
Proceedings of SPIE Vol. 3693
AeroSense Session on Unmanned Ground Vehicle Technology
April 7-8, 1999

4-D/RCS Reference Model Architecture
for

Unmanned Ground Vehicles
James S. Albus

Intelligent Systems Division
Manufacturing Engineering Laboratory

National Institute of Standards and Technology
Gaithersburg, MD 20899

[3693-02]

 ABSTRACT

4-D/RCS is the reference model architecture currently being developed for the Demo III Experimental Unmanned Vehicle
program. 4-D/RCS integrates the NIST (National Institute of Standards and Technology) RCS (Real-time Control System)
with the German (Universitat der Bundeswehr Munchen) VaMoRs 4-D approach to dynamic machine vision. The 4-D/RCS
architecture consists of a hierarchy of computational nodes each of which contains behavior generation (BG), world modeling
(WM), sensory processing (SP), and value judgment (VJ) processes. Each node also contains a knowledge database (KD)
and an operator interface. These computational nodes are arranged such that the BG processes represent organizational units
within a command and control hierarchy.

Keywords: Intelligent control, unmanned ground vehicles, real-time control architecture, RCS, 4-D/RCS

1. INTRODUCTION

The 4-D/RCS architecture being developed for the Demo III Experimental Unmanned Vehicle program [1] consists of a
hierarchy of computational nodes each of which contains behavior generation (BG), world modeling (WM), sensory
processing (SP), and value judgment (VJ) processes. [2, 3] Each node also contains a knowledge database (KD) and an
operator interface. These computational nodes are arranged such that the BG processes represent organizational units within
a command and control hierarchy. A typical node is illustrated in Figure 1. Each BG process includes a planner module that
accepts task command inputs from its supervisor and generates coordinated plans for subordinate BG processes. The BG
planner hypothesizes tentative plans, WM predicts the probable results, and VJ evaluates the results of each tentative plan.
The BG planner then selects the tentative plan with the best evaluation to be placed in the plan buffers in the BG Executors.
There is an Executor that services each subordinate BG unit, issuing subtask commands, monitoring progress, compensating
for errors and differences between planned and observed situations in the world, and reacting quickly to emergency
conditions with appropriate actions. Feedback from a real-time knowledge database KD enables the executors to generate
reactive behavior. SP and WM processes update the KD with images, maps, entities, events, attributes, and states necessary
for both deliberative and reactive behavior. Coordination between subordinate BG processes is achieved by cross-coupling
among plans and sharing of information among Executors through the KD.

Commands into each BG module consist of six elements:

1) CommandedAction (ac1) describes the action to be performed and may include a set of modifiers such as priorities, mode,
path constraints, acceptable cost, and required conditions.
2) CommandGoal (gc1) describes the desired state (or goal state) to be achieved by the action. Mobility system state
typically includes the position, heading, velocity, and turning rate of the system being controlled. The goal may include the
name of a target or object that is to be acted upon. It also may include a set of modifiers such as tolerance.
3) GoalTime (gt1) defines the timing constraint on achieving the goal plus modifiers such as tolerance.
4) NextCommandedAction (ac2) describes the planned next action to be performed plus modifiers.
5) NextCommandGoal (gc2) describes the planned next goal state to be achieved plus modifiers.
6) NextGoalTime (gt2) describes the timing constraint on achieving the next goal plus modifiers.

2

The planner in each BG process decomposes commands into plans for each of its subordinate BG processes. Each plan is
designed to have about ten steps. For each plan, an Executor cycles through the plan issuing commands, monitoring
progress, compensating for errors, and reacting to surprises and emergencies. For example, a command into the Vehicle level
(4) for the first vehicle in a scout Section would have the form:

CommandedAction = ac14
1 CommandGoal = gc14

1 GoalTime = gt14
1 ~ t + 1 min

NCAction = ac24
1 NCGoal = gc24

1 NextGoalTime = gt14
1 ~ t + 2 min

This command would be decomposed into three plans for the Subsystem level of the form:

