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Abstract

The Real-time Control System (RCS) architecture developed at NIST and elsewhere over
the past two decades [1] defines a canonical form for a nested intelligent control system.
The RCS architecture consists of a hierarchically layered set of  processing modules
connected together by a network of communications pathways.  The primary
distinguishing feature of the layers is the bandwidth of the control loops.  The
characteristic bandwidth of each level is determined by the spatial and temporal
integration window of filters, the temporal frequency of signals and events, the spatial
frequency of patterns, and the planning horizon and granularity of the planners that
operate at each level.  At each level, tasks are decomposed into sequential subtasks, to be
performed by cooperating sets of subordinate agents.  Signals from sensors are filtered
and correlated with spatial and temporal features that are relevant to the control function
being implemented at that level.

The four basic types of processing modules from which the RCS architecture is built are:
1)   Behavior Generating (BG) modules
BG modules contain job assignment, planning, and control algorithms.  These embody
knowledge about how to perform tasks --  i.e., how to decompose tasks into subtasks that
subordinate agents know how to execute.  BG modules can accommodate a variety of planning
algorithms, from simple table look-up of pre-computed plans, to real-time search of
configuration space, or game theoretic algorithms for multi-agent cooperating and competitive
groups.  Planning horizons at high levels may span months or years, while planning horizons at
the bottom level typically are less than 50 milliseconds.   Control loop bandwidth at each level is
typically at least ten times the reciprocal of the planning horizon at that level.

2)   World Modeling (WM) modules 
The WM modules model the state space of the problem domain.  They contain information
storage and retrieval mechanisms, as well as algorithms for transforming information from one
coordinate system to another.  WM modules use dynamic models to generate expectations, and
predict the results of current and future actions.  WM modules may contain recursive
estimation algorithms and processes that compute lists of attributes from images,  graphics
engines that generate images from symbolic lists,  and storage and retrieval algorithms that
perform and maintain both short term and long term memory about features, surfaces, objects,
and groups.   The WM module maintains a knowledge database (KD),  acts as a question
answering system, and uses information from the knowledge database to predict or simulate the
future.

3)  Sensory Processing (SP) modules
SP modules process data from visual, auditory, tactile, proprioceptive, taste, or smell sensors.
SP modules contain filtering, masking, differencing, correlation, matching, and recursive
estimation algorithms, as well as feature detection and pattern recognition algorithms.
Interactions between WM and SP  modules can generate a variety of filtering and detection
processes such as Kalman filtering and recursive estimation, Fourier transforms, and phase lock
loops.   Vision system SP modules process images to detect brightness, color, and range
discontinuities, optical flow, stereo disparity,  and utilize a variety of signal detection and pattern



recognition algorithms to analyze scenes and compute information needed for manipulation,
locomotion, and spatial-temporal reasoning.     

4)  Value Judgment (VJ) modules 
VJ modules contain algorithms for computing cost, risk, and benefit, for evaluating states and
situations, and alternatives courses of action for estimating the reliability of state estimations,
and for assigning cost-benefit values to objects and events.  VJ modules may compute Beysian
and Dempster-Schafer statistics on information about the world based on the correlation and
variance between observations and predictions.

The world modeling module maintains a set of:
Knowledge Database (KD) modules
KD modules consist of data structures that contain state variables, iconic images, and symbolic
frames containing lists of attributes.   Information in the KD includes knowledge about entities
and events, and about how the world behaves, both logically and dynamically.  The KD contains
both short term and long term memory elements.  The KD is typically implemented in a
distributed fashion, suitable for real-time data retrieval and update.

The entire system is interconnected by:
A communication system that conveys messages between the various modules
The communication system provides a network of pathways that transmits messages between
the various processing and database modules.   The communications system richly, but not
completely, interconnects the modules, i.e. every module is not connected to every other
module.

The various modules in the RCS architecture act as a collection of intelligent agents (or software
objects), sending and receiving messages to and from each other.  These messages convey
commands and requests, and return status.  

