Random Variables: A variable which takes on values at random; and may be thought of as a function of the outcomes of some random experiment.

Let x be a random variable, the outcome of a probalistic experiment. The manner of specifying the probability with which different values are taken by the random variable is the probability distribution function $\mathrm{P}_{\mathrm{r}}(\mathrm{x})$ and it is defined by

$$
\mathrm{P}_{\mathrm{r}}(\mathrm{x})=\mathrm{P}_{\mathrm{r}}(\mathrm{X} \leq \mathrm{x})
$$

Or by the probability density function $\mathrm{f}(\mathrm{x})$

$$
f(x)=\frac{d P_{r}(x)}{d x}
$$

Let $f(x)$ denotes probability density function of x.

Then
$f\left(x_{1}\right) d x_{1}=$ Probability that the value of x will be in the interval

$$
\mathrm{x}_{1} \leq \mathrm{x} \leq \mathrm{x}_{1}+\mathrm{dx} \mathrm{x}_{1}
$$

$$
\mathrm{f}(\mathrm{x}) \geq 0 \quad \text { and } \quad \int_{-\infty}^{+} f(x) d x=1
$$

Types of Random Processes

Two types of random variables can be considered:
a) Colored: Values of random process correlated in time.
b) White: Values of random process uncorrelated in time.

Colored noise: By observing past values of a colored random sequence for process, one may predict its future behavior.

White noise: It is impossible to predict future behavior of white noise by observing past values,

Discrete white noise: Discrete white noise is a time sequence of independent random variables.
$x(1), x(2)$, $\mathrm{x}(\mathrm{k})$,
$\mathrm{x}(\mathrm{j})$ \qquad

Mean $\mathrm{E}[\mathrm{x}(\mathrm{k})]=x$

$$
\hat{E}[x(k)]=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{N} x(k)
$$

Covariance

$$
\begin{gathered}
\operatorname{Cov}[\mathrm{x}(\mathrm{k}), \mathrm{x}(\mathrm{j})]= \\
\mathrm{E}\{[\mathrm{x}(\mathrm{k})-\bar{x}(\mathrm{k})][\mathrm{x}(\mathrm{j})-\bar{x}(\mathrm{j})]\} \\
=\gamma_{\mathrm{ij}} \\
\gamma_{\mathrm{ij}}=\gamma \quad \text { if } \mathrm{i}=\mathrm{j} \\
\gamma_{\mathrm{ij}}=0 \quad \text { if } \mathrm{i} \neq \mathrm{j}
\end{gathered}
$$

Continuous white noise: It does not exist in nature. It is useful in mathematical modeling.

Continuous white noise has constant power at all frequencies.

If $x(t)$ is a continuous time white noise

$$
\begin{aligned}
& \mathrm{E}[\mathrm{x}(\mathrm{t})]=\bar{x}(\mathrm{t}) \quad \text { well defined } \\
& \mathrm{E}\{[\mathrm{x}(\mathrm{t})-\bar{x}(\mathrm{t})][\mathrm{x}(\tau)-\bar{x}(\tau)]\} \\
& =\gamma(\mathrm{t}) \delta(\mathrm{t}-\tau) \\
& \gamma(\mathrm{t})=\gamma \delta(0) \quad \text { if } \mathrm{t}=\tau \\
& \gamma(\mathrm{t})=0 \quad \text { if } \quad \mathrm{t} \neq \tau
\end{aligned}
$$

Therefore, continuous white noise is uncorrelated in time and each instant of time has infinite variance.

Definition: The expected value of a random variable x is defined as

$$
\mathrm{E}[\mathrm{x}]=\int_{-\infty}^{\infty} f(x) d x
$$

The variance is defined as

$$
\operatorname{Var}[\mathrm{x}]=\mathrm{E}\left[(\mathrm{x}-\bar{x})^{2}\right]=\int_{-\infty}^{\infty}(\mathrm{x}-\overline{\mathrm{x}})^{2} f(x) d x
$$

Also

$$
\begin{aligned}
\operatorname{Cov}[\mathrm{x} ; \mathrm{x}] & =\operatorname{Var}(\mathrm{x})=\gamma \\
\gamma & =\frac{\left[(x(1)-\bar{x})^{2}+(x(2)-\bar{x})^{2}+\ldots \ldots \ldots \ldots \ldots\right.}{N}
\end{aligned}
$$

Example. A random variable x has the density function

$$
f(x)=\frac{c}{x^{2}+1}, \text { where }-\infty<\mathrm{x}<\infty
$$

a) Find the value of the constant c.
b) Find the probability x^{2} lies between $1 / 3$ and 1.
a) We must have $\int_{-\infty}^{\infty} f(x) d x=1$

$$
\int_{-\infty}^{\infty} \frac{c d x}{x^{2}+1}=\left.c \tan ^{-1} x\right|_{-\infty} ^{\infty}=c\left[\frac{\pi}{2}-\left(-\frac{\pi}{2}\right)\right]=1
$$

