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» PCA is generally used to find convenient

ways to represent our data and identify
correlations.

PCA: Least squares

Identify (linear) correlations.  Data ~ N(p,X)

Univariate analysis.

Discriminant Analysis

: Search for those linear combination
of features in R that best classify the data.
* Problem: It is impossible to check for all
possible solutions.

* Solution: Use criteria that can be easily
minimized (or maximized). One of the most
known is the Fisher criterion given by
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Least-squares solution.
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Martinez & Zhu, PAMI, 2005

O il Bayes versus Least Squares
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Martinez & Kak, “PCA versus LDA,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001.

Bayes Criterion

* In classification Bayes optimality is
generally preferred over other criteria.

class 2

Another classifier

Bayes classifier

pr(xIclaqs 2) dx+pr(x Iclass 1) dx
R ke Multivariate analysis.
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Sl Linear Discriminant Analysis

Between-class scatter matrix:
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Scatter matrix: c
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Scatter matrix of class i:
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Martinez & Zhu, PAMI, 2005




* Theorem: Let the samples of two classes be
Normally distributed in R?, with common covariance
matrix. Then, the classification errors in the p-
dimensional space and that in the one-dimensional
subspace given by v =21 (u; - po)/|| 7' (- o) |,
are the same; where || x || is the Euclidean distance
(2-norm) of the vector x.

That is, there is no loss in classification when
reducing from p dimensions to one — Bayes optimal.

An example of feature extraction for classification.
Martinez & Zhu, PAMI, 2005

Standard Brain Alignment OHIO PCA Alignment
Spatial Normalization s Functional Normalization
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» Assumption — pattern of neural activation across subjects has the
same variance.

Map the activation pattern onto the space defined by the principal
components (PCs).

Train a linear classifier to decode AUs (e.g., LDA).
MNI 305

Least-squares solution Srinivasan, Golomb, Martinez, JNeuro 2016

MVPA RESULTS

* Action Units (AUs) — visible

anatomical changes. pSTS

&P = 4 o B Whole Brain
Hypothesis — posterior f b | EVC
Superior Temporal Sulcus y

(pSTS) is dedicated to the
visual representation /
interpretation of facial actions.

Accuracy

AU1 AU2 AU12 AU20
Leave-one-subject out cross-validation (10 subjects).

Srinivasan, Golomb, Martinez, JNeuro 2016 Srinivasan, Golomb, Martinez, JNeuro 2016




MOST DISCRIMINANT VOXELS 58] Bayes Optimal Homoscedastic
Whole brain analysis SIAIE LDA for C Classes

* Since we used linear 7 . .
transformations — PCA and g  There is a sequences of projected means

LDA —we can now invert 4 3 ' that minimize the Bayes error.
these transformations to ; « E

identify the voxels that most R O ! very sequence
contribute to decoding AUs. R N defines a convex

region.
* The Bayes error is
given by  cdf

)
S (-
g(v)=2C" cp(i"” 27“*”

i=

Srinivasan, Golomb, Martinez, JNeuro 2016 Hamsici & Martinez, PAMI, 2008.

Theorem

* Define a constrained region 4 where all
vectors v sampled from it generate the same
ordered sequence. Let g(v) be the Bayes
error function of the C homoscedastic
Gaussian distributions in A. Then, the region
A is a convex polyhedron, and the Bayes
error function g(v) for all v in 4 is also
convex.

[ We can use convex optimization algorithms ]

Hamsici & Martinez, PAMI, 2008. LDA (least squares)
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* In general the data distributions are not
homoscedastic. (58

* We can first map the data into a space of larger

dimensionality where the new densities conform to 21
Y ETH-80 | B

our assumptions.
K(X,Y) database sﬁ
O Kernel Bayes : Q o

R Optimal LDA ’ 8 categories

OHIO

Heteroscedastic case

80 objects
e 3280 images

Hamsici & Martinez, PAMI, 2008. Hamsici & Martinez, PAMI, 2008.




Experimental Results

Dimensionality {d)

Bayes Opt. LDA

(Kernel Opt. LDA

Linear app. LDA
Linear app. LDA opp.
LA
LDA
aPAC
aPAC
FLDA
FLDAq
DFLDA
DFLDA,,;
PCA-LDA
PCA - LDA,,;
KLDA

Features vs. context

Observation: Most detections are near the correct
location — they are not incorrect, they are imprecise.