The RCS architecture has evolved over the past two decades from a rather simple robot control
schema to a reference model architecture for intelligent system design.  From the beginning,  RCS
has represented a conscious attempt to emulate the function and structure of the neurological
machinery in the brain.  Each RCS module has properties that are known, or hypothesized, to exist
in the brain.  For example, RCS modules may be constructed from neural nets such as CMAC [2]
that  compute arithmetic and/or logical functions on a set of inputs to produce a set of output state
variables.  These can be carried over communications pathways to other functional modules that
may use them to perform further functional computations, or to generate addresses, or to store
information in memory for latter use.  RCS functional modules may add, subtract, multiply,
differentiate, integrate, compute correlation functions, recognize patterns, generate names or
addresses of symbolic representations, or perform planning functions at a hierarchy of levels.  In
its most complete theoretical form, the RCS reference model architecture provides a framework for
integrating concepts from artificial intelligence, machine vision, robotics, computer science, control
theory, operations research, game theory, signal processing, filtering, and communications theory.   

The RCS architecture has been used in the implementation of a number of experimental projects.

These include:

1)  A Horizontal Machining Workstation
This project was part of the NBS Automated Manufacturing Research Facility (AMRF).  It
included a sensory-interactive real-time control system for a robot integrated with a structured
light machine vision system, a machine tool,  an automatic fixturing system, a pallet shuttle and
a material buffering system.  The robot included  a quick change wrist, a part handling gripper



with tactile sensors, and a tool handling gripper for loading and unloading tools in the machine
tool magazine.  Plans were represented as state-tables, and a wide variety of sensory interactive
behaviors were demonstrated.  These included locating and recognizing parts and part
orientation of unoriented parts presented in trays, and automatically generating part handling
sequences for part and tool loading and unloading. [3]

2) A Cleaning and Deburring Workstation
This project was also part of the AMRF.  It included two robots, a set of buffing wheels, a part
washing/drying  machine, and a variety of abrasive brushes.  Part geometry was input from a
CAD database.  Deburring tool paths were automatically planned from knowledge of the part
geometry plus operator input indicating which edges were to be deburred.  Deburring
parameters such as forces and feed rates were also selected from a menu by the operator.  Part
handling sequences were planned automatically for loading parts in a vise, and turning parts
over to permit tool and gripper access.  Force sensors and force control algorithms were used
during task execution to modify the planned paths so as to compensate for inaccuracies in robot
kinematics and dynamics. [4]

3)  An Advanced Deburring and Chamfering System
This project is currently underway.   The project integrates off-line programming, real-time
control, and active tool technologies to automatically place precision chamfers on complex parts
manufactured from hard materials such as aircraft jet engine components.  The workstation
consists of a force-sensitive active tool integrated with a 6 degree-of-freedom robot and an
indexing table used for part manipulation. The active tool, the Chamfering and Deburring End-
of-arm Tool (CADET), incorporates actuators and force sensors to provide control over cutting
force and tool stiffness at the part edges.  Part geometry is derived from standard IGES CAD
data formats.  Edge selection is performed by a human operator.  Required tool force is
automatically generated by formula using the cutting depth, feeds, and speeds inputted by the
operator.  A prototype production cell will be installed at Pratt & Whitney’s East Hartford, CT
site upon completion of the project.    [5]

4)  NBS/NASA Standard Reference Model Architecture for the Space Station
Telerobotic Servicer (NASREM)
This project was funded by NASA Goddard Space Flight Center.  NASREM was used by
Martin Marietta to develop the control system for the space station telerobotic servicer.
Algorithms were developed for force servoing, impedance control, and real-time image
processing of telerobotic systems at NIST, Martin Marietta, Lockheed, Goddard, and in a
number of university and industry labs in the United States and Europe.  [6]

5)  An architecture for Coal Mining Automation
This project effectively transferred the RCS architecture and methodology to a large team of
researchers in the US Bureau of Mines who are tasked with developing prototype coal mining
automation sensors and systems and transferring such systems, in turn, to the mining industry.
A comprehensive mining scenario was developed starting with a map of the region to be
excavated, the machines to be controlled, and the mining procedures to be applied.  Based on
this scenario, an intelligent control system with simulation and animation was designed, built,
and demonstrated.  The same control system was later demonstrated with an actual mining
machine and sensors. [7]

