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Abstract

Partial occlusions in face images pose a great problem
for most face recognition algorithms. Several solutions to
this problem have been proposed over the years – ranging
from dividing the face image into a set of local regions to
sophisticated statistical methods. In the present paper, we
pose the problem as a reconstruction one. In this approach,
each test image is described as a linear combination of the
training samples in each class. The class samples provid-
ing the best reconstruction determine the class label. Here,
“best reconstruction” means that reconstruction providing
the smallest matching error when using an appropriate met-
ric to compare the reconstructed and test images. A key
point in our formulation is to base this reconstruction solely
on the visible data in the training and testing sets. This
allows to have partial occlusions in both the training and
testing samples, while previous methods only dealt with oc-
clusions in the testing set. We show extensive experimental
results using a large variety of comparative studies, demon-
strating the superiority of the proposed approach over the
state of the art.

1. Introduction

To date, many algorithms have been defined to do recog-
nition of faces under a large variety of image conditions
[11]. One problem that has received considerable attention
in recent years is that of partially occluded faces. Since the
work of Martinez [4], a variety of methods have been pro-
posed for matching non-occluded training samples to par-
tially occluded test images [1, 2, 6, 8, 9, 10]. The goal is to
define a matching technique that omits the large matching
errors due to occlusions while concentrating with those of
the non-occluded parts.

In this paper, we take a different view. We redefine the
face recognition problem as a reconstruction one. In this
approach, the training samples of a class are linearly com-
bined to create a new image that is as close as possible to
the test image. The hypothesis is that the most accurate re-
construction will be given when one uses the samples of

the correct class. This is a grounded hypothesis, since the
image reconstruction of a frontal face image will generally
be most accurately obtained when combining face images
of the person it represents rather than with images of other
individuals.

Under this view, the major problem is to define an appro-
priate mechanism to do the reconstruction. If the training
and testing images had no occlusions, one of the simplest
approaches would be to try to represent the test imaget as
a linear combination of theni training samples in classi,
{xi1, . . . ,xini},

t ≈
ni∑

j=1

wijxij ,

wherewij ∈ R are the weights describing the contribution
of each image,t andxj are thep-dimensional vectorized
images,p = ab, anda× b defines the image size.

The problem of estimating the weightswij can be stated
as,

wi = arg min
(wi1,...,wini

)T

∥∥∥∥∥∥
t−

ni∑

j=1

wijxij

∥∥∥∥∥∥
r

. (1)

The selection of the metric above, which is given by the
r-norm‖ · ‖r, regulates how each feature (dimension) can
be used to reconstruct the test image. The selection of the
norm also defines the space`r.

The most commonly used norms in minimization prob-
lems such as that defined in (1) are the 2-norm, which pro-
vides the least-squares (LS) solution, and the 1-norm, which
generates sparse representations. A recent result [10] shows
that`1 is preferred because it can handle sparse occlusions
in the test image. In this approach, the sample images of all
classes are used to estimate an occluded test image. Since
`1 emphasizes sparseness, only a very small number of sam-
ple images will be used to linearly reconstruct the test im-
age. The samples which will generally best reconstruct the
test instance, are those associated to the same class label
(i.e., identity), facilitating the recognition process. How-
ever, a concern of this approach is that the`1-minimization
is computationally expensive.
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The major problem with the reconstruction approach de-
fined above, is that one is only allowed to use a single
weight per training image. That is, all the pixels in each
sample image are weighted equally. In most instances, it
would be useful to be able to weight distinct areas differ-
ently. For example, assume that we have two sample images
per class in our database – one with close eyes and mouth
and another with open eyes and mouth. We now wish to re-
construct a test image showing open eyes and a close mouth.
This can be readily achieved if we allow different weights
for the top and bottom parts of each image. Hence, our goal
is to define a reliable and fast mechanism to do this weight
assignment.

In the present paper, we rework the general reconstruc-
tion framework defined in (1) to efficiently address this
problem. By taking advantage of the natural partitions pro-
vided by the occluders, we derive a formulation that allows
different weighting factors in distinct parts of the image.
We demonstrate that this framework outperforms the gen-
eral definition given in (1), and that the derived solution can
efficiently work with a`2-minimization, resulting in very
fast processing times. We present this approach in Section
2. Experimental results are in Section3.

2. Reconstruction and Classification

Our first goal is to present the basic formulation to repre-
sent the visible pixels of a test image as a linear combination
of the visible pixels in the training set. The use of different
norms within this approach is then discussed.

