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PCA: Least squares
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Identify (linear) correlations. Data ~ N(µ,!)

• PCA is generally used to find convenient 
ways to represent our data and identify 
correlations.

Univariate analysis.

Bayes Criterion
• In classification Bayes optimality is 

generally preferred over other criteria.

Bayes classifier Another classifier

Multivariate analysis.

Discriminant Analysis
• Goal: Search for those linear combination 

of features in Rp that best classify the data.
• Problem: It is impossible to check for all 

possible solutions.
• Solution: Use criteria that can be easily 

minimized (or maximized). One of the most 
known is the Fisher criterion given by

Metrics

Martinez & Zhu, PAMI, 2005

Least-squares solution.

Linear Discriminant Analysis
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Between-class scatter matrix:

Scatter matrix:

Scatter matrix of class i:

Martinez & Zhu, PAMI, 2005



Fisher�s Insight

• Theorem: Let the samples of two classes be 
Normally distributed in Rp, with common covariance 
matrix. Then, the classification errors in the p-
dimensional space and that in the one-dimensional 
subspace given by  v =!"1 (µ1 - µ2)/|| !"1 (µ1 - µ2) ||,
are the same; where || x || is the Euclidean distance 
(2-norm) of the vector x. 

• That is, there is no loss in classification when 
reducing from p dimensions to one – Bayes optimal.

Martinez & Zhu, PAMI, 2005

PCA

LDA

Homoscedastic distributions

v =!"1 (µ1 - µ2)

Standard Brain Alignment
Spatial Normalization

MNI 305 Least-squares solution
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Parameters

• Assumption+– pattern+of+neural+activation+across+subjects+has+the+
same+variance.

• Map+the+activation+pattern+onto+the+space+defined+by+the+principal+
components+(PCs).

• Train+a+linear+classifier+to+decode+AUs (e.g.,+LDA).+
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Srinivasan, Golomb, Martinez, JNeuro 2016

PCA Alignment
Functional Normalization

• Action Units (AUs) – visible 
anatomical changes.

• Hypothesis – posterior 
Superior Temporal Sulcus 
(pSTS) is dedicated to the 
visual representation / 
interpretation of facial actions. 

A Neural Basis of Facial Actions

AU 1

AU 2

AU 12

AU 20

Srinivasan, Golomb, Martinez, JNeuro 2016
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Leave-one-subject out cross-validation (10 subjects).

Srinivasan, Golomb, Martinez, JNeuro 2016



• Since we used linear 
transformations – PCA and 
LDA – we can now invert 
these transformations to 
identify the voxels that most 
contribute to decoding AUs.

MOST%DISCRIMINANT%VOXELS
Whole+brain+analysis

R

Srinivasan, Golomb, Martinez, JNeuro 2016

Bayes Optimal Homoscedastic 
LDA for C Classes

• There is a sequences of projected means 
that minimize the Bayes error.

• Every sequence 
defines a convex 
region.

• The Bayes error is 
given by

)1(!
)2(!

)3(!
cdf

Hamsici & Martinez, PAMI, 2008.

Theorem
• Define a constrained region A where all 

vectors v sampled from it generate the same 
ordered sequence. Let g(v) be the Bayes 
error function of the C homoscedastic 
Gaussian distributions in A. Then, the region 
A is a convex polyhedron, and the Bayes 
error function g(v) for all v in A is also 
convex.

We can use convex optimization algorithms

Hamsici & Martinez, PAMI, 2008. LDA (least squares) Bayes Optimal

Heteroscedastic case
• In general the data distributions are not 

homoscedastic.
• We can first map the data into a space of larger 

dimensionality where the new densities conform to 
our assumptions.

Kernel Bayes 
Optimal LDA

Hamsici & Martinez, PAMI, 2008.
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Experimental Results 
ETH-80

Bayes Opt. LDA
Kernel Opt. LDA
Linear app. LDA

Linear app. LDA opp.

Subclass Discriminant 
Analysis (SDA)

Between-subclass 
scatter matrix:

Basis vectors:

How many subclasses (H):
Minimize conflict criterion.

Zhu & Martinez, PAMI, 2006

Features vs. context

Ding & Martinez, CVPR, 2008; PAMI, 2010

Key idea: Use context information to train where not
to detect faces and facial features.

Observation: Most detections are near the correct 
location – they are not incorrect, they are imprecise.

Features vs. context
Observation: Most detections are near the correct 
location – they are not incorrect, they are imprecise.

Key idea: Use context information to train where not
to detect faces and facial features.

Ding & Martinez, CVPR, 2008; PAMI, 2010

Features vs. context
Observation: Most detections are near the correct 
location – they are not incorrect, they are imprecise.

