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Standstill SRM Model
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Flux Linkage As a Function of 
Phase Current and Rotor Position
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Phase Inductance Profile
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Phase Inductance of SRM (1)
Choosing Y-axis at aligned position and using 
Fourier series to represent phase inductance
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Phase Inductance of SRM (2)
Three-term Inductance Model (8/6 SRM)
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Phase Inductance of SRM (3)
Four-term Inductance Model (8/6 SRM)
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Phase Inductance of SRM (4)
Five-term Inductance Model (8/6 SRM)
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Voltage Equation
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Torque Computation
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Identification of Inductance from 
Standstill Test Data (1)

Obtaining Lθ
Finite element analysis
Standstill test
Online test

Basic idea of standstill test
Move the rotor to a specific position (θ) and block it
Inject a voltage pulse to the phase winding
Measure the current generated in the phase winding
Select a model structure and use MLE to estimate phase 
parameters
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Identification of Inductance from 
Standstill Test Data (2)

System Model Structures
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X=[i1, (,i2)] Y=[i]     u=[V]     θs=[R, L (,Rd, Ld)]
w: process noise v: measurement noise
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Identification of Inductance from 
Standstill Test Data (3)

Maximum Likelihood Estimation
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Experimental Setup with 
dSPACE DS1103
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Pictures of Test-bed (1)

Complete Experimental System
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Pictures of Test-bed (2)

8/6 SR motor with ROC 412 Single-turn Rotary Encoder 
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Pictures of Test-bed (3)

Flexible Power Converters
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Pictures of Test-bed (4)

PC running dSPACE ControlDesk and Matlab
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Standstill Test Results (1)
Standstill Test Voltage and Current Waveforms
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Standstill Test Results (2)
Inductance at aligned position
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Standstill Test Results (3)
Inductance at unaligned position
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Standstill Test Results (4)
Inductance at midway position
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Standstill Test Results (5)
Inductance under different currents at 
different rotor positions
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Standstill Test Results (6)
Flux linkage
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SRM Model for Online Operation (1)
Model Structure
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SRM Model for Online Operation (2)
State Space Representation
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SRM Model for Online Operation (3)
Torque Computation
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Neural Network Mapping (1)
2-Layer Recurrent Neural Network
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Neural Network Mapping (2)
Input to Neural Network

– Phase voltage V
– Phase current i
– Rotor position θ
– Rotor speed ω

Output from Neural Network

– Phase current i
– Magnetizing current i1
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Neural Network Mapping (3)
A hyperbolic tangent sigmoid transfer function 
is chosen to be the activation function of the 
input layer
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Neural Network Mapping (4)
Application of Neural Network to Estimate Rd and Ld

After the neural network is trained with simulation data (using 
parameters obtained from standstill test). It can be used to 
estimate exciting current during on-line operation. When i1 is 
estimated, the damper current can be computed as

and the damper voltage can be computed as

then the damper resistance Rd and inductance Ld can be 
identified using output error or maximum likelihood estimation.

12 iii −=
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Neural Network Mapping (5)
Training of Neural Network

First, from standstill test result, we can estimate the winding parameters (R
and L) and damper parameters (Rd and Ld). The Rd and Ld got from 
standstill test data may not be accurate enough for online model, but it can 
be used as initial values that will be improved later. 
Second, build an SRM model with above parameters and simulate the 
motor with hysteresis current control and speed control. The operating data 
under different reference currents and different rotor speeds are collected 
and sent to neural network for training.
Third, when training is done, use the trained ANN model to estimate the 
magnetizing current (i1) from online operating data. Then compute damper 
voltage and current and estimate Rd and Ld from the computed V2 and i2
using output error estimation. This Rd and Ld can be treated as improved 
values of standstill test results.

Repeat above procedures until Rd and Ld are accurate enough to represent 
online operation.
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Model Validation (1)
Model validation with operating data
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Model Validation (2)
Model validation with operating data
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Conclusions
The idea and procedure to use neural network to help 
identify the nonlinear model of SRM winding from 
operating data has been presented:

1. First the resistance and inductance of the phase winding are 
identified from standstill test data;

2. Then a 2-layer recurrent neural network is setup and trained with 
simulation data based on standstill model;

3. By applying this neural network to online operating data, the 
magnetizing current can be estimated and the damper current 
can be computed;

4. Then the parameters of the damper winding can be identified 
using maximum likelihood estimation.

Tests performed on a 50-ampere 8/6 SRM show 
satisfactory results of this method
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