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Abstract

Non-rigid structure from motion (NRSFM) is a difficult,

underconstrained problem in computer vision. The stan-

dard approach in NRSFM constrains 3D shape deformation

using a linear combination of K basis shapes; the solution

is then obtained as the low-rank factorization of an input

observation matrix. An important but overlooked problem

with this approach is that non-linear deformations are often

observed; these deformations lead to a weakened low-rank

constraint due to the need to use additional basis shapes to

linearly model points that move along curves.

Here, we demonstrate how the kernel trick can be ap-

plied in standard NRSFM. As a result, we model com-

plex, deformable 3D shapes as the outputs of a non-linear

mapping whose inputs are points within a low-dimensional

shape space. This approach is flexible and can use different

kernels to build different non-linear models. Using the ker-

nel trick, our model complements the low-rank constraint

by capturing non-linear relationships in the shape coeffi-

cients of the linear model. The net effect can be seen as

using non-linear dimensionality reduction to further com-

press the (shape) space of possible solutions.

1. Introduction

The recovery of 3D object shapes from 2D image data

is a fundamental task in computer vision. The recovered

3D shapes provide necessary information to applications in

object recognition, face perception, biometrics, computer

graphics, and human-computer interaction, among many

others [2, 3, 6, 7, 10, 11, 13–15]. In many of these scenar-

ios, the 3D object of interest undergoes a series of shape

deformations while being observed under a varying pose.

The recovery task is then known as the problem of non-

rigid structure from motion (NRSFM). Given a set of cor-

responding 2D points in a sequence of images depicting a

deformable object, the goal in NRSFM is to recover the 3D

object shape and pose (i.e., relative camera position) in each

image. In the absence of any prior knowledge on 3D shape
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Figure 1. The deformation of a 3D shape (walking person) is mod-

eled as the smooth time-trajectory of a point in a 2-dimensional

shape space. The 3D reconstruction of observed 2D shapes are the

outputs of a non-linear mapping of points on this shape trajectory.

deformation, such as object rigidity, computing NRSFM is

still a difficult, underconstrained problem.

The large majority of works in NRSFM are variants of

the standard matrix factorization approach first proposed

in [3]. This approach constraints all 3D shapes to lie within

the linear space spanned by a small number K of unknown

3D basis shapes. Recent research work has attempted to

define additional, general constraints to make this NRSFM

formulation more tractable [1, 10, 11, 13, 14].

However, work on NRSFM rarely analyzes some of the

implications of modeling shape deformation as linear com-

binations of basis shapes. As noted in [4], the deformation

of some shapes is better represented by moving points along

curves. This is the case, for example, of shapes with many

uncorrelated articulations, relative rotation, and bending ef-

fects. Linear models can only approximate these shape de-

formations at the cost of requiring multiple basis elements

that increase the number of unknowns that need to be esti-

mated. As a result, the 3D reconstruction task becomes less

and less constrained and prone to error (e.g., a residual error

on the small shape deformation that is difficult to eliminate).

This argument also applies to the case where a deformable



3D shape is seen as a single point moving within a space

containing the true, low-dimensional shape manifold.

In this paper, we propose a Kernel NRSFM approach to

model and recover non-linear 3D shape deformation from

2D image streams (Fig. 1). We first demonstrate how the

“kernel trick,” commonly used for non-linear dimensional-

ity reduction in pattern recognition [12], can be applied to

the standard matrix factorization approach in NRSFM. As

a result, we model 3D shapes as the outputs of a non-linear

mapping whose inputs are points within a low-dimensional

shape space. Our model complements the low-rank con-

straint by capturing non-linear relationships in the shape

coefficients of the linear model. The dimensionality h of

the new shape space is usually very small (h = 2 in our ex-

periments) and h is also independent of the number of basis

shapes K used by the kernalized NRSFM algorithm.

In addition, assuming shape deformation is gradual, we

solve for the smooth time-trajectory of a single point within

the h-dimensional shape space. This trajectory is compactly

represented using only the low-frequency coefficients of the

Discrete Cosine Transform (DCT) as in [6]. Using this rep-

resentation, we introduce a novel formulation of the shape

basis constraints of [14] and enforce the basis shapes to lie

somewhere along the smooth shape trajectory, without the

need to correspond to one of the observed shapes. As a re-

sult, each basis shape is modeled by a single unknown, a

time-parameter, regardless of the dimensionality h. There-

fore, the total number of unknowns in our model is reduced

considerably, while providing flexibility of representation.