Key idea: Use context information to train where not
to detect faces and facial features.

Ding & Martinez, CVPR, 2008; PAMI, 2010

Features vs. context

Observation: Most detections are near the correct
location — they are not incorrect, they are imprecise.

Key idea: Use context information to train where not
to detect faces and facial features.

Ding & Martinez, CVPR, 2008; PAMI, 2010

Subclass Discriminant
Analysis (SDA)

Between-subclass
scatter matrix:

X, = ‘2 2 Py (‘u” - ‘u)r(‘u” —1().

c H
o <
vectors:
¥, V=X VA
How many subclasses (H):

Minimize conflict criterion.

Zhu & Martinez, PAMI, 2006

Features vs. context

Observation: Most detections are near the correct
location — they are not incorrect, they are imprecise.

Key idea: Use context information to train where not
to detect faces and facial features.

Ding & Martinez, CVPR, 2008; PAMI, 2010

Precise Detailed Detection

Error: 6.2 pixels (2%) vs Manual: 4.2 (1.5%

Ding & Martinez, CVPR, 2008; PAMI, 2010




Conditional Probabilities

Graph Model (Section 3) Test Image (Section 4.1)

; 2
N
oS Exanplenodes
T and edges of the
complete graph Result

3
Candidate detections

Shape Detection (Section 4.2)
Stagel: bam])lmg Stage2 Brllrfho]m".ztiuu

Probability of the location of fiducial point i given the location of ;.

Benitez-Quiroz et al., PR 2014; Du et al., PNAS 2014

Kernel SDA (KSDA)

Bayes Bayes
sifier ’ classifier

* If the problem is not linearly separable, we can
use a kernel.

* We need to determine the kernel map (metric),
k(9).

You , Hamsici & Martinez, PAMI, 2011; You & Martinez, CVPR, 2010.

gﬂ% Compound Facial Expressions

UNIVERSITY

* Darwin: 6 emotion categories.

¥ [ 4 _.,ﬁ >
g | Charles Dz?rwin ‘ lrd
1809182 7 J % ' “

Happy, Sad, Angry, Fear, Surprise, Disgust,

Angrily disgusted, Appalled, Hatred, Angrily surprised, Disgustedly sad,
Disgustedly surprised, Fearfully angry, Fearfully disgusted, Fearfully sad,
Happily disgusted, Happily surprised, Sadly angry, Sadly surprised, Fearfully
surprised, Awe.

Du, Tao & Martinez, PNAS 2014

Conditional Probabilities

Du et al.,, PNAS 2014

Homoscedastic Criterion

* Recall that DA algorithms (e.g., BDA,
LDA, SDA) are Bayes optimal when the
class distributions are homoscedastic:
o r(ZE))

O(X)=—"7" " -
CC-D&E & rE ) +1r(E)

You , Hamsici & Martinez, PAMI, 2011.

8  Computational Model

UNIVERSITY

KSDA: ~77%

Classification
SVM: ~50%

Results show all categories
can be visually discriminated.
Recognition correlates with
human results (0.8).

Results correlate with AU
similarity (0.7).

Du, Tao & Martinez, PNAS 2014
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This large image variability makes the recognition of AUs difficult.

Benitez-Quiroz, Srinivasan, Martinez, CVPR 2016.

OHIO Subclass-based classification
SIAIE )

intensity /=1
a

Each AU is b

¢

represented as a d
AU active

2-class problem: [ |say ingerd
active/inactive.

Intensities
correspond to
subclasses.

We derive a
Kernel Subclass
Discriminant
Analysis

( )
approach.

Benitez-Quiroz, Srinivasan, Martinez, CVPR 2016.

Benitez-Quiroz, Srinivasan, Martinez, CVPR 2016.

Benitez-Quiroz, Srinivasan, Martinez, CVPR 2016.

Shoulder pain dataset
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Benitez-Quiroz, Srinivasan, Martinez, CVPR 2016.

gmlT% A million images “in the wild”

Query #images Sample images

/,' \ | I, |
Fear >2,400 d |
-
>280,000 | ’5‘*" =

-

Anxiety

Benitez-Quiroz, Srinivasan, Martinez, CVPR 2016.




Spherical Distributions

* Shape-based object recognition: we would like
our algorithm to be invariant to scale and in-plane

rotations.
= R

» Appearance-based recognition: brightness
intensity should not affect recognition.