Autonomous Mobility Plan RSTA Plan Communications Plan
ap13

1, gp13
1, gt13

1= t+5 sec ap13
2, gp13

2, gt13
2 ap13

3, gp13
3, gt13

3

ap23
1, gp23

1, gt23
1= t+10 sec ap23

2, gp23
2, gt23

2 ap23
3, gp23

3, gt23
3

ap33
1, gp33

1, gt33
1= t+15 sec ap33

2, gp33
2, gt33

2 ap33
3, gp33

3, gt33
3

ap43
1, gp43

1, gt43
1= t+20 sec ap43

2, gp43
2, gt43

2 ap43
3, gp43

3, gt43
3

ap53
1, gp53

1, gt53
1= t+25 sec ap53

2, gp53
2, gt53

2 ap53
3, gp53

3, gt53
3

ap63
1, gp63

1, gt63
1= t+30 sec ap63

2, gp63
2, gt63

2 ap63
3, gp63

3, gt63
3

ap73
1, gp73

1, gt73
1= t+35 sec ap73

2, gp73
2, gt73

2 ap73
3, gp73

3, gt73
3

ap83
1, gp83

1, gt83
1= t+40 sec ap83

2, gp83
2, gt83

2 ap83
3, gp83

3, gt83
3

ap93
1, gp93

1, gt93
1= t+50 sec ap93

2, gp93
2, gt93

2 ap93
3, gp93

3, gt93
3

ap103
1, gp103

1, gt103
1= t+1 min ap103

2, gp103
2, gt103

2 ap103
3, gp103

3, gt103
3

where ap is action planned, gp is goal planned, and gt is planned goal time
and apij

k is the i-th planned action for the k-th subordinate BG module at the j-th level

The Vehicle level Executor for the Autonomous Mobility (AM) Subsystem would then transform the first and second steps in
the AM plan into a command to the AM BG module at the Subsystem level (3).

PLANNER

EX

Plan

EX

Plan

EX

Plan

BG

PLANNER

EX

Plan

EX

Plan

EX

Plan

BG

PLANNER

EX

Plan

EX

Plan

EX

Plan

BG

Agent1

Subtask
Command

Output

Subtask
Command

Output

Subtask
Command

Output

WORLD
MODELING

SIMULATOR
PREDICTOR

VALUE
JUDGMENT

cost
benefit

EXECUTOR

PLAN

BEHAVIOR
GENERATION

Expected
Results

Tentative
Plans

Images
Maps

Entities
Events
States

Attributes

Feedback

Task
Command

Input

EXECUTOR

PLAN

EXECUTOR

PLAN

Task Decomposition
PLANNER

KD

SENSORY
PROCESSING

Recognize
Filter
Compute
Group
Window

Figure 1. A typical 4-D/RCS computational node. Each task command input to a behavior generation (BG)
process is decomposed into plans that become subtasks for subordinate BG processes. A world modeling (WM)
process maintains a knowledge database (KD) that is the BG unit’s best estimate of the external world. A sensory
processing (SP) system operates on input from sensors by focusing attention (i.e., windowing), grouping, computing

3

attributes, filtering, and recognizing entities, events, and situations. A value judgment (VJ) process evaluates
expected results of tentative plans. VJ also evaluates entities, events, and situations in the KD (not shown here.)

The BG command and control hierarchy for the first five levels of the Demo III Experimental Unmanned Vehicle (XUV) is
shown in Figure 2.

