EE682 Fuel Cell Energy Processing Systems Spring 2003
 Prof. Ali Keyhani

Class Notes: DC/DC Boost Converter Design

Fuel Cells
DC/DC Converters
Inverters

Mechatronics Laboratory
Department of Electrical Engineering
The Ohio State University

CHAPTER 5 Boost Converter Design

5.1 Introduction

The Boost Converter converts an input voltage to a higher output voltage. It is also named the step-up converter. Boost converters are used in fuel cell/battery powered devices, where the load side electronic circuit requires a higher operating voltage than the source can supply.

Figure 1 A topology of boost DC/DC converter

The transistor works as a switch which is turned on and off by a pulse-widthmodulated control voltage. The ratio between on-time and the period t_{1} / T is called the Duty Cycle.

For theoretical analysis it will be assumed that the transistor is simplified as an ideal switch and the diode has no forward voltage drop. The diode will take into account a forward voltage drop $V_{\mathrm{F}}=0.7 \mathrm{~V}$.

During the on-time of the transistor, the voltage across L is equal to $V_{\text {in }}$ and the current I_{L} increases linearly. When the transistor is turned off, the current I_{L} flows through the diode and charges the output capacitor. The function of the boost converter can also be described in terms of energy balance: During the on-phase of the transistor, energy is loaded into the inductor. This energy is then transferred to the output capacitor during the blocking phase of the transistor.

The output voltage is always larger than the input voltage. Even if the transistor is not switched on and off the output capacitor charges via the diode until $V_{\text {out }}=V_{\text {in }}$. When the transistor is switched the output voltage will increase to higher levels than the input voltage.

- The Boost Converter is not short circuit proof, because there is inherently no switch-off device in the short-circuit path.
A distinction is drawn between discontinuous and continuous conducing mode depending on whether the inductor current I_{L} reduces to zero during the off-time or not. With the help of Faraday's Law the continuous mode and steady state conditions can be established.

$$
\Delta_{\mathrm{L}}=\left(\frac{1}{L}\right) V_{\text {in }} \cdot t_{1}=\left(\frac{1}{L}\right)\left(V_{\text {out }}-V_{\text {in }}\right)\left(T-t_{1}\right)
$$

From this it follows that:

$$
V_{\text {out }}=V_{\text {in }} \cdot \frac{T}{\left(T-t_{1}\right)}
$$

- For continuous mode the output voltage is dependent on the duty cycle and the input voltage, it is independent of the load.

In discontinuous mode, the inductor current I_{L} will go to zero during every period. At the moment when the inductor current becomes zero, i.e. t_{2}, the voltage V_{1} jumps to the value of $V_{\text {out }}$ because in this case $V_{\mathrm{L}}=0$. The drain-source capacitance in parallel with the diode-junction capacitance forms a resonant circuit with the inductance L. This is stimulated by the voltage jump across the diode. The voltage V_{1} then oscillates and fades away.

Figure 2 Continuous conducing mode (CCM)

Figure 3 Discontinuous conducting mode

5.2 Power Switch Design

5.2.1 Select a power switch

BJTs (bipolar junction transistor), power MOSFETs (metal-oxide-semiconductor field effect transistors), and IGBT (insulated gate bipolar transistors) are commonly used controllable power switches (turned on/off by control signals).

BJTs and MOSFETs have characteristics that complement each other in some respects. BJTs have lower conduction losses in the ON state, especially in devices with larger blocking voltages, but have longer switching times, especially at turn-off. MOSFETs can be turned on and off much faster, but their ON state conduction losses are larger, especially in devices rated for higher blocking voltages (a few hundred volts and greater). These observations have led to attempts to combine BJTs and MOSFETs monolithically on the same silicon wafer to achieve a circuit or even perhaps a new device that combines the best qualities of both types of devices.

These attempts have led to the development of the IGBT, which is becoming the device of choice in most new applications.

In this section, design procedure will be discussed based on the difference between BJTs and MOSFETs. The methodology of using IGBT will be conceptually the same.

The criteria for choosing a power switch are the voltage and current ratings and the switching frequency. Generally, BJTs can be used for more highly rated applications than MOSFETs as shown in Figure 4

MOSFETs have higer switching frequency than BJTs. Higher frequency in power electronic circuits leads to smaller inductors and capacitors in size and weight and therefore is desired. The related details will be given in the inductor and capacitor design sections below.

BJTs are driven by base drive current I_{B}. The ON state base current $I_{B(s a t),}$ can be large especially in large current applications, which is not desired. MOSFETs are driven by gate-source voltage $V_{G S}$ and consumes little current. High base current leads to high loss, more complicated circuit, and more thermal concerns.

Figure 4 Votage and current ratings for BJTs and power MOSFETs
The power switch selection and design procedures will be illustrated by the following design example.