2.1. Within-class approximation with occlusions

Let the training set for each class be, as above,
{xi1, . . . ,xini}, with i = 1, . . . , C, C the number of
classes. For eachxij ∈ Rp, we define its occlusion mask
mij ∈ Rp as

mijk =
{

1 if the pixelxijk is not occluded
0 otherwise,

where xijk and mijk are the kth element of thep-
dimensional vectorsxij andmij , respectively. Similarly,
we definem̂ ∈ Rp as the occlusion mask of the test vector
t ∈ Rp.

The above notation, allows us to rewrite (1) as

wi = arg min
(wi1,...,wini

)T

∥∥∥∥∥t¯ m̂−
ni∑

j=1

mij ¯ (wijxij)

∥∥∥∥∥
r

,

(2)
where¯ is the Hadamard product (i.e., the element to el-
ement multiplication of two vectors,ck = akbk, a,b, c ∈
Rp), and‖ · ‖r defines an appropriate metric.

As mentioned earlier, the major problem with the above
equation is that it only allows for a single weight for all the
pixels in the same sample imagexij .

Our solution to this problem, is to redefine the minimiza-
tion procedure as a fitting process where the occlusions have
been eliminated from the equations. To do this, let

Mi = (mi1, . . . ,mini)

be ap× ni matrix whose columns are the occlusion masks
of each sample in classi. LetMij denote thejth row of this
matrix. Mij defines the sample images that can be used to
reconstruct thejth image pixel oft, tj .

Note that since eachMij hasni values, there are2ni

possible patterns of useful pixels to reconstructtj . That is,
each visible pixel in the test image can be approximated
by either zero pixels from the sample images (when all are
occluded), a subset of them, or all of them (when there are
no occlusions). Let these options be denoted byl, with l =
1, . . . , 2ni .

Now consider all the non-occluded pixels int that can
be reconstructed using the same patternl, and denote these
pixelstl. Also, letXi = (xi1, . . . ,xini

) be ap× ni matrix
whose columns are the samples in classi, andXij be the
jth row of Xi. Then, the pixels intl can be reconstructed
with the matrixXl

i, whereXij is a row ofXl
i if the corre-

spondingMij has thelth pattern. Using this notation, we
can define our reconstruction problem as

tl ≈ Xl
iw

l
i, (3)

where the weightswl
i = (wl

i1, . . . , w
l
ini

)T are given by

arg min
(wl

i1,...,wl
ini

)T

∥∥tl −Xl
iw

l
i

∥∥
r
. (4)

This result allows us to generate the reconstruction

t̂l(i) = Xl
iw

l
i.

The final reconstruction oft, obtained with the samples in
classi and denoted̂t(i), is given by the combination of all
the rows in̂tl(i), l = 1, . . . , 2ni .

The procedure described thus far providesC reconstruc-
tions of the test image,{t̂(1), . . . , t̂(C)}, one per class. The
next task is to determine which of these reconstructions is
most similar to the original test image. We do this next.

2.2. Norms and quasi-norms for classification

The simplest mechanism to test how accurate the recon-
struction is, would be to look at the reconstruction error,
given by

‖t̂(i)− t‖r. (5)

For example, iǹ 2, this corresponds to the LS fitting error.
In `1, it represents the error given by the sparse representa-
tion selected by the optimization mechanism.

However, the metric used to reconstruct the image is not
always the most adequate for classification. For instance, if



we emploỳ 1 to find a sparse set of training samples to de-
scribe the test image, it is generally adequate to compare the
reconstructed and original images using the Euclidean dis-
tance (i.e., iǹ 2). In this case, while à1-minimization pro-
vides the advantages of a sparse representation,`2 is ade-
quate for comparing images (or, equivalently, vectors). This
is in fact one of the most used approaches.

In contrast, in our approach derived above, Eqs. (3)-(4),
it makes sense to do the minimization in`2, because the
goal is to use as much information from each sample of the
same classas possible in an attempt to get more accurate
reconstructions of the test image. However, once the re-
construction is obtained, it is generally prefer to compare
the reconstruction and the original test image using a met-
ric which emphasizes the overall similarity. Recall that the
2-norm is not a good choice for that, because it emphasizes
those distances that are large while diminishing those that
are small. This is a consequence of the quadratic term,
which emphasizes large components and minimizes small
ones. This is the same as saying that we would like to val-
idate or invalidate a reconstruction based on the similarity
of those areas that are most dissimilar, rather than those that
are most similar. In fact, the 2-norm is well known to be
sensitive to outliers (i.e., the large distances), which are typ-
ically found in the types of reconstructions obtained with a
linear fit. The area of robust statistics usually employs the
1-norm to resolve these issues.