Message List

EX

Gaze Plan

RSTA

EX

Driver Plan Gaze Plan

Autonomous
Mobil ity

EX EX

Driver Plan

AM Plan RSTA Plan

F Wheel R Wheel F Steer R Steer Pan T i l t

Driver Servo
Stereo
Gaze

Driver

Vehicle1

Vehicle1 Plan Vehicle2 Plan

Section1

EX EX

EXEXEX

EX

EXEXEXEX EX EX

PRIMITIVE LEVEL
500 ms plan

SUBSYSTEM LEVEL
5 second plan

VEHICLE LEVEL
1 minute plan

SECTION LEVEL
10 minute plan

SERVO LEVEL
50 ms plan

ACTUATORS
5 ms update

F Wheel R Wheel F Steer R Steer Pan T i l t

XUV Control Hierarchy

Pan T i l t

LADAR
Gaze

EX

T i l t

BG

BGBGBG

BG

BG BG BG

BG

ac1, gc1, gt1
ac2, gc2, gt2

CommandedAction = ac1 CommandGoal = gc1 GoalTime = gt1

NextCommandedAction = ac2 NextCommandGoal = gc2 NextGoalTime = gt2

CommandedAction = ac1 CommandGoal = gc1 GoalTime = gt1

NextCommandedAction = ac2 NextCommandGoal = gc2 NextGoalTime = gt2

PLANNER

PLANNER

ac1, gc1, gt1
ac2, gc2, gt2

ac1, gc1, gt1
ac2, gc2, gt2

PLANNER PLANNER
PLANNER

PLANNER

ac1, gc1, gt1
ac2, gc2, gt2

ac1, gc1, gt1
ac2, gc2, gt2

ac1, gc1, gt1
ac2, gc2, gt2

ac1, gc1, gt1
ac2, gc2, gt2

ac1, gc1, gt1
ac2, gc2, gt2

Communications

Communications Plan

PLANNER PLANNER

Stereo Gaze Plan

Gaze

EX

LADAR Gaze Plan

EX

BG
PLANNER

ac1 ac1 ac1 ac1 ac1 ac1 ac1

PLANNER

Figure 2. The command and plan structure for Demo III In the BG modules at each level there is a
planner that produces one or more Plans for one or more subordinate BG modules. There is an Executor
for each plan that communicates with the subordinate about how to integrate the lower level plan into the
higher level plan.

2. INTERACTION BETWEEN DELIBERATIVE AND REACTIVE EXECUTION

In most of the robotics literature, the interface between deliberative planning and reactive reflex is poorly understood. This is
because it is not a single interface. To achieve optimum performance, there must be a multiplicity of interfaces distributed
over multiple levels. The 4-D/RCS architecture has an interface between deliberative and reactive execution in every node at
every hierarchical level. This enables 4-D/RCS to fully realize the desirable traits of both deliberative and reactive control in
a practical system. Multiple levels of deliberative planning ensure that plans can be recomputed frequently enough that they
never become obsolete. Multiple levels of representation cause the planning search space to be limited in range and

4

resolution, and plans to be limited in the number of steps and amount of detail. Multiple levels of sensory information from
the environment ensure that reactive behavior can be generated with a minimum of feedback time delay.

The 4-D/RCS architecture has seven levels of distributed, hybrid, deliberative/reactive control. It is designed to enable long-
range big-picture plans for complex problems at higher levels while producing high-speed high-precision control at lower
levels. The following are specifications for the planning horizon and reaction latency at all seven levels:

Level Planning horizon Reaction latency Function performed
Level 1 50 milliseconds 5 milliseconds Actuator servo
Level 2 500 milliseconds 20 milliseconds Vehicle heading, speed
Level 3 5 seconds 100 milliseconds Obstacle avoidance
Level 4 50 seconds 500 milliseconds Single vehicle tactical behaviors
Level 5 10 minutes 2 seconds Section level tactical behaviors
Level 6 2 hours 5 seconds Platoon level tactical behaviors
Level 7 24 hours 20 seconds Company level tactical behaviors

Table 1. Planning Horizon and Executor Reaction Latency at each level of the 4-D/RCS hierarchy.

The planning horizon refers to the future time interval over which each level plans. Plans at each level typically have about
five to ten steps between the anticipated starting state and a planned goal state at the planning horizon. Replanning is
normally done cyclically about every one-tenth of the planning horizon (i.e., level 3 replans about every 500 milliseconds.)
The reaction latencies refer to the time lapse through the executor feedback loop between sensing and acting. Reaction
latency is the minimum delay through the reactive feedback loop at each level. Reaction can interrupt cyclic replanning to
immediately select an emergency plan, or to simply begin a new replanning cycle based on new information. Reaction
latencies at each level are determined by computational delays in updating the world model as well as the sampling frequency
and computation cycle rate of the Executors.