Design requirement:
A 240 -watt $\mathrm{DC} / \mathrm{DC}$ boost converter with $V_{\text {in }}=24 \mathrm{~V}$ and $V_{\text {out }}=48 \mathrm{~V}$.
Design:
Based on the circuit topology shown in Fgure 1, assuming large inductance and small current ripple, the peak transistor current should be close to the average inductor current (i.e., the input current):

$$
\mathrm{I}_{\mathrm{in}}=\mathrm{P} / \mathrm{V}_{\mathrm{in}}=240 \mathrm{~W} / 24 \mathrm{~V}=10 \mathrm{~A}
$$

Based on this current capability requirement, considering some safety margin, two candidate transistors are chosen for comparison, one is BJT 2N6547
htp://www.semi-tech-inc.com/categories php
http://www.electronica.ro/catalog/semiconductors.html
the other is power MOSFET HUFA75307D3
http://www.fairchildsemi.com/collateral/powermosfets sg.pdf
both of which satisfy the voltage and current requirement in that, for 2N6547, $\mathrm{I}_{\mathrm{C}}=15 \mathrm{~A}>10 \mathrm{~A}$ and $\mathrm{V}_{\mathrm{CE}}=400 \mathrm{~V}>48 \mathrm{~V}$, and for HUFA75307D3, $\mathrm{I}_{\mathrm{D}}=15 \mathrm{~A}>10 \mathrm{~A}$ and $\mathrm{V}_{\mathrm{DS}}=55 \mathrm{~V}>48 \mathrm{~V}$.

However, form Figure 5, t can be observed that the base current needs to be as high as 3.0A to saturate the collector which is undesirable. A BJT must work at saturation region (ON state) or cutoff region (OFF state) to be a power switch. A MOSFET is voltage driven and the threshold voltage for HUFA75307D3 is 4 V and the maximum gate-source voltage $\mathrm{V}_{\mathrm{GSmax}}=20 \mathrm{~V}$. Therefore a TTL logic +5 V or MOSFET logic +15 V circuit can be used to drive this MOSFET, which is easy for digital implementation.

Figure 5 Collector Saturation Region of 2N6547
Transient performances of these two devices need to be compared also. The rise time and fall time of 2 N 6547 are $\mathrm{t}_{\mathrm{r}}=1.0 \mu \mathrm{~s}$ and $\mathrm{t}_{\mathrm{f}}=1.5 \mu \mathrm{~s}$ for inductive load, while those of HUFA75307D3 is $\mathrm{t}_{\mathrm{r}}=40 \mathrm{~ns}$ and $\mathrm{t}_{\mathrm{f}}=45 \mathrm{~ns}$ respectively. Therefore, the power MOSFET HUFA75307D3 can be used in much higher switching frequency.

Based on the above analysis, the power MOSFET HUFA75307D3 defeats the BJT 2N6547 in performance and becomes the solution. Before the circuit is implemented, the thermal issue needs to be addressed.

The switching loss can be calculated as follows

$$
\begin{aligned}
P_{\text {loss }} & =\frac{W_{\text {loss }}^{T}=\frac{1}{T}\left(W_{\text {loss }_{-} \text {ON }}+W_{\text {loss_OFF }_{-}}\right)=\frac{V_{d s} I_{d}}{2 T}\left(t_{O N}+t_{\text {OFF }}\right)}{} \\
& =\frac{48 \times 10}{2 \times \frac{1}{20 \times 10^{3}}}(60+100) \times 10^{-9}=0.768 \mathrm{~W}
\end{aligned}
$$

The ON-state loss can be calculated as follows:

$$
\begin{aligned}
& t_{1}=\frac{1}{f}\left(\frac{V_{\text {out }}+V_{F}-V_{\text {in }}}{V_{\text {out }}}\right)=\frac{1}{20 \times 10^{3}}\left(\frac{48+0.7-24}{48}\right) \mathrm{sec}=25.73 \mu \mathrm{~s} \\
& P_{\text {ON_loss }}=\frac{W_{\text {ON_loss }}}{T}=\frac{1}{T}\left(I_{D}^{2} r_{D S(O N)} t_{1}\right) \\
& \quad=\frac{1}{\frac{1}{20 \times 10^{3}}}\left(15^{2} \times 0.075 \times 25.73 \times 10^{-6}\right)=8.684 \mathrm{~W}
\end{aligned}
$$

Therefore the overall loss $P_{\text {loss }}=P_{S W_{-} \text {loss }}+P_{\text {ON_loss }}=9.452 \mathrm{~W}<P_{D}=45 \mathrm{~W}$ (see the datasheet), where P_{D} is the heat dissipation capacity of the MOSFET. From the data sheet, the maximum thermal resistance from junction-to-sink is $3.3^{\circ} \mathrm{C} / \mathrm{W}$. Therefore, the junction-to-sink temperature different is

$$
\Delta T_{j s}=R_{\theta \theta s} \times P_{\text {loss }}=3.3^{\circ} \mathrm{C} / \mathrm{W} \times 9.452 \mathrm{~W}=31.2^{\circ} \mathrm{C}
$$