= = > Norm
=S = q- ol V'“ . .

Hamsici & Martinez, Journal of Machine Learning Research, 2007.

Homoscedastic and
Spherical-homoscedastic

Class 1 Ni(tui’Ei)andN/(;u/"z/‘)

are Homoscedastic if
Ei = Ek/ :

Definition Spherical-
homoscedastic:

Any two pdf where
Ay = A, forall k and

h,; are hyperplanes.

Class 3 /h,;

Hamsici & Martinez, Journal of Machine Learning Research, 2007.

(s)pl?{'T% Kernel Spherical-Homoscedastic

» As we did earlier, we can define a kernel,
K(x,y), and optimize its parameters to adapt
to the spherical-homoscedastic case.

This allows us to define Bayes optimal linear classifiers
Hamsici & Martinez, Journal of Machine Learning Research, 2007.

“Spherical” Kernels

* Many kernel functions result in a spherical
representation.

» For example, the well-known and
commonly used RBF:

2
k(x,y) = exp[’x_y‘].
g
» Also, the Mahalanobis kernel:

k(x,y) = eXp( &= y)zzl xy) )

Hamsici & Martinez, Journal of Machine Learning Research, 2007.

Theorem

If we estimate two spherical-homoscedastic
(e.g., vMF, Bingham, Kent) distributions
using Gaussian pdf instead, then the Bayes
classifier obtained with these Gaussians is the
same as the Bayes classifier calculated with
the original spherical pdf. They correspond to
two hyperplanes. One hyperplane partitions
the hypersphere in two, the other is outside it
and is hence irrelevant.

Hamsici & Martinez, Journal of Machine Learning Research, 2007.

Experimental Results

vMF |Bingham | LDA | K-SH- K-SH-
vMF Bingham

13.75| 73.11 | 629 79.24 78.84

CNS 28.57 14.29 214 88.10 90.48
tumors

Text |38.64 76.4 90.21 88.92

Hamsici & Martinez, Journal of Machine Learning Research, 2007.
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Rotation Invariant Kernels Results

 Kernel criterion: optimize spherical-
homoscedastisity (SH).

. . . « ETH-80 (2D shapes):
* This eliminates the requirement of working . [ Kemnel | Kents” | complex | comples

. - . . . Proc. | Hybrid | Bingham | Normal

with complex symmetric distributions. RecCRTE et s34 [ 7066 | 8605 | 875
Training Time (in seconds) k / 1680.4 1.06 18.34 0.95

Testing Time (in seconds) 2.16 0.05 0.02 0.02

* We can define a kernel which carries the
much needed rotation invariance.

* It can even be used to represent 3D shapes:

* Face recognition (FRGC 3D shapes):

Proc. | Kernel | Kents’ complex complex RIKcy
/\Y(:/, ‘:/\ ) = Cxp - | =X -5 |- TS Proc. | Hybrid | Bingham | Normal
Recognition Rate 1 46.75 | 93.25 42.28 9.33 41.73 94.78
Training Time (in seconds) / 1.34 40.38 5.60 70.33 5.60 2594.4
Testing Time (in seconds) 35.53 | 0.02 0.09 1.86 0.11 0.46 .01

Optimize SH
Hamsici & Martinez, PAMI, 2009. Hamsici & Martinez, PAMI, 2009.

3D AAMs with RIK gmg Results: ASL nonmanuals

» A main advantage of RIK is that there is a
close form solution for 3D shapes:

( It — 2 exp®s |2 + |12 - 22 exp™s |>

I\(él S;) = .)0_2

i0%), ”z %1 el _ o

||z’/ — z} exp =2;2; +2, 2, —2 zg*ziH

* The covariance matrix is computed in this
kernel space: _ 1y
Y C=- ;

* And the components:
<Vm’ @(""nru')> = Z (l;“]\‘(ﬁ,'.‘ '“"uvw)

i=1

Hamsici & Martinez, ICCV, 2009.

ol Non-Rigid Structure from
b Motion
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Hamsici & Martinez, ICCV, 2009. Gotardo & Martinez, PAMI, 2010; Gotardo & Martinez, CVPR 2011.



