
 

ECE 842-Lecture Random Variables 

 

Random Variables: A variable which takes on values at random; and may be thought of as a function of the 

outcomes of some random experiment. 

 

Let x be a random variable, the outcome of a probalistic experiment. The manner of specifying the 

probability with which different values are taken by the random variable is the probability distribution 

function Pr(x) and it is defined by    

 

                                                     Pr(x) = Pr ( X  x ) 

 

Or by the probability density function f(x) 
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Let f(x) denotes probability density function of x. 

 

Then 

 

        f(x1) dx1 = Probability that the value of x will be in the interval  

 

                                                            x1  x  x1 + d x1 
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Types of Random Processes 

 

Two types of random variables can be considered: 

a) Colored: Values of random process correlated in time. 

b) White: Values of random process uncorrelated in time. 

 

Colored noise: By observing past values of a colored random sequence for process, one may predict its 

future behavior.  

 

White noise: It is impossible to predict future behavior of white noise by observing past values, 

 

Discrete white noise: Discrete white noise is a time sequence of independent random variables. 
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Covariance                                       Cov [ x(k) , x(j) ] = 

                                           E { [ x(k) - 


x (k) ] [ x(j) - 


x (j) ] } 

                                                        = ij 

                                                            ij =            if i = j 

                                                            ij = 0           if i  j 

 

Continuous white noise: It does not exist in nature. It is useful in mathematical modeling. 
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Continuous white noise has constant power at all frequencies. 
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If x(t) is a continuous time white noise  

                                      E [ x(t) ] = 


x (t)     well defined 

                                     E { [ x(t) - 
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x (t) ] [ x(τ) - 


x (τ) ] } 

                                                        = (t) δ(t – τ) 

                                                            (t) =  δ(0)      if   t = τ 

                                                            (t) = 0             if     t  τ 

 

Therefore, continuous white noise is uncorrelated in time and each instant of time has infinite variance. 

 

Definition: The expected value of a random variable x is defined as  
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The variance is defined as  
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Also 

                     Cov [ x ; x ] = Var (x) =  
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Example. A random variable x has the density function  
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         a) Find the value of the constant c. 

         b) Find the probability x
2
 lies between 1/3 and 1. 
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So that    c = 1/ 

b) If 1/3  x  1, then either 1
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 Thus the required probability is  
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Joint densities. Assume x and y are random variables with joint probability density function. 

 

              f(x1, y1) dx1dy1 = Probability that x1  x  x1 + d x1     

                                           and                    y1  y  y1 + d y1 

and 
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Covariance and Correlation 

 



Covariance of two random variables x and y are defined as 

             xy = Cov [ x ; y ] = E [ ( x - 
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Correlation of two random variables x and y is defined as 
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Random Vectors. Consider n – dimensional random vector. 
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where x1, x2, ……. xn are scalar random variables, with joint density function 

 

                            f(x) = f (x1, x2, ……. xn ) 
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Covariance Matrix. Consider a random vector X. 

 

                                            X  R
n
   then 



 

             x = Cov [ x ; x ] = E [ ( x - 
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Where       
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Covariance Calculation Given 

 

                                              Z = A x + B y 

Let  

      z = Cov [ z ; z ] = Cov (zz
T
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      x = Cov [ x ; x ] 

      y = Cov [ y ; y ] 

 

Then  

        z = A x A
T
 + B y B

T
 

 

Gaussian Random Variables  

 

       Let x be a scalar Gaussian random variable  

                             E [x] =


x , Var [x] =  

 

       Gaussian density function 
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Gaussian Random Vectors. Let x be n – dimensional Gaussian random vector 
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x  = E [x],  = Cov [ x ; x ] 

 

Then the Gaussian Density function is 
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Note that if x and y are independent Gaussian random vectors, then the random vector  

 

                             Z = A X + B y 

is also Gaussian 

 