This paper is organized as follows. Section 2 reviews

the NRSFM methods that are more closely related to our

approach and presents the basic formulation we will need to

derive our algorithm. Section 3 introduces the kernel trick

into the NRSFM matrix factorization approach, discussing

the implications and also problems that are addressed by our

new algorithm derived in Section 4. Experimental results

are presented in Section 5 and the conclusion in Section 6.

2. Related Work and Basic Formulation

2.1. Modeling 3D Shapes in a Linear Space

We first review the seminal matrix factorization model

of [3]. For a NRSFM problem with T images (cameras),

the n input 2D point tracks are given in matrix form as

W =




x1,1 x1,2 . . . x1,n

y1,1 y1,2 . . . y1,n
...

...
. . .

...

xT,1 xT,2 . . . xT,n

yT,1 yT,2 . . . yT,n




∈ R
2T×n, (1)

where [xt,j , yt,j ]
T

is the 2D projection of the

jth 3D point at time t (i.e., on the tth image),

t = 1, 2, . . . , T , j = 1, 2, . . . , n.

Without loss of generality, assume for now that: (1) W

is complete, meaning that no 2D points became occluded

during tracking; and (2) its mean column vector t ∈ R
2T

has been subtracted from all columns, making them zero-

mean. With an orthographic projection model and a world

coordinate system centered on the observed 3D object, t

gives the observed 2D camera translations in each image.

The authors of [3] model W as a product of two matrix

factors of low-rank 3K, M ∈ R
2T×3K and S ∈ R

3K×n,

W = D (C⊗ I3)︸ ︷︷ ︸
M



Ŝ1

...

ŜK




︸ ︷︷ ︸
S

. (2)

Here ⊗ denotes the Kronecker product and I3 is the 3 × 3
identity matrix. The coefficients of factor M are separated

in a block-diagonal rotation matrix D ∈ R
2T×3T and a

shape coefficient matrix C ∈ R
T×K defined as

D =




R̂1

R̂2

. . .

R̂T


 , C =




c1,1 . . . c1,K
c2,1 . . . c2,K

...
. . .

...

cT,1 . . . cT,K


 .

(3)

Let cTt be the tth row of C. The unknown 3D shape of the

tth image is modeled as the matrix function

S(cTt ) = (cTt ⊗ I3)S =

K∑

k=1

ct,kŜk, (4)

that is, a linear combination of K basis shapes Ŝk ∈ R
3×n

as described by the shape coordinates ct,k. The camera ori-

entation (object pose) at image t is given by R̂t ∈ R
2×3, a

3D rotation followed by an orthogonal projection to 2D.

The factors M and S are computed from the singular

value decomposition (SVD) W = (UΣ
1

2 )(Σ
1

2VT ) =
MS, with all but the largest 3K singular values in Σ set to

zero. This non-unique, “implicit” solution is defined only

up to a rank-3K ambiguity matrix Q ∈ R
3K×3K . To re-

cover D and C, an Euclidean upgrade step [1] finds a cor-

rective Q for the solution W = (MQ)(Q−1S) = MS.

2.2. Smooth Shape Trajectories in a Linear Space

To further constrain the estimation of the model above,

many authors assume that the observed 3D shape deforma-

tion is only gradual over time t = 1, . . . , T [2, 6, 11, 13].

For instance, the shape trajectory approach (STA) in [6]

considers cTt = c(t) as a single K-dimensional point de-

scribing a smooth time-trajectory within an unknown linear

shape space. This means that each shape coordinate ct,k



varies smoothly with t. The shape trajectory is then mod-

eled compactly using a small number d of low-frequency

DCT coefficients,

C = Ωd


x1, . . . , xK


 = ΩdX, xk ∈ R

d. (5)

Here, X ∈ R
d×K represents C compactly in the domain

of the truncated DCT basis matrix Ωd ∈ R
T×d. The f th

column of Ωd is the f th-frequency cosine wave with entries

ωtf =
σf√
T

cos

(
π(2t− 1)(f − 1)

2T

)
, t = 1, 2, . . . , T,

(6)

where σ1 = 1 and, for f ≥ 2, σf =
√
2. Because the DCT

bases are known a priori, the number of unknowns in C is

significantly reduced with STA.