4-D/RCS planners are designed to generate new plans well before current plans become obsolete. Thus, action can always
take place in the context of a recent plan, and feedback through the executor can close a reactive control loop using recently
selected control parameters. To meet the demands of Demo III, the 4-D/RCS architecture specifies that replanning should
occur within about one-tenth of the planning horizon at each level (e.g., replanning at level 3 will occur about every 500
milliseconds.) Executors react to sensory feedback considerably faster1 (e.g., reaction at level 3 will occur within 100
milliseconds).

To achieve this desired rate of replanning, it is necessary to limit the amount of data in the world model that needs to be
refreshed between each planning cycle. Multilevel representation of space makes it possible to limit the number of resolution
elements in maps and the amount of detail in symbolic data structures at each level. Information can be chunked so that only
what is necessary for making decisions need be represented in each node. Multilevel representation of time makes it possible
to limit the number of events and amount of detail stored at each level. Multilevel representation enables the world model
in any computational node to be rich and detailed at the point of interest, yet contain only a modest amount of information.
This allows the world model in each node to be updated in real-time.

To replan frequently, it is also necessary to limit the amount of search required to generate new plans. There are several
ways to limit the search. One is to pre-compute and store plans that can be selected by a rule-based planner in response to the
recognition of an object, event, or situation. A second approach is to limit the range and resolution of the state space that
needs to be searched and evaluated. There are various combinations of these approaches, such as partially developed plans
that must be instantiated with parameters at execution time, or schemas that define the general forms of behavior that are
appropriate to various situations. All of these options can be supported by 4-D/RCS.

Maps at each level provide information to planners about the position, attributes, and class of entities. For example, maps at
various levels may indicate the shape, size, class, and motion of objects such as obstacles and vehicles, and the location of
roads, intersections, bridges, streams, woods, lakes, buildings, and towns.

1 Except at level 1 where replanning and reaction times are the same. At levels 2 and above, the difference between
replanning and reacting becomes more significant with each successively higher level.

5

For the Demo III program, the range and resolution of maps is limited to about 128x128 (~16,000) resolution elements at each
level. The range and resolution of maps at all levels of the Demo III 4-D/RCS hierarchy are shown in the following table:

Level Map resolution Map range Function performed
Level 1 n/a n/a Actuator servo
Level 2 4 cm 5 m Vehicle heading, speed
Level 3 40 cm 50 m Obstacle avoidance
Level 4 4 m 500 m Single vehicle tactical behaviors
Level 5 40 m 5 km Section level tactical behaviors
Level 6 400 m 50 km Platoon level tactical behaviors
Level 7 4 km 500 km Company level tactical behaviors

Table 2. Range and resolution of maps at all levels in the Demo III 4-D/RCS architecture.

For different vehicle speeds, the map resolution required for planning at various levels may be different. The numbers in
Table 2 are for a ground vehicle traveling about 10 meters per second. A helicopter skimming over the ground at 100
meters/second would require planning maps with an order of magnitude greater range and an order of magnitude lower
resolution than that shown above. At some time in the future, we intend to incorporate map representations that are velocity
dependent.

Figure 3 is a high-level block diagram of the first five levels in the 4-D/RCS architecture for Demo III. On the right,
Behavior Generation modules decompose high level mission commands into low level actions. The text beside the Planner
and Executor at each level indicates the planning horizon, replanning rate, and reaction latency of commands at each level.
Each planner has a world model simulator that is appropriate for the problems encountered at its level. In the center, each
map as a range and resolution that is appropriate for path planning at its level. At each level, there are symbolic data
structures and segmented images with labeled regions that describe entities, events, and situations that are relevant to
decisions that must be made at that level. On the left is a sensory processing hierarchy that extracts information from the
sensory data stream that is needed to keep the world model knowledge database current and accurate.