So that $c=1 / \pi$
b) If $1 / 3 \leq x \leq 1$, then either $\frac{\sqrt{3}}{2} \leq x \leq 1$

$$
\text { Or }-1 \leq x \leq-\frac{\sqrt{3}}{2} .\left(\text { Note } \sqrt{\frac{1}{3}}= \pm \frac{1}{\sqrt{3}}= \pm \frac{\sqrt{3}}{3}\right)
$$

Thus the required probability is

$$
\frac{1}{\pi} \int_{-1}^{-\sqrt{3} / 3} \frac{d x}{x^{2}+1}+\frac{1}{\pi} \int_{\sqrt{3} / 3}^{1} \frac{d x}{x^{2}+1}=\frac{2}{\pi} \int_{\sqrt{3} / 3}^{1} \frac{d x}{x^{2}+1}=\frac{2}{\pi}\left[\tan ^{-1}(1)-\tan ^{-1}\left(\frac{\sqrt{3}}{3}\right)\right]=\frac{2}{\pi}\left(\frac{\pi}{4}-\frac{\pi}{6}\right)=\frac{1}{6}
$$

Joint densities. Assume x and y are random variables with joint probability density function.

$$
\begin{aligned}
f\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \mathrm{dx}_{1} \mathrm{dy}_{1}= & \text { Probability that } \mathrm{x}_{1}
\end{aligned} \leq \mathrm{x} \leq \mathrm{x}_{1}+\mathrm{d} \mathrm{x}_{1} .
$$

and

$$
\begin{aligned}
& \mathrm{E}[\mathrm{x}]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x f(x, y) d x d y \\
& \mathrm{E}[\mathrm{y}]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y f(x, y) d x d y \\
& \text { Variance }[\mathrm{x}]=\Sigma_{\mathrm{x}}=\mathrm{E}\left[(\mathrm{x}-\bar{x})^{2}\right]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}(x-\bar{x})^{2} f(x, y) d x d y \\
& \text { Variance }[\mathrm{y}]=\Sigma_{\mathrm{y}}=\mathrm{E}\left[(\mathrm{y}-\bar{y})^{2}\right]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}(y-\bar{y})^{2} f(x, y) d x d y
\end{aligned}
$$

Covariance of two random variables x and y are defined as

$$
\begin{aligned}
& \Sigma_{\mathrm{xy}}=\operatorname{Cov}[\mathrm{x} ; \mathrm{y}]=\mathrm{E}[(\mathrm{x}-\bar{x})(\mathrm{y}-\bar{y})] \\
& \operatorname{Cov}[\mathrm{x} ; \mathrm{y}]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}(x-\bar{x})(y-\bar{y}) f(x, y) d x d y
\end{aligned}
$$

Correlation of two random variables x and y is defined as

$$
\begin{gathered}
\rho(x, y)=\frac{\sum_{x y}}{\sqrt{\sum_{x} \sum_{y}}} \\
-1 \leq \rho(\mathrm{x}, \mathrm{y}) \leq 1
\end{gathered}
$$

Random Vectors. Consider n - dimensional random vector.

$$
x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
\cdot \\
\cdot \\
x_{n}
\end{array}\right]
$$

where $\mathrm{x}_{1}, \mathrm{x}_{2}$, x_{n} are scalar random variables, with joint density function

$$
\mathrm{f}(\mathrm{x})=\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \ldots . \mathrm{x}_{\mathrm{n}}\right)
$$

$$
\mathrm{E}[\mathrm{x}]=\bar{x}=\int_{-\infty}^{\infty} x f(x) d x
$$

$$
E[x]=\left[\begin{array}{l}
E\left\{x_{1}\right\} \\
E\left\{x_{2}\right\} \\
. \\
E\left\{x_{n}\right\}
\end{array}\right]
$$

$$
\mathrm{E}\left[\mathrm{x}_{\mathrm{i}}\right]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_{i} f\left(x_{1}, \ldots \ldots \ldots \ldots x_{n}\right) d x_{1} \ldots \ldots \ldots \ldots
$$

Covariance Matrix. Consider a random vector X.