Key idea: Use context information to train where not
to detect faces and facial features.

Ding & Martinez, CVPR, 2008; PAMI, 2010

Precise Detailed Detection

Error:  6.2 pixels (2%)  vs Manual:  4.2 (1.5%)
Ding & Martinez, CVPR, 2008; PAMI, 2010



Conditional Probabilities

Benitez-Quiroz et al., PR 2014; Du et al., PNAS 2014

Probability of the location of fiducial point i given the location of j.

Du et al., PNAS 2014

Conditional Probabilities

Bayes 
classifier

• If the problem is not linearly separable, we can 
use a kernel.

• We need to determine the kernel map (metric), 
k(#).

Bayes 
classifier

Kernel SDA (KSDA)

You , Hamsici & Martinez, PAMI, 2011; You & Martinez, CVPR, 2010.

$(x)

Homoscedastic Criterion

• Recall that DA algorithms (e.g., BDA, 
LDA, SDA) are Bayes optimal when the 
class distributions are homoscedastic:

You , Hamsici & Martinez, PAMI, 2011.

Compound Facial Expressions
• Darwin: 6 emotion categories.

• 21 emotion categories: Happy, Sad, Angry, Fear, Surprise, Disgust, 
Angrily disgusted, Appalled, Hatred, Angrily surprised, Disgustedly sad, 
Disgustedly surprised, Fearfully angry, Fearfully disgusted, Fearfully sad, 
Happily disgusted, Happily surprised, Sadly angry, Sadly surprised, Fearfully 
surprised, Awe.

Du, Tao & Martinez, PNAS 2014

Charles Darwin
1809—1882 

Computational Model

Classification

• Results show all categories 
can be visually discriminated.

• Recognition correlates with 
human results (0.8).

• Results correlate with AU 
similarity (0.7).

Du, Tao & Martinez, PNAS 2014

KSDA: ~77%
SVM: ~50%



Recognition of AUs

This large image variability makes the recognition of AUs difficult.
Benitez-Quiroz, Srinivasan, Martinez, CVPR 2016.

Facial expressions in the wild

Benitez-Quiroz, Srinivasan, Martinez, CVPR 2016.

Subclass-based classification
intensity
a
b
c
d

AU active
AU inactive

Each AU is 
represented as a 
2-class problem: 
active/inactive.

Intensities 
correspond to 
subclasses.

We derive a 
Kernel Subclass 
Discriminant 
Analysis 
(KSDA) 
approach.

Benitez-Quiroz, Srinivasan, Martinez, CVPR 2016.
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Shoulder pain dataset

Benitez-Quiroz, Srinivasan, Martinez, CVPR 2016.

Benitez-Quiroz, Srinivasan, Martinez, CVPR 2016.

A million images “in the wild”

Query #%images Sample%images

Fear++++++++++++>2,400

AU+4++++++++++++>280,000

Anxiety++++++++>700

Benitez-Quiroz, Srinivasan, Martinez, CVPR 2016.



Spherical Distributions
• Shape-based object recognition: we would like 
our algorithm to be invariant to scale and in-plane 
rotations.

=

• Appearance-based recognition: brightness 
intensity should not affect recognition.

= = Norm 
normalization

Hamsici & Martinez, Journal of Machine Learning Research, 2007.

�Spherical� Kernels
• Many kernel functions result in a spherical 

representation.
• For example, the well-known and 

commonly used RBF:

• Also, the Mahalanobis kernel:
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Hamsici & Martinez, Journal of Machine Learning Research, 2007.

Homoscedastic and 
Spherical-homoscedastic

Class+1

Class+2

Class+3

h13

h12

h23

Definition Spherical-
homoscedastic:

R

Hamsici & Martinez, Journal of Machine Learning Research, 2007.

Theorem

If we estimate two spherical-homoscedastic 
(e.g., vMF, Bingham, Kent) distributions 
using Gaussian pdf instead, then the Bayes 
classifier obtained with these Gaussians is the 
same as the Bayes classifier calculated with 
the original spherical pdf. They correspond to 
two hyperplanes. One hyperplane partitions 
the hypersphere in two, the other is outside it 
and is hence irrelevant.

Hamsici & Martinez, Journal of Machine Learning Research, 2007.

Kernel Spherical-Homoscedastic
• As we did earlier, we can define a kernel, 

K(x,y), and optimize its parameters to adapt 
to the spherical-homoscedastic case.

1!pS !S

This allows us to define Bayes optimal linear classifiers
Hamsici & Martinez, Journal of Machine Learning Research, 2007.

!S

K(.)

