a number of steps
proportional to the sample sizen [2]. This means that the selection of an adequate partition of
classes into subclasses is proportional tos2n, wheres is the number of partitions to be tested.
We use cross-validation to do the selection of the subclass numberKi. The training data-set
is first randomly divided intoN disjoint subsets.N − 1 of these subsets are used for training
the SubAdaBoost classifier defined above. At this stage,s classifiers are obtained, each with
K1 subclasses, i.e.,{1, . . . , s}. The remaining subset is then used for validation, resulting in the
classification accuraciesRi, i = {1, . . . , s}. The number of subclassesK1 is taken to be that
yielding the minimum classification error, i.e.,K1 = arg mini Ri. Using this approach on the
same training set described earlier, we obtainedK1 = 9 for faces,K1 = 10 for eyes,K1 = 15
for noses, andK1 = 12 for mouth corners. The only difference to the previous derived SDA
formulation, is that we now use the Haar-like features of [44], which have been shown to provide
good results in detection tasks such as these.

VII. EXPERIMENTAL RESULTS

We tested the proposed approach with images (stills) and video sequences. Before we do this,
we define how to estimate the accuracy of the proposed method.
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A. Accuracy of the manual versus automatic detections

To properly compare our results with those obtained with manual detection, we need to have
a representation that is common to both. To this end, we first used the approach derived in this
paper to find the shape of each of the internal facial featuresand the chin. We then resample
these curves with a total of98 equally distanced feature points. The corner points specify the
beginning and end of a curve. The rest of the points are uniformly located on each of the curves
to facilitate comparison with the manual markings.

The basic error measurement used in our experiments is the mean Euclidean distance. It is
defined as follows. Each detection result is represented as a2 × l matrix Fi, corresponding to
the 2D coordinates of thel feature points. Leti = {1, 2} define two detections, which can be
obtained either manually or automatically. Also, letFi(k) represent the 2D coordinates of the
kth feature point. Then, a comparison of the two detections is given by

d(F1,F2) =
1

l

l
∑

k=1

‖F1(k) − F2(k)‖2,

with ‖ · ‖2 is the2-norm of a vector. Also, note that in our casel = 98.
To perform a fair comparison with the manual detection results, we provided three “judges”

with specific instructions on how to mark139 feature points around the same facial features
detected by our algorithm. The judges had the option to magnify any portion of the image.
After manually marking each of the images, the facial feature contours were obtained with a
least-squares fit over the fiducials defining each of the facial features. All resulting curves were
then resampled to a total of98 feature points to yield the same detection as that given by the
proposed algorithm.

To determine how accurate these manual detections were, we proceed as follows. The mean
detection error for the manual detections, denotedeM , was estimated by comparing the results
given by the three judges. LetMij ∈ R

2×98 denote the manual marking of theith image as
given by thejth judge. Then,

eM =
1

3m

m
∑

i=1

d(Mi1,Mi2) + d(Mi1,Mi3) + d(Mi2,Mi3),

wherem is the total number of manually delineated faces. Also, denote the standard deviation
of this value asstM .

Another common way to represent the above result, is as a percentage of the error in terms
of the size of the face, which can be calculated as

EM =
1

6m

m
∑

i=1

d(Mi1,Mi2) + d(Mi1,Mi3) + d(Mi2,Mi3)

ri

,

where ri is the face radius (in pixels) of theith face image, which is estimated manually. A
typical alternative for the percentage of error is to use (half of) the intra eye distancedeyesi

/2
in lieu of the radius in our last equation [6], [33], withi specifying the image. We denote this
alternative error measureEe

M .
After obtaining the mean detection error of the manual detections, we can calculate the mean

detection error of the proposed algorithm, denotedeA. In order to do that, we compare the
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automatic detectionsAi ∈ R
2×98 to each of the results given by the three judgesMij , where,

as above,i specifies the image andj the judge. This is the same as We have

eA =
1

3m

m
∑

i=1

d(Ai,Mi1) + d(Ai,Mi2) + d(Ai,Mi3).

The standard deviation of of this value is denotedstA and the percentage of the error in terms
of the size of the face isEA = 1/6m

∑m

i=1
(d(Ai,Mi1) + d(Ai,Mi2) + d(Ai,Mi3)) /ri. Again,

Ee
A is obtained by substitutingri with deyei

in the above equation.
Ideally, we wanteA ≈ eM , stA ≈ stM , EA ≈ EM and Ee

A ≈ Ee
M . This would indicate that

the proposed algorithm is as accurate as the human judges.

B. Detection in stills

The test images used in this first experiment were obtained from the AR and XM2VT face
databases. The AR face database [26] includes four different expressions (neutral, happy, anger
and scream). Each expression appears twice. We use these eight images for a total50 subjects,
yielding a first set of400 test images. To increase the variability in face shape, we also used
the eight images for a total of100 subjects from the XM2VT database [32], which provides a
second set of800 images and a combined total of1, 200.