Standard Approach in
Rigid SFM

Decomponse W into a product of a camera (motion)
factor M and a 3D shape factor S:

T3 tg
11 Ti2 ... Tin a3ty
Yt Y12 .- Yin
To1 Ty ... Top
Y21 Y22 .- Y2n

rry T2 ... ITn
yri Yrz2 ... Yra

\\%

Rank constraint: solve for rank-4 M and S using SVD

w=UxV” = (Us?) (x:VT)

4—e non-linear mapping

shape space

+ Consider, W=MS, S = M'W, where M’ = M’ (MMT)! Then:
W =MM"(MMT)Iw, MM =D(cc” @I;)DT
| S — S~—~—
K

S
2
H(Ct, Ct’) — e_'VHCf«_Ct’ HZ

C:{Ct/ —)

Gotardo & Martinez, ICCV 2011.

gm% Reconstructed 3D Shape
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Gotardo & Martinez, ICCV 2011; Hamsici, Gotardo & Martinez, ECCV 2012.

Shape Trajectory Approach (STA)

cl1 Cl2 --- CLK S,
€21 22 ... C2 K b

l¢T,1 C¢Tr2 ... CT\K

C

In our model,

DCT basis vectors

Gotardo & Martinez, PAMI, 2010; Gotardo & Martinez, CVPR 2011.

CS)DTT% KNSFM with RIK or aSFM

We propose a new aSFM kernel:

K(We, Wy ) = exp _r?‘t’ Te 4 = Wil _ | My S
v Ly - 02 b L, T th M{/ a F

Spatial smoothness controlled by scale parameter

And the 2D RIK is:
—1+ |z}zy|

(W’)T 1 n
Z = ||WZ||F {\/*—1} eC” W r(z,zv) =exp <T>

New, customized RIKs can even take advantage of
object appearance when correlated with 3D shape.

Hamsici, Gotardo & Martinez, ECCV 2012.

Reconstructd 3D Shape

 Results after triangulation and texture mapping
— The texture is from a single frontal image.

Gotardo & Martinez, ICCV 2011; Hamsici, Gotardo & Martinez, ECCV 2012.




(S)D%E KNSFM compactness

KNSFM compactness

Shape Trajectory Recovered Shape Image Sequence

walking ; capoeira

Gotardo & Martinez, ICCV 2011; Hamsici, Gotardo & Martinez, ECCV 2012. Gotardo & Martinez, ICCV 2011; Hamsici, Gotardo & Martinez, ECCV 2012.

OHIO
SIAIE

: ‘ Examples of
2D to 3D mapping etk 2D to 3D mapping

Advantage: Learned
mapping is a by-
product of the
NRSFM solution

Recovered 3D shape
flur,v1)

-y

(u1,v1)

NRSFM becomes a “training” stage

in which we learn the mapping f e y L @
and the basis shapes in factor S. 70 &

DIRECT 3D RECONSTRUCTION
Hamsici, Gotardo & Martinez, ECCV 2012. Hamsici, Gotardo & Martinez, ECCV 2012.

Behavior Analysis

s in Regression Labeled Graphs

» We generally have two or more criteria to

minimize, e.g., model fit (E¢) and model Behavior is defined R
complexity (E,) of a kernel map K(.). using high-level

minimize u1(0), u2(8), ..., ux(0) concepts/attributes,
o e.g., “left hand”
subject to 8 € S, “moves down.”
“right hand”
“Same.” j equal

bef
)———»|Left handshape “A"——»

where u;(0) are the objective
functions, S in RP.

Pareto-optimality: A

solution 6* with u;(6* )>u;(6), Definition: A directed labeled graph is G,=(V,, Ey, L, /), V| the

for any other 6, i=1,... k. nodes, E, the edges, L a set of labels, and f; a function that assigns
. ) labels to nodes and edges,

You, Benitez-Quiroz & Martinez, IEEE TNNLS 2014. Zhao & Martinez, IEEE PAMI, 2016.




Labeled Graphs SWE Labeled Graphs

Goal: find a feature —< T TN Method
representation of ’ e I e This approach
labeled graphs. x; ] - N 0SCM

specifies the

numbers of times a S
. B Path kernel
path P occurs in G, P ) A X

a=paths oflenght z b=Vpath

=
K(G:. G T Robustness to  |&
. . = x X ) . R
( v ]) v Gaussian noise.
. —

Zhao & Martinez, IEEE PAMI, 2016. Zhao & Martinez, IEEE PAMI, 2016.
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