Experimental Results
vMF Bingham LDA K-SH-

vMF
K-SH-

Bingham
ETH 13.75 73.11 62.9 79.24 78.84
CNS 
tumors

28.57 14.29 21.4 88.10 90.48

Text 38.64 N/A 76.4 90.21 88.92

Hamsici & Martinez, Journal of Machine Learning Research, 2007.



Rotation Invariant Kernels

• We can define a kernel which carries the 
much needed rotation invariance.

• This eliminates the requirement of working 
with complex symmetric distributions.

• It can even be used to represent 3D shapes:

Hamsici & Martinez, PAMI, 2009.
Optimize SH

Results

Hamsici & Martinez, PAMI, 2009.

• Kernel criterion: optimize spherical-
homoscedastisity (SH).

• ETH-80 (2D shapes):

• Face recognition (FRGC 3D shapes):

Hamsici & Martinez, ICCV, 2009.

3D AAMs with RIK
• A main advantage of RIK is that there is a 

close form solution for 3D shapes:

• The covariance matrix is computed in this 
kernel space:

• And the components:

Results: ASL nonmanuals

Hamsici & Martinez, ICCV, 2009.

Non-Rigid Structure from 
Motion

Gotardo & Martinez, PAMI, 2010; Gotardo & Martinez, CVPR 2011.



Standard Approach in 
Rigid SFM

Decomponse W into a product of a camera (motion) 
factor M and a 3D shape factor S:

Rank constraint: solve for rank-4 M and S using SVD

Shape Trajectory Approach (STA)

In our model,

C = X...

DCT basis vectors

Gotardo & Martinez, PAMI, 2010; Gotardo & Martinez, CVPR 2011.

Gotardo & Martinez, ICCV 2011.

Kernel Non-rigid SFM

• Consider, W=MS,                    ,  where                                     . Then:

KNSFM with RIK or aSFM

New, customized RIKs can even take advantage of 
object appearance when correlated with 3D shape.

Spatial smoothness controlled by scale parameter   

We propose a new aSFM kernel:

And the 2D RIK is:

Hamsici, Gotardo & Martinez, ECCV 2012.

Reconstructed 3D Shape

Gotardo & Martinez, ICCV 2011; Hamsici, Gotardo & Martinez, ECCV 2012.

• Results after triangulation and texture mapping
– The texture is from a single frontal image.

Reconstructd 3D Shape

Gotardo & Martinez, ICCV 2011; Hamsici, Gotardo & Martinez, ECCV 2012.



KNSFM compactness

Gotardo & Martinez, ICCV 2011; Hamsici, Gotardo & Martinez, ECCV 2012.

slinky

capoeirawalking

shark+

KNSFM compactness

Gotardo & Martinez, ICCV 2011; Hamsici, Gotardo & Martinez, ECCV 2012.

Advantage: Learned
mapping is a by-
product of the
NRSFM solution

NRSFM becomes a “training” stage
in which we learn the mapping f
and the basis shapes in factor S.

2D to 3D mapping

Hamsici, Gotardo & Martinez, ECCV 2012.

Examples of 
2D to 3D mapping

Hamsici, Gotardo & Martinez, ECCV 2012.

Kernel Methods in Regression

You, Benitez-Quiroz & Martinez, IEEE TNNLS 2014.

• We generally have two or more criteria to 
minimize, e.g., model fit (Ef) and model 
complexity (Ec) of a kernel map K(.).

where ui(#) are the objective 
functions, S in Rp.

Pareto-optimality: A 
solution #% with ui(#% )>ui(#), 
for any other #, i=1,…,k.

Behavior Analysis
Labeled Graphs

Zhao & Martinez, IEEE PAMI, 2016.

Definition: A directed labeled graph is Gk=(Vk, Ek, L, fk), Vk the 
nodes, Ek the edges, L a set of labels, and fk a function that assigns 
labels to nodes and edges,

Behavior is defined 
using high-level 
concepts/attributes, 
e.g., “left hand” 
“moves down,” 
“right hand” 
“same.”



Labeled Graphs

Zhao & Martinez, IEEE PAMI, 2016.

Goal: find a feature 
representation of 
labeled graphs. xi
specifies the 
numbers of times a 
path P occurs in Gi.

! "#, "% = '#('% = ) ) *#+,*%+,
�

..,≡∀1234

�

2≡12345.67.89:;43.<
.

Labeled Graphs

Zhao & Martinez, IEEE PAMI, 2016.

Method Accuracy Time/sample
This approach 91.60% 1.62 s
OSCM 70% 9.43 s
TGAK 88% 14.35 s
Path kernel 89.69 --
RW kernel 89.70% 2.27

ASL databases – concept classification.

Robustness to 
Gaussian noise.

Stdv of Gaussian noise
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