At the bottom are actuators that act on the world and sensors that measure phenomena in the world. The Demo III vehicles
will have a variety of sensors including a laser range imager (LADAR), stereo CCD (charge coupled device) cameras, stereo
forward looking infra red (FLIR) devices, a color CCD, a vegetation penetrating radar, GPS (Global Positioning System), an
inertial navigation package, actuator feedback sensors, and a variety if internal sensors for measuring parameters such as
engine temperature, speed, vibration, oil pressure, and fuel level. The vehicle also will carry a Reconnaissance, Surveillance,
and Target Acquisition (RSTA) mission package that will include long-range cameras and FLIRs, a laser range finder, and an
acoustic package.

In Figure 3, the bottom (Servo) level has no map representation. The Servo level deals with actuator dynamics and reacts to
sensory feedback from actuator sensors. The Primitive level map has range of 5 meters with resolution of 4 centimeters.
This enables the vehicle to make small path corrections to avoid bumps and ruts during the 500 millisecond planning horizon
of the Primitive level. The Primitive level also uses accelerometer data to compensate for vehicle dynamics.

The Subsystem level map has range of 50 meters with resolution of 40 centimeters. This map is used to plan about 5
seconds into the future to find a path that avoids obstacles and provides a smooth and efficient ride. The Vehicle level map
has a range of 500 meters with resolution of 4 meters. This map is used to plan paths about one minute into the future taking
into account terrain features such as roads, bushes, gullies, or tree lines. The Section level map has a range of 5000 meters
with resolution of 40 meters. This map is used to plan about 10 minutes into the future to accomplish tactical behaviors.
Higher level maps (not shown in Figure 3) are used to plan section and platoon missions lasting about 2 and 24 hours
respectively. These are derived from a priori military maps.

6

N

5000 meters

object
image

object
image

pointers

N N

50 meters

object
image

vehicle

ground

sky

pointers

VEHICLE LEVEL
~ 1 minute horizonplanner

EXECUTOR

PLANNER

command

plan ~ every 5 second

500 ms reaction latency

500 meters

object
image

pointers

tree

rock

building
hill

object
image

vehicle

ground

sky

ob1

ob2ob3

WM
simulator

planner

pointers

N

classification
confirm grouping

filter
compute attributes

grouping
attention

pointers

object
image

vehicle

ground

sky
tree

rock

building
hill

vehicle

5 meters

SYMBOLIC STRUCTURES
Entities, Events

Attributes
States

Relationships

IMAGES
Labeled Regions

Attributes

MAPS
Labeled Features

Attributes
Icons

MAPS
Cost, Risk

Plans

EXECUTOR

PLANNER

command

command

ACTUATORSSENSORS

WORLD

SENSORY PROCESSING
WORLD MODELING
VALUE JUDGMENT BEHAVIOR GENERATION

name

groups

objects

surfaces

lists

pixel attributes

a priori
maps

SECTION LEVEL
~ 10 minute horizon

2 seconds reaction latency

plan ~ every minute

SUBSYSTEM LEVEL
~ 5 second horizonplanner

EXECUTOR

PLANNER

command

plan ~ every 500 ms

100 ms reaction latency

PRIMITIVE LEVEL
~ 500 ms horizonplanner

EXECUTOR

PLANNER

command

plan every 50 ms

20 ms reaction latency

SERVO LEVEL
50 ms horizonplanner

EXECUTOR

PLANNER

plan every 50 ms

5 ms reaction latency

vehicle state
sensor state

SP1
actuator state

ladar
signals

stereo CCD
signals

stereo FLIR
signals

color CCD
signals

radar
signals

actuator
signals

navigational
signals

actuator
power

name

name

SP5

classification
confirm grouping

filter
compute attributes

grouping
attention

SP4

classification
confirm grouping

filter
compute attributes

grouping
attention

SP3

classification
confirm grouping

filter
compute attributes

grouping
attention

SP2

pixels

compute attributes, filter, classification

labeled
pixels

labeled
lists

labeled
surfaces

labeled
objects

labeled
groups

name

im
ag

e
to

 m
ap

 t
ra

ns
fo

rm
s

WM
simulator

WM
simulator

WM
simulator

WM
simulator

5 seconds reaction latency

N N

Figure 3. Five levels of the 4-D/RCS architecture. On the right are Planner and Executor modules. In the middle are
maps for representing terrain features, road, bridges, vehicles, friendly/enemy positions, and the cost and risk of traversing
various regions. On the left are Sensory Processing functions, symbolic representations of entities and events, and segmented
images with labeled regions.

