EE682 - Group Project Design

Prof. Ali Keyhani

Lecture on Design of a Static Switching

Design Steps

1. Select a switching transistor;
2. Analyze to determine maximum steady state and transient device voltage and current over expected range of operating conditions;
3. Thermal analysis to establish the worst-case device junction temperature
4. Study transistor data sheet

- Only worst-case data are published
- Contacting application engineers of device manufacturers

Low Frequency Design

1. Switching losses are small

- This is the case for static switch, choppers, buck converters
- Switching device is on and off for a short period

Example

Requirements:

- Supply voltage 125 V
- Load R = 1.3Ω

Transistor selection:
D62T: 400-500 V switch, frequency of switching $=100 \mathrm{kHz}$
Is this a good selection?

Example

No \rightarrow It is not economical. Since D62T can switch of 400500 V .
However \rightarrow It is a good choice since the thermal losses are low due to operating at 125 V .

Assumptions:

- Off-state losses are small;
- Base drive losses are not very small, but they are considerable smaller than that of on-state;
- Base driver losses are neglected;
- Switch is on for a long time.

Assumptions

1. No second breakdown limitation
2. Negligible off-state losses
3. Negligible base drive losses
4. $\mathrm{V}_{\mathrm{CE}(\text { sat })}=1.2 \mathrm{~V}, \mathrm{I}_{\mathrm{B} 1}=20 \mathrm{~A}$ $\mathrm{I}_{\mathrm{B} 1}$ is the on-state drive current (see data sheets) with junction temperature of $150^{\circ} \mathrm{C}$

On-state Circuit

Continuous on-state losses $\left(\mathrm{P}_{\mathrm{T}}\right)$ in the switch is

$$
P_{T}=\frac{125-1.2}{1.3} \times 1.2=114.28 \mathrm{~W}
$$

On-state Circuit

From data sheet, the thermal resistance from junction-to-sink for double-sided cooling is $0.14^{\circ} \mathrm{C} / \mathrm{W}$

The junction-to-sink temperature different is

$$
\Delta T_{j s}=R_{\theta j s} \times P_{T}=0.14 \times 114.28=16^{\circ} \mathrm{C}
$$

Temperature rise

Fig. 2P-2. Standard heat sink ratings* for natural convection-aluminum extrusion. *Zinc-chromate converse coating. (From Westinghouse. Used with permission)

Fig 2P-2 indicates that with two of the smaller heat sinks, curve (b) for double-sided cooling, the sink-to-ambient temperature rise would be approximately $80^{\circ} \mathrm{C}$ with 114.28 W dissipation in switch.

Temperature rise

Therefore with an ambient temperature of $54^{\circ} \mathrm{C}$, the junction temperature $\left(T_{j}\right)$ is

$$
\begin{aligned}
& T_{j}=T_{A}+\Delta T_{j s}+\Delta T_{s A} \\
& =54^{\circ}+16^{\circ}+80^{\circ}=150^{\circ} C
\end{aligned}
$$

$$
T_{j} \leq 150^{\circ} \mathrm{C} \quad \text { Design OK }
$$

Switching Losses

Assume an on-period of 10 ms and a 50-percent duty cycle.

Low frequency chopper

Switching Losses

The switching losses for chopper is

$$
\begin{aligned}
& P_{T}=V_{C E(s a t)} \times I_{o n} \times \frac{t_{o n}}{T} \\
& =1.2 \times 95.23 \times \frac{1}{2}=57.14 \mathrm{~W}
\end{aligned}
$$

The junction-to-sink "average" temperature is

$$
\Delta T_{j s}=R_{\theta j s} \times P_{T}=0.14 \times 57.4=8^{\circ} C
$$

Transient Variation of Junction Temperature

Calculation of the transient variation of junction temperature:
A step-input of power equal to the on-state loss occurs at the beginning of each switching period, and an equal but negative step-input of power takes place at the end if each on-interval.

Transient Variation of Junction Temperature

(a) Equivalent step-function representation of transistor dissipation.

(b) Transient variation in ΔT_{JC}

Fig. 2-15. Initial variation in ΔT_{IC}. (a) Equivalent step-function representation of transistor dissipation; (b) transient variation in ΔT_{JC}.

Transient Variation of Junction Temperature

The initial transient variation in the junction temperature, which is calculated as:

$$
\begin{aligned}
& \Delta T_{j C(1 m s)}=Z_{\theta j C(1 m s)} \times 114.28 \mathrm{~W} \\
& =0.003^{\circ} \mathrm{C} / \mathrm{W} \times 114.28 \mathrm{~W}=0.34^{\circ} \mathrm{C} \\
& \Delta T_{j C(3 m s)}=Z_{\theta j C(3 m s)} \times 114.28 \mathrm{~W} \\
& =0.0045^{\circ} \mathrm{C} / \mathrm{W} \times 114.28 \mathrm{~W}=0.51^{\circ} \mathrm{C}
\end{aligned}
$$

Transient Variation of Junction Temperature

$$
\begin{aligned}
& \Delta T_{j C(5 m s)}=0.006^{\circ} \mathrm{C} / \mathrm{W} \times 114.28 \mathrm{~W}=0.69^{\circ} \mathrm{C} \\
& \Delta T_{j C(8 m s)}=\left[Z_{\theta ; C(18 m s)}-Z_{\theta ; C(3 m s)}\right] \times 114.28 \mathrm{~W} \\
& =(0.0075-0.0045)^{\circ} \mathrm{C} / \mathrm{W} \times 114.28 \mathrm{~W}=0.34^{\circ} \mathrm{C} \\
& \Delta T_{j C(10 m s)}=\left[Z_{\theta ; C(10 m s)}-Z_{\theta ; C(5 m s)}\right] \times 114.28 \mathrm{~W} \\
& =(0.0085-0.006)^{\circ} \mathrm{C} / \mathrm{W} \times 114.28 \mathrm{~W}=0.29^{\circ} \mathrm{C}
\end{aligned}
$$

Fig 2-15 (b) shows the transient temperature.
The steady state junction temperature may be obtained by continuously the process till reaching steady state.