In [6], the STA model was shown to subsume the fac-

torization of the point trajectory approach (PTA) of [2],

which models independent 3D point trajectories instead of

3D shapes. The two models are equivalent when X above

is equal to X0 = [ IK 0 ]T , the K × K identity stacked

over a block of zeros. Thus, for a factorization of rank-3K,

the solutions of PTA correspond to smoothed versions of

those of STA. In contrast to PTA, STA can model higher-

frequency DCT coefficients in X without relaxing the low-

rank constraint. However, the Euclidean update step of PTA

is easier to compute because the only unknowns in factor M

are those of the camera matrix D [2]. For this reason, STA

starts with X = X0 and computes D as done by PTA.

The final optimization stage of STA considers that

S = M†W is a function of M and W, with † denoting the

Moore-Penrose pseudo-inverse [5]. The goal is then to min-

imize the reprojection error

f(M) = ‖W −W∗‖2F , W∗ = MS = MM†W, (7)

where ‖·‖F is the Frobenius norm. Given D computed as

above, M is treated as a function of X only. The higher-

frequency DCT coefficients in X are then estimated using

an iterative Gauss-Newton algorithm to minimize (7).

2.3. Locally Linear and Articulated Models

The NRSFM algorithm in [11] relaxes the linearity as-

sumption for the shape manifold by using linear models

to represent only small neighborhoods of shapes. Conse-

quently, a number of locally linear models need to be esti-

mated and the total number of parameters is larger than that

of the standard NRSFM method [3]. Initialization of these

parameters requires an elaborate clustering of images with

similar shapes, which can also be a performance issue for

the case of long image sequences.

Other specialized, articulated shape models [10,15] com-

prise a number of linear subspaces and depend on a prior,

non-trivial process of segmentation of point tracks and clas-

sification of their motion subspaces. Although these meth-

ods convey additional information (e.g., positions and ori-

entations of joints), experimental results show that misclas-

sification usually happens near joints and axes.

In the next sections, we propose a compact and general

model for shapes with linear and non-linear deformations.

Our kernel NRSFM algorithm does not require prior cluster-

ing of points or images. In contrast to [11], our method can

smoothly interpolate between images and reconstruct par-

tially occluded 3D shapes. The flexibility of our approach

is also reflected by the fact that different non-linear models

can be built according to the kernel function used.

3. Kernel Non-Rigid Structure from Motion

In this section, we first introduce the kernel trick into the

NRSFM matrix factorization approach. We then discuss its

implications and some issues that are addressed by our new

algorithm presented in Section 4.

3.1. The Kernel Trick

Considering S = M†W, NRSFM by matrix factoriza-

tion reduces to estimating M as to provide a rank-3K ap-

proximation W∗ ≈ W given by W∗ = MM†W as in (7).

We note that M† = (MTM)−1MT can alternatively be

expressed as M† = MT (MMT )†. The proof is easily ob-

tained from the SVD form of M. The new rank-3K approx-

imation for W is then modeled as

W∗ = MMT (MMT )†W = M̃M̃†W. (8)

The rank-3K matrix M̃ = MMT ∈ R
2T×2T can be used

to replace M in (7) giving equivalent solutions. Substituting

M = D(C⊗ I3) into (8), we have

W∗ = D(K0 ⊗ I3)D
T

︸ ︷︷ ︸
M̃

M̃†W, K0 = CCT . (9)

To apply the kernel trick to (9), we replace K0 in M̃

by a kernel matrix K ∈ R
T×T whose (t, t′)th entry is

κ(cTt , c
T
t′), instead of the standard inner product cTt ct′ . The

function κ(·, ·) can be regarded as a generalized inner prod-

uct and is known as a Mercer kernel [12]. Here, κ(·, ·) mea-

sures the similarity between two shape vectors, cTt and cTt′ .