6)  A nuclear submarine maneuvering system 
This project demonstrated the design and implementation in simulation of maneuvering and
engineering support systems for a 637 class nuclear submarine.  The maneuvering system
involves an automatic steering, trim,  speed, and depth control system.   The system
demonstrated the ability to execute a lengthy and complex mission involving transit of the



Bering Straits under ice.  Ice avoidance sonar signals were integrated into a local map using a
CMAC neural network memory model.  Steering and depth control algorithms were developed
that enabled the sub to avoid hitting either the bottom or the ice while detecting and
compensating for random salinity changes under the ice by making trim and ballast
adjustments.  The engineering support system demonstrated the ability to respond to a
lubrication oil fire by reconfiguring ventilation systems, rising in depth to snorkel level, and
engaging the diesel engines for emergency propulsion. [8]

7)  A control system for a U.S. Postal Service Automated Stamp Distribution Center.   
This system demonstrated the ability to route packages through a series of carousels,
conveyors, and storage bins, to maintain precise inventory control, provide security, and
generate maintenance diagnostics in the case of system failure.  The distribution center was
designed and tested first in simulation, and then implemented as a full scale system.  The
system contained over 220 actuators, 300 sensors, and ten operator workstations.    An even
larger and more complex RCS system for controlling a general mail facility is still under
development. [9]

8)  A control system for Multiple Autonomous Undersea Vehicles 
This systems was developed for controlling a pair of experimental vehicles designed and built
by the University of New Hampshire.  The RCS control system included a real-time path
planner for obstacle avoidance, and a real-time map builder for constructing a topological map
of the bottom.  A series of tests was conducted in Lake Winnipasaki during the fall of 1987.
[10]

9)  An RCS system for remote driving 
This system was implemented on an Army HMMWV light truck.  One version of the system
enables the vehicle to be driven remotely by an operator using TV images transmitted from the
vehicle to an operator control station.  This version has a retrotraverse mode that permits the
vehicle to autonomously retrace paths previously traversed under remote control, using an
inertial guidance system.  

A second version of this RCS system has demonstrated the ability to drive the HMMWV
automatically using TV images processed through a machine vision system with a real-time
model matching algorithm for tracking lane markings.   The RCS real-time vision processing
system has enabled this vehicle to drive automatically at speeds up to 100 km per hour on the
highway, and at speeds up to 50 km miles per hour on a winding test track used by the county
police for driver-training.  [11]

10)  An Open Architecture Enhanced Machine Controller 
The RCS reference model is being used as the basis for an open architecture Enhanced
Machine Controller (EMC) for machine tools, robots, and coordinate measuring machines.  The
EMC combines NASREM with the Specification for an Open System Architecture Standard
(SOSAS) developed under  the Next Generation Controller program sponsored by the  Air
Force and National Center for Manufacturing Sciences.  In cooperation with  the DoE TEAM
program, EMC functional modules have been defined, and Application Programming Interfaces
(APIs) are being defined for sending messages between the functional modules.  A prototype
machine tool controller is being installed in a General Motors plant as part of the  DoE-
TEAM/NIST-EMC government/industry consortium.  The goal of this effort is to define a set
of standard application programming interfaces for open architecture controllers. [12]

All of the projects listed above that have used the RCS architecture have implemented only a subset
of the features of the most advanced theoretical form of the RCS reference model architecture [13].
This is because the RCS theoretical development has remained well beyond over what has been



possible to implement, given programmatic limitations in funding.   

Current work at NIST and elsewhere is pursuing more complex implementations of RCS.    For
example, efforts to incorporate human operator interfaces into the RCS architecture that began with
NASREM have continued with the Air Force/JPL/NIST  Universal Telerobotic Architecture Project
(UTAP) [14], and the NIST RoboCrane.   Work is also under way to integrate the RCS
architecture with the Manufacturing Systems Integration (MSI) factory control architecture, and the
Quality In Automation (QIA) architecture.  [15]   When complete, this joint architecture will define
a reference model architecture for manufacturing that extends all the way from the servomechanism
level to the enterprise integration level.  Work is also in progress to develop an engineering design
methodology and a set of software engineering tools for developing RCS systems [16].
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