7

3. TWO KINDS OF PLANS

There are two kinds of plans that will be required by the Demo III vehicles: 1) path plans for locomotion, and 2) task plans
for other types of behavior. A typical path plan consists of a series of waypoints on a map. A typical task plan consists of a
set of instructions or rules that describes a sequence of actions and subgoals required to complete the task. Both path plans
and task plans can be represented in the form of augmented state graphs, or state tables, which define a list (or graph) of
planned actions (subtasks) with the desired state (subgoal) to be achieved by each action in the plan. Typically states are
represented by nodes, and actions by arcs that connect the nodes. Both types of plans can be executed by the same executor
mechanism.

In principle, both types of planning can be performed by searching the space of possible futures to find a desirable solution.
Usually, however, only path plans are generated by searching on a map for the path with the lowest cost and risk between
start and goal points. Task plans are typically generated from schema or recipes that have been developed off-line and stored
in a library where they can be accessed based on a rule or case statement when conditions arise. If there is more than one
recipe or schema that is appropriate to a task, each may be submitted to the world model for simulation and the predicted
results evaluated by the value judgment process. The planner then selects the best recipe or schema from a limited list for
execution.

In 4-D/RCS, path planners use cost maps that represent the estimated cost or risk of being in, or traversing, regions on the
map. Values represented in cost maps depend on mission priorities and knowledge of the tactical situation. Path planners
search the cost maps for routes that have the lowest cost under a given situation. Task planners use rules of engagement and
military doctrine to select modes of operation and schema for tactical behaviors. State variables such as mission priorities
and situational awareness determine which type of behavior is selected.

For example, if enemy contact is likely or has occurred, cost maps of open regions and roads will carry a high cost and
regions near tree lines and under tree cover will have lower cost. In this case, path planners will plan cautious routes near
tree lines or through wooded areas, and task planners will plan behaviors designed to search for evidence of enemy activity in
likely places. However, if enemy contact is unlikely, roads will have a very low cost and open regions will carry a lower cost
than wooded areas. This will cause path planners to plan higher speed routes on the road or through open regions, and task
planners to focus on issues such as avoiding local traffic. Thus, a very small amount of information, such as enemy contact is
likely or unlikely, can completely change the tactical behavior of the vehicle in a very logical, intuitive, and meaningful way.

4. SENSORY PROCESSING

Sensory processing (SP) is the set of computational operations performed on sensory signals to extract the state-variables,
vectors, images, entities, events, symbols, strings, maps, and data structures necessary to generate and maintain useful
internal representations of the world in the world model knowledge database (KD). As shown in Figure 3, there is a
hierarchy of SP processes that maintain a hierarchy of images, maps, and symbolic representations. Within each level of SP,
there are five basic functions: 1) focusing attention, 2) grouping, 3) computing group attributes, 4) filtering group attributes
and confirming grouping hypotheses, and 5) classifying, recognizing, or identifying grouped entities and events.

1) Focusing attention selects (e.g., windows) the regions of space and the intervals of time over which specific SP processes
operate on sensory inputs. The remainder of the input can be masked out or ignored. Windowing allocates the available
computational resources to the entities and events that are most important for success in achieving behavioral goals.
Windowed regions can be assigned priorities and be allocated computational resources in proportion to their relative
importance.

2) Grouping aggregates or clusters lower-level entities and events into higher-level entities and events and assigns them

labels or names. In image processing, spatial grouping segments images into regions that can be labeled with an entity
name. Each pixel in the labeled region carries the name of the entity to which it belongs. This creates an entity image
consisting of pixels labeled with entity names. For each region in an entity image, there is a named entity frame that
contains entity attributes computed over the region. Entity frames also contain pointers that define relationships with other

8

entities such as belongs-to, or is-part-of. Grouping also aggregates temporal sequences into events or strings that can be

assigned labels or names. Event frames contain event names, event attributes, and relationship pointers to other events and
entities.