In our application too, we can use the 1-norm to be robust
to outliers and to base our judgment on the overall similar-
ity. The advantage of this norm is that it does not emphasize
the large or the small distances, since it is simply given by

‖a‖1 = |a1|+ · · ·+ |ap|,

wherea ∈ Rp. Note that, in this norm, all components are
treated equally – regardless of their size.

We can now go one step further and use a measure
that deemphasizes large distances while emphasizing small
ones. This would help put more emphasis on the similarity
between the reconstructed and original test image, rather
than on their dissimilarity as iǹ2. To achieve this we can
use the.5-quasi-norm, given by

‖a‖.5 =
(
a.5
1 + · · ·+ a.5

p

)2
.

Recall that this is not a norm, because it does not satisfy the
triangular inequality, which needs to be replaced by‖a +
b‖r ≤ K(‖a‖r + ‖b‖r), for someK > 1. In our case,
r = .5 andK = 2.

The important concept here, is that the.5-quasi-norm
will deemphasize large distances (including the outliers)
and emphasize the small ones (i.e., the areas where the re-
construction was possible). This effect is due to the fact that
the exponential term in the.5-quasi-norm is smaller than 1.
One could use anr < .5, but this would only emphasize

Figure 1.Two examples of face color detection and occlusion
mask generation. In each row, from left to right: the full face,
the face mask of the full face, the partially occluded face, the face
mask of the occluded face and the final face occlusion mask.

points of agreement and would no longer consider the over-
all similarity of the two images.

These are thus the two measures that we use for classi-
fication, i.e., the 1-norm and the.5-quasi-norm. And, the
class label,ct, of our testing imaget is given by

ct = arg min
i=1,...,C

‖t̂(i)− t‖r, (6)

wherer is either1 or .5.

2.3. Computing the occlusion mask

As the reader will have noted in our formulation above,
we require of the occlusion masksmij andm̂, which spec-
ify the pixels that are occluded in each image. We now
present an algorithm to calculatemij andm̂.

In face detection and segmentation, color is a practical
cue for robust detection, because human skin color can be
reliably modeled using statistical methods [3, 7]. Detection
of an occlusion is a bit trickier, because we need to distin-
guish between these and the background. Here, we adopt a
variant of the approach presented in [4]. After a principal
component analysis face detection step, the approach mod-
els the skin color using a mixture of Gaussians and then
employs morphological operators to tune the result. Two
examples on non-occluded faces and two on occluded faces
are given in Fig.1. In the last step, the morphological op-
erators of erosion and dilation are used to eliminate isolated
segments and refill the eroded local areas, respectively. Af-
ter these steps, we can delineate the face limits with the use
of the color map previously obtained. The right and left
most pixels with skin color for each image row and the top
and bottom pixels in each column are used to achieve this.
The result of the entire process is shown to the right of each
of the occluded image examples in Fig.1. The final oc-
clusion detection results shown in the right-most image of
each row in Fig.1 are obtained after a second round of mor-
phological erosion and dilation, where 0s (black) represent
occluded facial pixels and 1s (white) non-occluded. The bi-
nary occlusion map is vectorized to get the occlusion masks
mij andm̂.



Note that the process described above also determines
the limits of the face. This will be later used to separate the
face from its background – to prevent misclassifications due
to background noise.

3. Experimental Results

We refer to our approach presented in the above as the
Partial Within-Class Match (PWCMr) method, where the
subscriptr specifies the metric (or quasi-metric) used in
(5) and (6). Our approach is to use the 2-norm in (4) and
the 1-norm or.5-quasi-norm in (5) and (6). Nonetheless,
for comparison purposes, we also provide results where we
have employed the 2-norm in (5). Our results are consistent
with our theoretical argument and, hence, the 1-norm in (5)
results in superior results to those of the 2-norm. We have
also experimented with the use of the 1-norm in (4) and the
2-norm in (5). This resulted in slightly worse results than
the ones reported below and with the added disadvantage of
a high computational cost – typically, a 10-fold increase.

3.1. Database and experimental settings

In the present paper, we employ the AR face database
[5], which is one of the most popular databases, and one
of the very few to include natural occlusions. The AR face
database consists of more than 100 people’s frontal-view
color images. Other image variations include different il-
luminations and distinct facial expressions. This database
is considered very challenging, since∼ 50% of the images
have large or very large occlusions. The first13 images,
for one of the subjects in the database, are shown in Fig.
2(a-m). These correspond to the images taken during a first
session. Another set of13 images taken under the same
occlusions, illuminations, and expressions was taken two
weeks after the first session. We will refer to the images in
this second session asa’ to m’. The images in the first ses-
sion are labeleda to m following the notation shown in Fig.
2.