For clarity, in the following we will consider only the

popular radial basis function (RBF) kernel,

κ(cTt , c
T
t′) = e−γ‖cT

t −c
T
t′
‖2

2 , (10)

where γ is a scale parameter. However, note that our ap-

proach can be easily modified to use a different kernel. If

the linear kernel is used, for instance, one goes back to lin-

ear NRSFM with K0 as in (9).



The kernel in (10) can be seen as a non-linear map-

ping of each low-dimensional shape representation cTt into

an infinite-dimensional space of radial basis functions,

κ(cTt , ·), where a linear representation is more suitable. The

“trick” is that we do not need to explicitly represent the

shapes in this infinite-dimensional space because the algo-

rithm depends only on the generalized inner products (10).

Thus, the kernel trick gives a combination of two mappings:

(i) a non-linear mapping represented by the kernel function,

capturing the non-linearity of the problem; and (ii) a linear

mapping represented by the matrix products in (9).

In NRSFM by matrix factorization, the problem with re-

placing K0 in (9) is that we cannot guarantee that the new

kernel matrix K will be of low-rank K (with K⊗I3 of rank

3K). Thus, this version of kernel NRSFM becomes largely

underconstrained. Next, we address this problem by reintro-

ducing the low-rank constraint into the derivations above.

3.2. The Low­Rank Constraint in Kernel NRSFM

To derive a low-rank formulation of kernel NRSFM, we

consider a sparse approximation for the kernel matrix K

that has been used to speed up kernel methods [12]. Here,

the idea translates into reconstructing the shapes cTt , ∀t,
based only on their similarities to a subset of these shapes,

the active set, {bT
1 ,b

T
2 . . . ,bT

K} ⊂ {cT1 , cT2 . . . , cTT }.

For an arbitrary subset with K shape vectors bT
k , we ob-

tain a rank-K approximation of the kernel matrix,

K ≈ Kc,bK
−1
b,bK

T
c,b, (11)

where the (t, k)th entry of Kc,b ∈ R
T×K is κ(cTt ,b

T
k ), and

the (k, k′)th entry of Kb,b ∈ R
K×K is κ(bT

k ,b
T
k′).

To derive kernel NRSFM algorithms with K as in (11),

we use

M = D(Kc,bK
− 1

2

b,b ⊗ I3) ∈ R
2T×3K (12)

as a replacement for factor M in (8). Another equivalent

solution can be obtained with M replacing factor M in (7).

Because the factorization in (7) is non-unique, there are in

fact multiple equivalent solutions of the form M = MQ,

with M as above and Q ∈ R
3K×3K arbitrary, but full-rank.

Now consider the particular solution with Q = (K
1

2

b,b⊗I3).
From (12), our final form of M is then

M = D(Kc,b ⊗ I3). (13)

This new form becomes more similar to that of the original

M in (2). With (13) and W∗ = MM†W, we now express

the 3D shape of image t as the non-linear matrix function

S(cTt ) =
(
κ(cTt )⊗ I3

)
M†W ∈ R

3×n, (14)

where κ(cTt ) ∈ R
1×K is the tth row of Kc,b,

κ(cTt ) = [ κ(cTt ,b
T
1 ) . . . κ(cTt ,b

T
K) ]. (15)

Equation (14) gives the non-linear mapping in Fig. 1.

After reintroducing the low-rank constraint, our kernel

NRSFM approach considers the kernel matrix K in (11)

only implicitly. However, our factorization model with (13)

still captures the essence of the kernel trick: the kernel func-

tion in (10) defines a non-linear mapping of shape vectors

into a high-dimensional space where a linear representation

is computed from inner products only (the entries of Kc,b).

In addition, note that using the above active set in

NRSFM is similar to enforcing the shape basis constraints

of [14] – i.e., constraining the basis shapes (bT
k ) to be iden-

tical to a subset of the observed shapes (cTk ). The problem

with these basis constraints is that, from all possible combi-

nations of K out of T shapes, we do not know the active set

that best represents all shapes. To avoid a complex search

algorithm for the optimal active set, we elaborate this ap-

proach further in the following section.

4. Kernel STA

This section presents our new NRSFM algorithm, re-

ferred to as the Kernel Shape Trajectory Approach (KSTA).