$$
X \in R^{n} \text { then }
$$

$$
\begin{aligned}
& \Sigma_{\mathrm{x}}=\operatorname{Cov}[\mathrm{x} ; \mathrm{x}]=\mathrm{E}\left[(\mathrm{x}-\bar{x})(\mathrm{x}-\bar{x})^{\mathrm{T}}\right] \\
& \sum_{x}=\left[\begin{array}{ll}
\operatorname{Cov}\left[x_{1} ; x_{1}\right] & \operatorname{Cov}\left[x_{1} ; x_{2}\right] \ldots . . \operatorname{Cov}\left[x_{1} ; x_{n}\right] \\
\operatorname{Cov}\left[x_{1} ; x_{2}\right] & \operatorname{Cov}\left[x_{2} ; x_{2}\right] \ldots . . \operatorname{Cov}\left[x_{2} ; x_{n}\right] \\
\cdot \\
\operatorname{Cov}\left[x_{1} ; x_{n}\right] & \operatorname{Cov}\left[x_{2} ; x_{n}\right] \ldots . . \operatorname{Cov}\left[x_{n} ; x_{n}\right]
\end{array}\right]
\end{aligned}
$$

Where

$$
\begin{aligned}
& \operatorname{Cov}\left(\mathrm{x}_{1} ; \mathrm{x}_{1}\right)=\operatorname{Var}\left[\mathrm{x}_{1}\right]=\int_{-\infty}^{\infty}\left(x_{1}-\bar{x}_{1}\right)^{2} f(x) d x \\
& \operatorname{Cov}\left(\mathrm{x}_{1} ; \mathrm{x}_{2}\right)=\mathrm{E}\left[\left(\mathrm{x}_{1}-\bar{x}_{1}\right)\left(\mathrm{x}_{2}-\bar{x}_{2}\right)\right]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(x_{1}-\bar{x}_{1}\right)\left(\mathrm{x}_{2}-\overline{\mathrm{x}}_{2}\right) f(x, y) d x d y
\end{aligned}
$$

Covariance Calculation Given

$$
\mathrm{Z}=\mathrm{Ax}+\mathrm{By}
$$

Let

$$
\begin{aligned}
\Sigma_{z} & =\operatorname{Cov}[\mathrm{z} ; \mathrm{z}]=\operatorname{Cov}(\mathrm{zz})=\operatorname{Cov}\left[(\mathrm{Ax}+\mathrm{By})(\mathrm{Ax}+\mathrm{By})^{\mathrm{T}}\right] \\
& =\operatorname{Cov}\left(\mathrm{Axx}{ }^{\mathrm{T}} \mathrm{~A}^{\mathrm{T}}\right)+\operatorname{Cov}\left(\mathrm{Byy}^{\mathrm{T}} \mathrm{~B}^{\mathrm{T}}\right)=\operatorname{Cov}(\mathrm{A}) \operatorname{Cov}\left(\mathrm{xx}^{\mathrm{T}}\right) \operatorname{Cov}\left(\mathrm{A}^{\mathrm{T}}\right)+\operatorname{Cov}(\mathrm{B}) \operatorname{Cov}\left(\mathrm{yy}^{\mathrm{T}}\right) \operatorname{Cov}\left(\mathrm{B}^{\mathrm{T}}\right) \\
& =\mathrm{A} \operatorname{Cov}\left(\mathrm{xx}^{\mathrm{T}}\right) \mathrm{A}^{\mathrm{T}}+\mathrm{B} \operatorname{Cov}\left(\mathrm{yy}^{\mathrm{T}}\right) \mathrm{B}^{\mathrm{T}} \\
\Sigma_{\mathrm{x}} & =\operatorname{Cov}[\mathrm{x} ; \mathrm{x}] \\
\Sigma_{y} & =\operatorname{Cov}[\mathrm{y} ; \mathrm{y}]
\end{aligned}
$$

Then

$$
\Sigma_{\mathrm{z}}=\mathrm{A} \Sigma_{\mathrm{x}} \mathrm{~A}^{\mathrm{T}}+\mathrm{B} \Sigma_{\mathrm{y}} \mathrm{~B}^{\mathrm{T}}
$$

Gaussian Random Variables

Let x be a scalar Gaussian random variable

$$
\mathrm{E}[\mathrm{x}]=\bar{x}, \operatorname{Var}[\mathrm{x}]=\Sigma
$$

Gaussian density function

$$
f(x)=\frac{1}{2 \pi \sqrt{\sum}} \exp \left\{-\frac{1}{2 \sum}(x-\bar{x})^{2}\right\}
$$

Gaussian Random Vectors. Let x be n - dimensional Gaussian random vector

$$
\bar{x}=\mathrm{E}[\mathrm{x}], \Sigma=\operatorname{Cov}[\mathrm{x} ; \mathrm{x}]
$$

Then the Gaussian Density function is

$$
\mathrm{f}(\mathrm{x})=(2 \pi)^{-\mathrm{n} / 2}(\operatorname{det} \Sigma)^{-1 / 2} \cdot \exp \left\{\left\{-\frac{1}{2}(x-\bar{x})^{T} \sum^{-1}(x-\bar{x})\right\}\right.
$$

Note that if x and y are independent Gaussian random vectors, then the random vector

$$
Z=A X+B y
$$

is also Gaussian