The face and facial feature detections given by the proposedalgorithm are compared to the
manual markings given by the three judges. The judges’ mean detection error iseM = 3.1
pixels with standard deviationstM = .8 pixels, which corresponds to a mean percentage error
EM = 1.1% (Ee

M = 3%).
We repeated the same analysis using the manual detections given by the three judges on the

1, 200 imagesand those obtained by the proposed algorithm. Several examplesare given in Fig.
15. The results wereeA = 8.4 pixels andstA = 1.2 pixels, orEA = 2.7% (Ee

A = 6.9%).

C. Detection in video

Our next experiment considers the video sequences of ASL nonmanuals. These video se-
quences were selected because the variability in expression and pose is large. We collected35
sequences of approximately77 frames each, providing a total of2, 730 frames. These sequences
were signed by7 different subjects. Each face is approximately300 × 250 pixels.

In some applications, such as in the modeling of ASL nonmanuals, occlusions can be very
large. To gain robustness to these, a Kalman filter [17] is employed to smooth each of the
detected fiducials. An example of our detection results was shown in Fig. 1(a). We now show
ten additional examples in Fig. 16. The error waseM = 4.1 pixels with standard deviation
stM = 1, which means a percentage of error ofEM = 1.3% in terms of the size of the face. An
example of manual detection was shown in Fig. 1(b). In comparison, the proposed algorithm
yielded eA = 6.9 pixels andstA = 1.5 pixels. This corresponds toEA = 2.2%. Similarly,
Ee

M = 3.1% and Ee
A = 5.1%. Again, the accuracy provided by the proposed approach is only

slightly below that of an automatic detection.
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Fig. 15. Shown here are the automatic face and facial feature detections obtained in the images of the AR and
XM2VT face databases.

D. Facial feature detection using SubAdaBoost

SubAdaBoost is utilized to detect the the internal facial features. Then, we employed the same
algorithms described in Section IV-V to get the outline of each of them. For testing, we used the
same1, 200 still images from the AR and XM2VT face databases described above. The mean
detection error for SubAdaBoost iseA = 9.0 pixels with standard deviationstA = 1.3 pixels.
This yields a percentage of error for the automatic detection of EA = 2.8%. We also used the
2, 730 frames from the ASL video sequences described earlier. Here, the mean detection error
was eA = 7.8 pixels (EA = 2.4%) with standard deviationstA = 1.9. We see that the face
detection algorithm based on SubAdaBoost provides only slightly lower classification results
than that of the SDA-based algorithm. This further demonstrates the generality of the features-
vs-context framework described in this paper. Nevertheless, the SDA implementation does not
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Fig. 16. Shown here are ten examples of the automatic detection of faces and facial features as given by the
proposed approach.
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Fig. 17. Comparative results of the proposed algorithm implementedwith SDA, SubAdaBoost (denoted SAB in
the figure), LDA, AdaBoost (denoted AB) and PCA. The left plotsummarizes the percentage of error,EA. The
right plot summarizes the detection rate of each of the algorithms. These results are the average over all the images
in the AR, XM2VT and ASL databases.

only result in slightly superior results, but carries a lower training time.
A final outstanding question is to demonstrate the utility ofthe subclass divisions advanced

in this paper, Fig. 3. If such subdivisions were indeed necessary, then the results obtained with
the sub-class-based methods defined above should provide lower error rates than those gener-
ated when SDA and SubAdaBoost are substituted by their unimodal counterparts, i.e., Linear
Discriminant Analysis (LDA) and AdaBoost. In the following, we provide such a comparison.
We also present the error rates obtained when we substitute the subclass-based approach with a
simple Principal Component Analysis (PCA). We use all the3, 930 images described above.

In Fig. 17 we show the results. The figure includes two plots. The first one summarizes the
percentage of error rate (EA) given by each of the algorithms. We see that SDA provides the
smallest error, followed by SubAdaBoost as predicted by ourtheory. In the second plot of this
figure, we show the detection rate achieved by each of the implementations of the algorithm.The
detection rate is defined as the percentages of times each feature point is successfully detected
by the algorithm.2 Again, SDA and SubAdaBoost provide the best detection, as expected. The
error rates for each of the facial components are also similar. In the SDA-based implementation
we have: (6.36, 2.12) for the face,(4.51, 1.53) for the eyes,(4.36, 1.50) for the nose, and
(10.31, 3.41) for the mouth; with (eA, EA). The corresponding errors in SubAdaBoost are:
(10.06, 3.44), (8.45, 2.94), (8.58, 2.92), and(9.67, 3.18).

E. Training active appearance models

As summarized in the introduction of this paper, the preciseand detailed detection of facial
features has a large number of applications. In the experiments above, we have shown an
application to do detection of facial expressions of emotion and grammar. We now turn to another
application – modeling and tracking of facial shape and texture. A typical way to achieve this is
by means of the Active Appearance Model (AAM) approach [5]. Other related approaches are
the early work on deformable models of [52], the component-based model of [21], the two-level
shape model of [22], the extended active shape model of [33],the edge-based shape model of
[34], and the generative shape regularization model of [14], among others.