KSTA uses the non-linear mapping of kernel NRSFM to

further constrain the STA model (Section 2.2) and reduce

the number of dimensions of the shape space. First, we

avoid the combinatorial problem of Section 3.2 by removing

the basis constraints. Inspired by the STA model, we derive

novel basis constraints that generalize the idea in [14].

4.1. New Basis Constraints on the Shape Trajectory

Removing the shape basis constraints simply implies

that, while we factorize W with M as in (13), we need

to estimate the basis shapes bT
k , ∀k, together with the shape

vectors cTt . Importantly, a basis shape no longer needs to

be equal to a shape observed in one of the T images. We

now have as additional unknowns the K basis shapes, bT
k ,

and the parameters of the kernel function used to compute

the entries κ(cTt ,b
T
k ) of Kc,b.

Before we proceed with the modeling of additional con-

straints for cTt and bT
k , we note another important difference

introduced by the model in Section 3.2: now the low-rank

constraint is defined based solely on the number K of basis

shapes bT
k . This means that all vectors cTt and bT

k can be

modeled within a shape space with dimensionality h ≤ K

(many kernel functions only require that cTt and bT
k be of

the same dimension to compute their inner product).

Thus, from now on we will consider the shapes

cTt ∈ R
h, ∀t, and bT

k ∈ R
h, ∀k, (16)

as points in an h-dimensional shape space. Because h de-

termines the number of unknowns we need to estimate (as

discussed below), h should be small as to yield a compact

model. In our experiments, complex non-linear deforma-

tions were modeled with a very small h = 2.



Assuming that shape deformation is smooth from one

image to the next, we adapt the STA model in (5) and con-

sider cTt = c(t) to describe a smooth time-trajectory within

the h-dimensional shape space. Thus,


cT1
...

cTT


 =



ω

T
1
...

ω
T
T


X = ΩdX, X ∈ R

d×h, (17)

where ω
T
t is the tth row of the DCT matrix Ωd and X is a

compact representation of the shape trajectory.

To model bT
k , we introduce new basis constraints that

represent a compromise between the traditional basis con-

straints and the unconstrained case. We will therefore only

require that the bT
k be similar (not necessarily equal) to

some cTt . This new constraint is enforced by modeling bT
k

somewhere along the continuous shape trajectory c(t). That

is, we model the time-samples

bT
k = b(tk) = ω(tk)

TX, tk ∈ [1, T ], ∀k, (18)

where ω(tk)
T is a row vector of d low-frequency cosine

terms (6) at time tk. Hence, each basis shape introduces

only a single, continuous new variable, tk, regardless of the

dimensionality h of the shape space.

4.2. Model Analysis

Indeed, linear models can represent a set of 3D shapes

showing non-linearly deformations – as the number of ba-

sis shapes K approaches the number of observed shapes T ,

perfect representation is possible. Our claim is that, in linear

NRSFM, non-linear deformations reduce the effectiveness

of the low-rank constraint due to the need to use additional

basis shapes, increasing K.

Using the kernel trick, our model complements the low-

rank constraint by capturing the non-linear relationships in

the shape coefficients of the linear model – i.e., the new

Kc,b approximates the original C in (2). The net effect

can be seen as using non-linear dimensionality reduction to

further compress the (shape) space of possible solutions.

Let’s consider the compactness of the KSTA model

above in comparison to linear NRSFM. The original method

in [3] defines C using TK parameters, while STA requires

dK (with d ≪ T for smooth deformations). Through non-

linear dimensionality reduction and new basis constraints,

KSTA can further compress the model of Kc,b to dh+K+1
unknowns, with h ≤ K ≤ d. This number includes the pa-

rameter γ used by the RBF kernel (10).

We note that our model bears some similarity with the

non-linear dimensionality reduction approach of [8], where

the dimensionality of the latent space (h) and the size of the

active set (K) are treated as user supplied parameters. On

the other hand, our method is not probabilistic and we fur-

ther compress the representation in the h-dimensional space

using the DCT-based trajectory model (17).