In our experiments, we first detect and warp the face
(without the inclusion of any hair or background) to gener-
ate the registered face image with a fixed size, and calculate
the occlusion mask for each of them (as described in Sec-
tion 2.3). This localization and warping process is known
to improve recognition rates [4]. Then, we convert the face
images to gray-scale and resize them to ana×b size. These
a andb are selected in each experiment to match those used
by other authors. This facilitates a direct comparison to a
large number of results reported in the literature. We ran-
domly choose 100 persons (50 male and 50 female) from
the database. Each face image is segmented using an oval-
shaped masked as shown in Fig.2(n).

3.2. Synthetic occlusions

Experiment 1: The first experiment is to test the pro-
posed algorithm under synthetic occlusions and different

Figure 2.(a-m) Shown here are the 13 images of the first session
for one of the subjects in the AR face database. (n) An oval-shaped
cropped example.

Figure 3.Classification accuracy with a synthetic occlusion mask
of s× s. (a) Training imagea, testing imagesb, c, d. (b) Training
imagesb, c, d, testing imagea. The image size is54× 39.

facial expressions. We use the first image (neutral face) of
the first session (i.e., a) of each subject as the training set,
and the happy (b), sad (c) and scream face (d) from the first
session for testing. The occlusion is simulated by placing a
random square mask ofs×s to both the training and testing
images. In Fig.3(a), we can see that the proposed algorithm
can successfully handle occlusions of up to20× 20 pixels,
corresponding to a∼ 20% occlusion inboth the training
and testing sets. Note that this is different to the previous
results reported in the literature, since we also enforce oc-
clusions in the training set, not only the testing one.

Fig. 3(b) shows the reverse example. That is, using the
face imagesb, c andd for training anda for testing. Here
too, the maximum allowable occlusion is of∼ 20% of the
image.

3.3. Real occlusions

We divide the experiments in this section into two parts.
The first set of experiments only considers occlusions in the
testing set – allowing for a comparison with the state of the
art. The second set of experiments considers occlusions in



Figure 4. Successful classification rate using the proposed ap-
proach, PWCMr (with r = 2, 2-norm,r = 1, 1-norm, andr = .5,
.5-quasi-norm). The results are compared to those in [4] and [9].
Here,a = 170 andb = 120.

both the training and testing sets.
Experiment 2: We use the neutral non-occluded face

a for each of the100 individuals for training, and the oc-
cluded facesh andk (of the first session) andh’ and k’ (of
the second session) for testing. The results are compared
with two other methods: the local probabilistic method of
[4] and the Self-Organizing-Map (SOM) of [9]. The com-
parative results are in Fig.4.

Consistent with our theory, the use of the 1-norm in (5)
results in more accurate classifications. We also see that the
results of the proposed approach are (on average) superior
to those of [4] and [9]. The method of [9] provides com-
parative results with ours for those images within the same
session, but not with those in the other session.

Experiment 3: Our previous experiments only consid-
ered a single training image per class. We now consider
the case where the number of training images is larger, as it
was done in [2, 8, 10]. In the first of these experiments,
the training set is{a,b,c,a’,b’,c’} (i.e., the non-occluded
faces), and the testing set is{d,h,k,d’,h’,k’} (i.e., the scream
face and the occluded set). The experimental results are
plotted in Fig. 5. In this comparison, we note that the
results reported in [2] only used50 people from the AR
database. The second experiment uses{a,b,c,d,a’,b’,c’,d’}
as the training set and{h,k,h’,k’} as the testing. Compara-
tive results against the method of Wrightet al. [10] are in
Fig. 6, where “WrightS” is a method using a single block
and “Wright M” a set of multiple blocks as defined in [10].
The method of [10] does provide comparative results with
ours. However, as reported in [10], their algorithm requires
about 75 seconds of processing time for a single83 × 60
test image (on a PowerMac G5). The proposed PWCM al-
gorithm achieves a slightly superior result with each image
while requiring of less than1 second of processing time.
Finally, comparative results with Tan [8] are in Fig.7.

Experiment 4: There are very little results reported in
the literature where a method can deal with partially oc-
cluded faces in both the training and testing sets. In [12],
Zhu and Martinez provide experimental results using sev-

Figure 5.Training set{a, b, c, a’, b’, c’}. Testing set{d, h, k, d’,
h’, k’}. Here,a = 100 andb = 52.

Figure 6.Training set{a, b, c, d, a’, b’, c’, d’}. Testing set{h, k,
h’, k’}. Here,a = 83 andb = 60.