Any particular grouping of entities or events is a hypothesis based on a gestalt heuristic such as: proximity (subentities are
close together in the image, or subevents are sequential along the time axis); similarity (subentities have similar attributes
such as color, texture, range, or motion, or subevents have similar spectral properties or temporal patterns); continuity
(subentities have directional attributes that line up, or lie on a straight line or smooth curve); or symmetry (subentities are
evenly spaced or are symetrical about a point, line, or surface.) Grouping hypotheses need to be tested, and be confirmed or
rejected, by observing how well predictions based on each grouping hypothesis match subsequent observations of sensory
data over time under a variety of circumstances. Hypothesis testing may be done by filtering and recursive estimation, or by
comparisons between observations and predictions. This may be accomplished locally through filtering and correlation with
immediate expectations, or globally through reasoning about consistency between perception and physical laws, logical rules,
or mathematical principles.

3) Computing attributes for hypothesized entities can be accomplished by integrating subentity attributes over the region in
an image covered by the hypothesized entity. Entity attributes may include position, velocity, orientation, area, shape, and
color. For example, the brightness of a pixel entity is computed by integrating the photons within a spectral energy band
falling on a photodetector in the image plane during an interval of time. The color of a pixel entity is computed from the
ratio of brightness of registered arrays of pixels in three different spectral bands. The spatial or temporal gradient of
brightness or color at a pixel can be computed from spatial or temporal differences between adjacent pixels in space or time.
The length of an edge entity in an image can be computed by counting the number of pixels along the edge. The area of a
surface entity can be computed by counting the number of pixels contained in it. The cross sectional area of an object entity
can be computed by multiplying the area of its projection in the image by the square of the ratio of its range to the focal
length of the camera. The lateral velocity of an object entity can be computed by computing the angular motion of its center
of gravity in the image multiplied by its estimated range. Radial velocity can be computed from range-rate measurements.

 4) Filtering is a process that reduces noise, enhances signal quality, and eliminates ambiguity. The computed values of
entity attributes can be filtered over intervals of space by averaging, or by convolution with spatial filters. The computed
value of entity or event attributes can be filtered over intervals of time by phase-lock loops, by correlation with Fourier
components or wavelets, or by recursive estimation such as Kalman filtering. Recursive estimation operates on each new
sensory observation as it occurs to compute a new “best estimate” (over a window of space and time) of entity attributes and
states. Each sensory measurement adds new information to what was previously known about entities and events in the
world. Recursive estimation operates by comparing a prediction based on the current “best estimate” with an observation
based on sensory input. Variance between observations and predictions are used to update the “best estimate” and to
compute a confidence value for the “best estimate.”

 Computed confidence can be used to confirm or deny the grouping hypothesis that created the entity. When variance
between observed and predicted attributes is small, confidence in the grouping hypothesis is increased. When the variance
between the observed and predicted attributes is large, confidence is reduced. When the confidence value for entity attributes
rises above a confirmation threshold, the grouping hypothesis that generated the entity is confirmed. When the confidence
falls below a denial threshold, the grouping hypothesis is rejected and a new grouping hypothesis must be selected.

5) Classification, recognition, detection, or identification is based on similarity between the attributes of a confirmed
entity and attributes of a known entity class. Entity classes are categories into which confirmed entities can be sorted. For
each entity class there exists a set of attributes (i.e., an attribute vector) that is characteristic of that class. This characteristic
attribute vector (or template) can be compared with the attribute vectors of entities observed in the world. Similarity between
the attribute vector of a confirmed entity and the attribute vector of a stored class can be computed by taking the normalized
dot product between the two attribute vectors. If a confirmed entity has an attribute vector that matches the characteristic
attribute vector of a particular class, then the confirmed entity can be classified as a member of that class. Recognition occurs
when the degree of similarity between the entity attribute vector and a class attribute vector exceeds a recognition threshold.
At this point, the confirmed entity is recognized as belonging to the entity class whose attribute vector it matches.

