

Exhibit 1 depicts the Ohio company distribution system.

Exhibit 1: The Ohio Co. Distribution System.

The load data for Exhibit 1 is presented in Exhibit 2 below.

1) Write a simulation testbed using least square estimation to identify the model parameters. Assume the model order is given below:

$$\hat{Y}_{p}(k) = \hat{a}_{1}(k) + \hat{a}_{2}(k)\sin\left(\frac{2\pi k}{12}\right) + \hat{a}_{3}(k)\cos\left(\frac{2\pi k}{12}\right) + \hat{a}_{4}(k)\sin\left(\frac{2\pi k}{24}\right) + \hat{a}_{5}(k)\cos\left(\frac{2\pi k}{24}\right) + \hat{a}_{6}(k)\sin\left(\frac{2\pi k}{168}\right) + \hat{a}_{7}(k)\cos\left(\frac{2\pi k}{168}\right)$$

And then compute a residual sequence Z(k) as shown below :

$$Z(k) = Y(k) - \hat{Y}_{p}(k)$$

2) Compute correlation coefficients of process Z(k), for lags f = 1, 2, 3.

3) Use the sequence Z(k) and determine new models of the structure, i.e. $\hat{Y}(k) = \hat{Y}_p(k) + \hat{Z}(k)$ 4) Calculate the prediction error

$$\mathbf{e}(\mathbf{k}) = \mathbf{Y}(\mathbf{k}) - \hat{\mathbf{Y}}(\mathbf{k})$$

and

$$E_{2,N}^{2} = \frac{1}{N - n_{2}} \sum_{k=n_{2}+1}^{N} e^{2}(k)$$
$$\left| E_{1,N} \right| = \frac{1}{N - n_{2}} \sum_{k=n_{2}+1}^{N} \left| e(k) \right|$$

Plot Y(k) , $\boldsymbol{\hat{Y}}_p(k)$ and $\boldsymbol{e}(k)$ vs. k

WI (A	168 CO	MPONENT	ARRAY)						
387.8	377	355.3	349.1	389	415.6	468	498.2	504.9	574
519.1	542.3	523.1	509.6	487.2	529.9	527.1	496.1	467 1	470 5
479.3	497.8	463.6	392	419.4	352.3	392	428.7	417.1	410.5
457.9	488.2	475.5	496.7	515	514.7	481.2	480.4	495 1	407.3
496.2	508.7	460.2	464.3	470.6	473.3	431.7	414 2	259 4	402.3
392.7	403.4	418.6	381.3	461.1	513.7	507.2	527.4	525 4	451
440	501.3	519.1	528.7	454.8	462.3	440.4	476	576 7	401
446.7	371.9	338.9	339.8	409.4	379.6	407.1	399.1	471 2	434.9 517 A
529.9	532.3	517	526.9	559.6	499.9	518.9	520.8	507 1	504 9
516	508.9	445.3	512.9	454	390.5	392.5	379.6	429 0	445
417.4	453.4	477.3	538.2	553.7	563	505.4	488 2	400 7	445
498	506.1	491.2	460.8	446.4	413.7	404.8	349 4	339 5	498.1
303.9	282.9	290.4	255.9	262.3	311.8	307.4	327 2	333.5	320.1
301.6	334.1	344.4	328.7	327.3	313.7	280.6	305 2	323.0	316.9
318.1	299.8	255.6	255.6	266.2	238.6	255.8	243 9	256 4	329.1
266.7	260.1	260.9	284.9	289	304.4	314.7	294 7	200.4	260.3
291.1	299.8	285.9	293.1	329.8	340.5	338.1	A10 C	200	259.9
W2 (A	168 COM	PONENT	ARRAY)				410.0		
387.1	353	337.7	338.5	366.6	384.7	455.5	473.7	506 2	463 6
504.9	520.9	501.4	439.6	473.5	485.6	502.4	498.9	465 6	453.8
440.4	422	429.7	390.9	398.1	366.3	355.1	350.8	415	463.1
476.4	477.6	471.3	527.9	540.8	531.2	537.4	499.9	461 5	401.0
496	508.6	520.1	480.9	467.3	402.2	421	412.7	402 9	403 4
352.5	373.6	377.1	401.1	472.3	487.1	490.1	506.4	474 7	402.4
459.2	473.8	461.8	521.2	518.7	462.5	388.5	466.6	518 4	466.4
456.9	421.7	343.2	353.5	375.1	418.2	416.2	419.4	482 7	494.4
459.6	478	502.5	544.2	522.2	467.3	486.8	472.5	467.8	505.2
486.8	466.5	474	404.8	446.5	394.2	408	420.6	396 2	262.4
385.4	412	481	491.9	509.3	504.9	492.8	531.1	497 7	403.7
463.4	444.9	438.6	428.1	398.6	401.9	372.5	321.5	303 9	703.7
277.1	266.4	246.1	239.9	220.7	232.9	269.7	313.8	302 9	207.3
294.7	298.2	273.2	290.1	281.4	325.2	313.3	310.8	201 2	274 1
290.8	306.9	292.3	293.3	268	222	229.9	233.5	249 8	227 4
263.7	259.9	236.6	271	290	280.2	261.4	273.2	280.6	272.1
270.3	279.7	260.6	278.9	280 7	220 C				

Write a proport and present your results.