Figure 7.Training set{a, b, c, d, e, f, g}. Testing set{h, i, j, k, l,
m, h’, i’, j’, k’, l’, m’ }. Here,a = 66 andb = 48.

eral subspace algorithms when using the images of the first
session in the AR database for training and the images of
the second session for testing. The authors report superior
results for the Subclass Discriminant Analysis (SDA) algo-
rithm [12]. In Table1, we show the results obtained with
the proposed approach and that of SDA. We also included
the results obtained with a Nearest Neighbor approach with
ther-norm (denoted as NNr), and those obtained when us-
ing Eq. (2) in place of (3) (denoted Within-Class Match,
WCMr). Again, our approach consistently outperforms the
others, with the.5-quasi-norm providing the top results.

Experiment 5: Our next experiment considers the ex-
treme cases where all the training images have partial oc-
clusions. There are many such cases. In Table2, we report
on six possible scenarios. Since the occlusion in the AR
face database each occludes almost50% of the image, this
is a very challenging case. We see that, as expected, the



SDA PWCM2 PWCM1 PWCM.5 NN2 NN1 NN.5 WCM2 WCM1 WCM.5

78.2 85.0 89.6 90.6 64.0 66.9 66.2 76.0 83.2 84.6

Table 1. Training set {a,b,c,d,e,f,g,h,i,j,k,l,m}. Testing set
{a’,b’,c’,d’,e’,f ’,g’,h’,i’,j’,k’,l’,m’ }. Here,a = 54 andb = 39.

Training set Testing Set PWCM2 PWCM1 NN2 NN1 WCM2 WCM1

[h,k] [a] 90.0 96.0 50.0 90.0 55.0 32.0

[h,k] [a’] 60.0 77.0 33.0 54.0 32.0 27.0

[h,k,h’,k’] [a,a’] 94.0 99.0 53.5 89.5 37.5 28.5

[h,k] [b,c,d] 70.3 87.6 39.0 69.7 43.0 31.3

[h,k] [b’,c’,d’ ] 44.7 60.3 21.7 37.7 29.0 19.7

[h,k,h’,k’] [b,c,d,b’,c’,d’] 72.5 90.0 38.5 70.5 27.0 15.5

Table 2.Successful recognition rate (in percentages), witha = 54
andb = 39.

Training set Testing Set Image size PWCM2 PWCM1

[a∼m] [a’∼m’] 108× 78 85.2 89.8

[a∼m] [a’∼m’] 54× 39 85.0 89.6

[a∼m] [a’∼m’] 36× 26 84.5 89.2

[a∼m] [a’∼m’] 27× 20 83.5 88.4

[h,k,h’,k’] [a,a’] 108× 78 94.0 99.0

[h,k,h’,k’] [a,a’] 54× 39 94.0 99.0

[h,k,h’,k’] [a,a’] 36× 26 93.5 99.0

[h,k,h’,k’] [a,a’] 27× 20 92.0 99.0

Table 3.Successful recognition rate (in percentage) obtained using
the specified image size and training and testing sets.

1-norm provides superior results to the 2-norm and that our
results are consistently high. The only slightly low clas-
sification rate is for the case where we train with the set
{h,k} and test with{b’,c’,d’}. This is challenging because
the images in the training and testing sets are quite distinct
and correspond to different sessions. Since there is no other
method available that allows a direct comparison, we show
the results obtained with the nearest neighbor and the WCM
approaches defined above. The results of the proposed ap-
proach are much superior.

3.4. Effect of different image sizes

Although all the algorithms aforementioned [2, 4, 8, 10,
12] use the AR database, the image size tends to be dif-
ferent in each experiment. This is important, because the
performance of most algorithms goes up as the image size
increases. In our final experiment, we demonstrate that the
proposed algorithm achieves similar results to those shown
above for a variety of image sizes. The results are in Table
3.

4. Conclusion

This paper introduced a new mechanism to do recon-
struction of partially occluded faces. We argued for the use
of the 1-norm and the.5-quasi-norm for comparison with
this reconstruction. In a large number of experimental re-
sults, we demonstrated the superiority of the proposed ap-

proach to those reported in the literature. Our Matlab im-
plementation of the algorithm classifies a new test image in
less than a second.

Acknowledgments

This research was supported in part by the National Science Foun-
dation, grant 0713055, and the National Institutes of Health, grant
R01 DC 005241.

References

[1] T. C. Faltemier, K. W. Bowyer, and P. J. Flynn. A region
ensemble for 3-D face recognition.IEEE Transactions on
Information Forensics and Security, 3(1):62–73, 2008.1
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