Another observation is that the user-supplied parameters

d and h are often easy to set (typically, d ∈ {0.1T, 0.3T}
and h ∈ {2, 3}). Results vary considerably more according

to the choice of K, as observed with other NRSFM meth-

ods. Cross-validation methods and additional priors have

been used to automatically estimate K and to regularize

the reconstruction process when K is over-estimated [13];

these techniques will be used with our model in future ex-

periments. Here, for clarity, we focus on the new ideas in-

troduced by KSTA and assume K is known from prior ex-

perience with a particular application scenario.

4.3. Optimization

With M as in (13), we minimize the reprojection error

f(M) = ‖W −MM†W‖2F , (19)

using the Gauss-Newton algorithm in [6]. To initialize M,

we use D and X as computed by STA with K = h. The

initial basis shapes bT
k are computed from equally-spaced

points t1, . . . , tK in the interval [1, T ], tk = k
(T−1)
(K+1) . Let

σb be the average Euclidean distance from each cTt to each

bT
k ; the initial kernel parameter is then γ = (2σ2

b )
−1.

In this paper, we fix the initial camera matrix D and only

optimize with respect to the parameters X, t1, . . . , tK , and

γ. However, our algorithm can be modified to perform the

optimization of these parameters and also D in alternation,

as in [10, 13]. The derivation of the gradient and Hessian

terms is summarized in Appendix A.

4.4. NRSFM with Occlusion

In cases of occlusion, W is incomplete and we need to

modify the cost function (19) as in [6]. Let the complete

vector ŵj ∈ R
2Tj (Tj ≤ T ) denote all the observed entries

in the jth column of W. Also, define Πj ∈ R
2Tj×2T as a

row-amputated identity matrix such that Mj = ΠjM and

t̂j = Πjt have the rows of M and t that correspond to the

rows of entries in ŵj . The camera translation vector t is ob-

tained from the initialization using STA. We then minimize

the reprojection error of the available observations,

f(M) =

n∑

j=1

∥∥∥
(
I−MjM

†
j

)
(ŵj − t̂j)

∥∥∥
2

2
. (20)

Appendix A discusses the use of the Gauss-Newton algo-

rithm in [6] to minimize this new cost function.

5. Experimental Results

We compare the performance of KSTA against four

state-of-the-art NRSFM methods: the approach using

probabilistic principal component analysis (EM-PPCA)

to model 3D shapes [13]; the Metric Projections (MP)



method [10]; and the DCT-based PTA [2] and STA [6]. Note

that all these four methods make use of linear models.

Our experiments considered the same datasets that where

chosen by the authors of the methods above. The number of

frames (T ) and the number of point tracks (n) are indicated

as (T /n) after a dataset’s name. We considered the mo-

tion capture sequences: drink (1102/41), pick-up (357/41),

yoga (307/41), stretch (370/41), and dance (264/75) of [2];

face1 (74/37) of [10]; face2 (316/40), walking (260/55),

and the synthetic shark sequence (240/91) of [13]. We

also introduce another full-body motion capture dataset,

capoeira (250/41), with more complex deformations – the

typical sideways swing of this African-Brazilian mixture of

dance and martial art (see supplementary video available at

http://www.ece.osu.edu/∼gotardop).

We followed the same evaluation procedure in [2]

and [6]. For each dataset, W is obtained by applying an

orthographic projection on the sequence of 3D shapes. Be-

cause the solution of NRSFM methods is defined up to an

arbitrary 3 × 3 rotation, we compute a single rotation that

best aligns all reconstructed and original 3D shapes. Let etj
be the reconstruction error (i.e., Euclidean distance) for the

jth 3D point of frame t. We then compute a normalized

mean 3D error over all points and frames,

e3D =
1

σTn

T∑

t=1

n∑

j=1

etj , σ =
1

3T

T∑

t=1

(σtx + σty + σtz) ,

(21)

with σtx, σty , and σtz the standard deviations of the x-, y-,

and z-coordinates of the original shape in frame t.

For each algorithm, we report the best result of different

runs with K ∈ {2, 3, . . . , 13}. For all datasets, the recon-

structions computed with KSTA were modeled within a 2-

dimensional shape space (h = 2). KSTA had the number

of DCT bases set to d = 0.1T (i.e., 10%), except for face1,

face2, walking, and capoeira, on which we set d = 0.3T
due to the presence of higher frequency deformations. Ta-

ble 1 compares the performances of the NRSFM methods

above in terms of the obtained error e3D. The value of K for

the best solutions of PTA, STA, and KSTA are also shown

for comparison of these DCT-based methods.