2Recall that one could achieved0% error by defining an algorithm that never detects the feature, i.e., 0% detection.
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Fig. 18. Shown here are the cumulative error distributions of the face detection error and the percentage of error of the proposed
algorithm. The results are calculated over the 3,930 imagesdescribed in the text.

All these approaches have proven their potential in severalapplications and in particular in face
modeling. However, their major general drawback is that to train subject-independent models,
we usually require of a large number of manually annotated samples – typically thousands. The
labeled data must include the location of each of the fiducials we want to add to the face model.

In this section, we show that the detections obtained with the proposed algorithm are better
or similar to those obtained with AAMs. Even then, however, AAMs have the advantage of
providing a model of the face, which can be used to further analyze or synthesize images. For
this reason, we show that we can employ the detections provided by the proposed algorithm to
train a AAM. This eliminates the need for manual intervention.

In Fig. 18, we plot the cumulative error distribution of the error (in pixels) and percentage of
error of the detailed face detection results of the proposedalgorithm over all the3, 930 images.
The cumulative error distributiongZ(z) is formally defined as the probability that the errorZ is
smaller thanz, i.e., P (Z < z). Close analysis of the results in this figure show they are better
than or comparable to some of the most advanced AAM-based algorithms such as that of [6],
[33].

Since the databases used in the literature and those used here are not always the same, we
also conducted a second experiment using the proposed algorithm and AAMs. Here, we selected
50 subjects from the AR face database. the images of80% of the subjects were used for training
an AAM. Testing was conducted over the remaining images. This division was done randomly
for a total of five times to test the viability of subject-independence. The average error was
eA = 11.8, EA = 4.3%, with an AAM fitting converge rate of91%. We see that the error rates
are above those given by our algorithm (which were≈ 2.7%).

As anticipated above, we could also employ the detection results of our algorithm to train
an AAM, since these models can then be used to resolve additional problems. We used two
of the sequences from the ASL database described in the preceding sections for each of the
subjects to train subject-specific AAMs. We then used each ofthe trained AAMs to detect and
track the same fiducials on the other three sequences of our ASL database. Examples of the
AAM fitting results are shown in Fig. 19. In (a) we show the results obtained when the AAM
is trained using the automatic labeling given by the algorithm defined in this paper. In (b) we
show the results obtained after training with the manually labeled set. The average error over
all the testing images (for all subjects) when using the manually labeled data iseA = 5.5 pixels,
with stA = 1.8 pixels, EA = 1.8%. The same average error and standard deviation obtained
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when training the AAM with the automatic annotations given by our algorithm areeA = 7.8
pixels,stA = 1.7 pixels, andEA = 2.5%, respectively. We see that the results obtained with the
automatically labeled data are almost as small as those given by the manually labeled data.

(a)

(b)

Fig. 19. (a) Fitting results given by the AAM trained with the automatically labeled data. The training data was
generated fully automatically as described in this paper. (b) Comparison results obtained with the AAM trained
with the manual data given by the average of the three judges.

VIII. C ONCLUSIONS

The development of face detection algorithms using the appearance-based approach has re-
sulted in the design of quite accurate methods. By face detection, we understand that a bounding
box of approximately the correct size is located around eachface in the image.

To move the field forward, research is now emphasizing three different and equally important
fronts. The first is to provide a detection of the internal facial components, i.e., brows, eyes,
nose, mouth, and chin. The second effort is directed toward deriving algorithms that generate
detections as accurate as manual markings. And, the third goal is to move from the estimate of
the bounding box to a detailed extraction of the shape of eachof the facial features detected by
the algorithm. The present paper has defined an approach to address these three problems.

These problems have been resolved using a common approach, where we learn to discriminate
between the actual facial features and their context. This is in contrast to most algorithms
designed to date, where it is learned to discriminate between samples of the features and samples
of natural scenes. However, when using this latter approach, faces and their facial features tend
to be detected imprecisely, because a crop image of a non-centered face is more similar to the
face class than to the non-face (natural scenes) class.

Learning to discriminate between similar classes is however a challenging task, especially
when the within-class variability is large. To resolve thisproblem we have taken advantage of
the idea of subclass divisions. Here, the goal is to divide each class into a group of subclasses
until each subclass can be readily distinguished from the subclasses of the other class. We have
derived two algorithms to select the most adequate number ofsubclasses. The first of these
algorithms is based on a discriminant analysis framework, while the second extends on the
AdaBoost formulation. We have shown that the former yields slightly better results and at a
lower computational cost.

Our experimental results (on a total of3, 930 images) demonstrates that the detections obtained
with this approach are almost as small as those obtained withmanual annotations.
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