9

Figure 4 illustrates the five basic SP functions and the interactions that take place between SP and WM at each level of the 4-
D/RCS architecture.

Figure 4. The set of five basic processing functions that make up SP functionality for image processing
and their interaction with WM processes. The boxes with rounded corners represent information. Boxes
with square corners represent functional processes.

At each level, WM predictions are driven by task goals and priorities, by VJ value estimates, by what is known about objects,
and by the level of confidence that they exist. Value based predictions allow SP to focus attention on what is important and
mask out what is irrelevant. Predictions also guide gestalt hypotheses for grouping things together into entities. Once
entities have been hypothesized their attributes can be computed, filtered, and tested for consistency over time and space.
Once entity hypotheses have been confirmed, their attributes can be compared with class attributes of known classes,
especially those of goal or target classes. Recognized entities are labeled with class names and forwarded to the next level of
SP processing.

5. DISCLAIMER

It should be noted that only parts of the 4-D/RCS architecture have been implemented as of this March 1999. The most
complete implementation is in the BG hierarchy. BG modules have been implemented at the Servo, Primitive, Subsystem,
and Vehicle levels. WM maps have been implemented at the Subsystem and Vehicle levels, and SP functions have been
implemented at the pixel level. All regions detected as obstacles, clear space, or regions providing cover are represented
only at the pixel level in LADAR and stereo images.

attention windows

gestalt hypotheses

class attributes

mask irrelevant
subentities

group subentities
into entities

compute entity
attributes

recursive estimation

compare attributes
recognize class

windowing

grouping

computation

filtering

recognition

relevant subentity image

hypothesized entity image

hypothesized entity attributes

subentity image

confirmed entity attributes

library of entity
class frames

task goal,
priorities

select classes

named entity frames
links

SP

SP

SP

SP&WM

WM

predict
sensory input

value of objects

KD

WM

compute
object values

WM

VJ

BG

confidence

labeled entity image

10

This relatively primitive implementation has enabled the NIST HMMWV (Highly Mobile Multipurpose Wheeled Vehicle) to
drive cross-country in mostly open terrain avoiding obstacles such as trees and fences at speeds of more than 25 km per hour.
The 4-D approach developed by the Universitat der Bundeswehr Munchen (UBM) for the ‘VaMoRs-P’ system [4] includes
Road Detection and Tracking (RDT) and the Obstacle Detection and Tracking (ODT) algorithms. These use relatively
simple object models and object recognition algorithms, and function primarily in on-road situations. The RDT and ODT
systems have not yet been integrated into the 4-D/RCS architecture. However, the stand-alone results have been impressive.
On-road driving by the UBM vehicle has achieved speeds up to 150 km per hour on the Autobaun in traffic with automatic
lane changing. [4]

It is anticipated that all of the features described in this paper will be operational by the end of the Demo III program in the
year 2001. We are confident that the 4-D/RCS architecture is sufficiently general and powerful and provides a sufficiently
rich representation of the world to successfully perform all of the navigation, driving, and tactical behavior requirements of
the Demo III program.

6. REFERENCES

1. J. S. Albus, “4-D/RCS: A Reference Model Architecture for Demo III, Version 1.0,” NISTIR 5994, National Institute
of Standards and Technology, Gaithersburg, MD, March 1997.

2. J. S. Albus and A. M. Meystel, “A Reference Model Architecture for Design and Implementation of Intelligent Control
in Large and Complex Systems,” International Journal of Intelligent Control and Systems, Vol.1, No. 1, 1996, pp. 15-
30.

3. J. S. Albus, “The NIST Real-time Control System (RCS): An Application Survey,” Proceedings of the AAAI 1995
Spring Symposium Series, Stanford University, Menlo Park, CA, March 27-29, 1995.

4. E. D. Dickmanns, et. al., “The Seeing Passenger Car ‘VaMoRs-P’,” International Symposium on Intelligent Vehicles’94,
Paris, October 24-26, 1994.