Table 1 shows that the results of KSTA are consistently

better than or similar to the best results provided by the

other methods on each dataset. Also, note that KSTA mod-

els all these deformable shapes using a highly compact 2-

dimensional shape space (h = 2). Therefore, in comparison

to the other linear algorithms, KSTA can better constrain the

reconstruction problem while the number of basis shapes K

increases (because h is independent of K).

As shown in [2, 6], further decrease in the error e3D for

stretch, pick-up, and yoga is prevented by the larger er-

rors in estimating the artificial rotations added to these se-

quences. Future extensions to our algorithm include the use

Table 1. Average 3D reconstruction error (e3D) of NRSFM meth-

ods on the complete synthetic and motion capture datasets. For

the DCT-based PTA, STA, and KSTA methods, factorization rank

is also indicated by the value of K in parenthesis.

Dataset EM-PPCA MP PTA STA KSTA

Shark 0.0501 0.1571 0.1796 (9) 0.0081 (3) 0.0160 (3)

Face1 0.0434 0.0734 0.1247 (3) 0.0637 (5) 0.0618 (8)

Face2 0.0329 0.0357 0.0444 (5) 0.0363 (3) 0.0339 (4)

Drink 0.3393 0.4604 0.0250 (13) 0.0223 (6) 0.0156 (12)

Stretch 1.1111 0.8549 0.1088 (12) 0.0710 (8) 0.0674 (12)

Pick-up 0.5822 0.4332 0.2369 (12) 0.2301 (6) 0.2322 (6)

Yoga 0.8097 0.8039 0.1625 (11) 0.1467 (7) 0.1476 (7)

Dance 0.9839 0.2639 0.2958 (5) 0.2705 (2) 0.2504 (4)

Walking 0.4917 0.5607 0.3954 (2) 0.1601 (4) 0.1029 (5)

Capoeira 0.8934 0.3597 0.5065 (6) 0.3405 (4) 0.2376 (7)

of a simple technique that refine the estimated rotations and

3D shapes in alternation, as in [13] and [10].

An important observation is that, in comparison to STA,

the non-linear mapping of KSTA makes it more sensitive to

the initialization of X. By varying the value of K in the

initial STA step (but still using the first h-columns of X as

computed with STA), we have run KSTA with different ini-

tializations and have obtained e3D error values as low as

0.0858 for the walking dataset. Future experiments will in-

vestigate alternative initialization procedures to consistently

improve performance on all the datasets above.

Note that the walking dataset has recently been consid-

ered [13] as beyond the scope of NRSFM methods without

an specialized, articulated model. With KSTA, the recon-

struction error on this sequence has becomes of the same

order of magnitude as that of the deformable facial shapes.

Fig. 2(a) shows examples of 3D reconstructions for this se-

quence in comparison to the original 3D data (we show re-

sults for the same frames appearing in [13]). The smooth

and approximately periodic shape trajectory estimated by

KSTA is plotted on Fig. 2(b).

The flexible, kernel-based model of KSTA represents

a promising contribution towards the development of new

NRSFM algorithms that can reconstruct 3D shapes with

more complex deformations. This argument is also sup-

ported by the large performance improvement obtained on

the capoeira dataset. Fig. 3(a) shows example reconstruc-

tions obtained with KSTA on this sequence. The sharp

changes in the shape trajectory of Fig. 3(b) captures the

time instant when the sideways motion is reversed. In this

sequence, sudden changes in the motion of hands and feet

correspond to high-frequency deformation and introduce lo-

calized reconstruction errors; see result for frame 120 in

Fig. 3(a). In general, deformation smoothness is also more

weakly defined at the beginning and end of a sequence. Fu-

ture work will address detection and correction of these is-

sues, affecting the results of NRSFM algorithms that ex-
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Figure 2. Results of KSTA on the walking sequence. (a) Ground-

truth (dots) and recovered 3D shapes (circles) for frames 1, 34, 74,

122 (top), 160, 198, 223, and 255 (bottom). (b) Smooth trajectory

in 2-dimensional shape space (triangles indicate the bases shapes).

plore the assumption of smoothness of deformation.

