ECE 842 Final Stability Study of Multi Generators

<u>Problem</u> : The multi-machine system to be studied has the following parameters :

Single-Line Diagram MVA_b=100

 \checkmark The constants of the transmission lines are:

$MVA_b = 100$							
Line		P.U. Impedances					
From Bus	To Bus	R	X				
1	2	0.05	0.20				
2	3	0.10	0.50				
3	4	0.20	0.80				
4	5	0.10	0.30				
5	6	0.20	0.40				
6	1	0.10	0.15				
2	5	0.20	0.50				

 \checkmark The data of the generators are :

Generator #	At	MVA	Μ	X'd	D
	Bus	Capacity	p.u	p.u	p.u
10	1	100	7535	0.004	1.0
7	2	15	1130	1.000	12.0
8	3	40	2260	0.500	2.5
9	4	30	1508	0.400	6.0

 \checkmark The load flow results for pretransient (pre-fault) conditions (excluding the reactance of the machine) are:

Bus No.	E	[degree]	<i>P_G</i> [MW]	<i>Q</i> _G [Mvar]	P_L [MW]	Q _L [Mvar]
1	1.00	0.0	33.20	9.1	0.0	0.0
2	1.002	-0.12	10.0	5.0	20.0	10.0
3	1.084	4.62	30.0	20.0	0.0	0.0
4	1.025	1.41	20.0	10.0	0.0	0.0
5	0.956	-2.8	0.0	0.0	40.0	15.0
6	0.953	-2.30	0.0	0.0	30.0	10.0
$P_{loss} = 3.2 MW$				$Q_{Loss} = 9.0 $ Mvar		

Write a matlab simulation testbed to perform the following:

- 1- Determine the dynamic equations of the faulted system (i.e., X=F(X,t)).
- 2- Determine the dynamic equation of the system after the fault has been cleared
- 3- Simulate the response of the system for 1.85 seconds using the matrix exponential method. Assume the fault is cleared at 0.42 sec and $\Delta t=0.01$ sec.
- 4- Same as 3, but use trapezoidal method.
- 5- Same as 3, but assume the fault is cleared at 0.8 sec.
- 6- Same as 4, but assume the fault is cleared at 0.8 sec.
- 7- Same as 4, but assume the fault is cleared at 0.44 sec.