To assess the performance of KSTA in NRSFM with oc-

clusion, we reproduce the experiment in [6, 10] and apply

the algorithms above to the face2 dataset with ρ% of its 2D

entries randomly discarded. KSTA was run to minimize the

objective (20) with the same parameters described above for

the complete dataset. Note that PTA does not handle occlu-

sion and, in [10], the performance EM-PPCA was shown to

be inferior to that of MP. Results of MP, STA, and KSTA,

averaged over 100 trials, are shown in Fig. 4. While the

average e3D of MP increases with ρ above 30%, the perfor-

mance of STA and KSTA show little variation over all the

tested levels of random occlusion.

The runtimes of KSTA on the complete datasets above

were usually very short, around 5 minutes on a laptop PC

with a 3 GHz dual-core processor. KSTA was implemented

in Mathwork’s MatlabTMand the source code is available at

http://www.ece.osu.edu/∼gotardop/.

6. Conclusion

This paper addressed the problem of modeling complex

non-linear shape deformations that weaken a main pillar of
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Figure 3. Results of KSTA on the capoeira sequence. (a) Ground-

truth (dots) and recovered 3D shapes (circles) for frames 1, 30, 60,

90 (top), 120, 150, 180, and 210 (bottom). (b) Smooth trajectory

in 2-dimensional shape space (triangles indicate the basis shapes).
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Figure 4. Performance on the face2 sequence with missing data.

NRSFM, the low-rank constraint. Using the kernel trick,

we proposed a new approach that generalizes the standard

matrix factorization in NRSFM. The derived kernel-based

model complements the low-rank constraint by capturing

the non-linear structure in the shape coefficients of the lin-



ear model. Experimental results show that some complex

articulated deformations can be modeled with a reconstruc-

tion error of the same order of magnitude as that of simpler

cases with facial shape deformations. These results are ob-

tained without the use of specialized articulation models.

Our kernel-based model is flexible and represents a

promising contribution towards the development of new

NRSFM algorithms that can reconstruct 3D shapes with

more complex deformations. Although the results reported

here have only considered the RBF kernel, the use of our

approach with other kernels is straightforward and will be

investigated in the future. Despite our aim at a general

method, future investigation is needed to define kernels that

better suit the modeling of specific deformable 3D objects

from 2D image streams.

A. Gauss-Newton Optimization for KSTA

To use the Gauss-Newton algorithm in [6], we need to

express the differential of M in vectorized form, vec(dM),
and in terms of the differential of the vector of unknowns,

du = [ vec(dX)T dt1 dt2 . . . dtK dγ ]T . (22)

From (13), using matrix differential calculus [9],

vec (dM) = vec (D(dKc,b ⊗ I3))

= (IK ⊗D)Vvec(Kc,b), (23)

where V is a constant and sparse binary mapping that satis-

fies vec(dKc,b⊗ I3) = Vvec(Kc,b), as in [6]. In addition,

vec (dKc,b) = vec

(
∂Kc,b

∂X
dX

)
+ vec

(
∂Kc,b

∂t1
dt1

)
+ . . .

+ vec

(
∂Kc,b

∂tK
dtK

)
+ vec

(
∂Kc,b

∂γ
dγ

)

= [ PX ... Ptk ... Pγ ] du. (24)

For the kernel (10) and κt,k the (t, k)th entry of Kc,b, the

vectorized partial derivative matrices are stacks of the form

PX =




...

−2γκt,k

(
cTt − bT

k

)
⊗
(
ω

T
t − ω(tk)

T
)

...


 , (25)

Ptk =

[
. . . 2γκt,k

∂ω(tk)
T

∂tk
X

(
cTt − bT

k

)T
I
(k)
K . . .

]T
,

(26)

Pγ =

[
. . . κt,k loge(κt,k)

1

γ
. . .

]T
, (27)

where I
(k)
K is the kth column of the K ×K identity matrix.

Gradient and Hessian terms are computed as in [6] but

using the new form of vec(dM) or, when W is incomplete,

vec(dMj) = vec(ΠjdM) = (IK ⊗Πj)vec(dM). (28)
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