According to the data sheet, the maximum operating temperature is $\mathrm{T}_{\mathrm{jmax}}=175^{\circ} \mathrm{C}$. Therefore, with right heat sink, the MOSFET will be safe. Assuming 50\% duty ratio, the transient thermal behavior can be calculated based on the normalized maximum transient thermal impedance in Fi\&ure 6 (the top curve):

Figure 6 Normalized maximum transient thermal impedance of HUFA75307D3

$$
\begin{aligned}
& \Delta T_{J C}(t)=P_{\text {loss }} Z_{\theta J C(50 \%)}(t) R_{\theta J C} \\
& \Delta T_{J C}(10 \mu s)=P_{\text {loss }} Z_{\theta J C(50 \%)}(10 \mu s) R_{\theta J C}=9.452 \mathrm{~W} \times 0.5 \times 3.3^{\circ} \mathrm{C} / \mathrm{W}=15.60^{\circ} \mathrm{C} \\
& \Delta T_{J C}(100 \mu s)=P_{\text {loss }} Z_{\theta J C(50 \%)}(100 \mu s) R_{\theta J C}=9.452 \mathrm{~W} \times 0.53 \times 3.3^{\circ} \mathrm{C} / \mathrm{W}=16.53^{\circ} \mathrm{C} \\
& \Delta T_{J C}(1 \mathrm{~ms})=P_{\text {loss }} Z_{\theta J C(50 \%)}(1 \mathrm{~ms}) R_{\theta J C}=9.452 \mathrm{~W} \times 0.63 \times 3.3^{\circ} \mathrm{C} / \mathrm{W}=19.65^{\circ} \mathrm{C} \\
& \Delta T_{J C}(10 \mathrm{~ms})=P_{\text {loss }} Z_{\theta J C(50 \%)}(10 \mathrm{~ms}) R_{\theta J C}=9.452 \mathrm{~W} \times 0.85 \times 3.3^{\circ} \mathrm{C} / \mathrm{W}=26.51^{\circ} \mathrm{C} \\
& \Delta T_{J C}(100 \mathrm{~ms})=P_{\text {loss }} Z_{\theta J C(50 \%)}(100 \mathrm{~ms}) R_{\theta J C}=9.452 \mathrm{~W} \times 1 \times 3.3^{\circ} \mathrm{C} / \mathrm{W}=31.2^{\circ} \mathrm{C}=\Delta T_{J C}(\infty)
\end{aligned}
$$

5.3 Inductor Design and Current Ripple Calculation

Given the following operating conditions:
$\boldsymbol{V}_{\text {in_min }}, \boldsymbol{V}_{\text {in_max }}, \boldsymbol{V}_{\text {out }}, \boldsymbol{I}_{\text {out }}$ and \boldsymbol{f}, where f is the switching frequency.

Using these parameters, then a proposal for L can be obtained:

$$
L=\left(\frac{1}{f}\right) \cdot\left(V_{\text {out }}+V_{\mathrm{F}}-V_{\text {in_min }}\right) \cdot\left(\frac{V_{\text {in_min }}}{V_{\text {out }}+V_{\mathrm{F}}}\right) \cdot\left(\frac{1}{\Delta_{\mathrm{L}}}\right)
$$

where $V_{\mathrm{F}}=0.7 \mathrm{~V}$ (Diode Forward-voltage) and 15% current ripple is assumed, i.e.,

$$
\Delta I_{L}=0.15 I_{\text {in }}=0.15 I_{\text {out }}\left(\frac{V_{\text {out }}+V_{F}}{V_{\text {in }} \min }\right)
$$

For the calculation of the curve-shapes, i.e. the peak current $I_{\max }$, two cases have to be distinguished, i.e. continuous conducting mode and discontinuous conducting mode:

$$
\begin{aligned}
& \Delta_{\mathrm{L}}=\left(\frac{1}{f}\right) \cdot\left(V_{\text {out }}+V_{\mathrm{F}}-V_{\text {in }}\right) \cdot\left(\frac{V_{\text {in }}}{V_{\text {out }}+V_{\mathrm{F}}}\right) \cdot\left(\frac{1}{L}\right) \text { and } \\
& I_{\text {in }}=I_{\text {out }} \cdot\left(\frac{V_{\text {out }}+V_{\mathrm{F}}}{V_{\text {in }}}\right)
\end{aligned}
$$

From this it follows that:
a. For $\boldsymbol{\Delta} \boldsymbol{I}_{\mathbf{L}}<\mathbf{2} \boldsymbol{I}_{\text {in }}$ the converter is in continuous mode and it follows that:

$$
\begin{aligned}
& t_{1}=\left(\frac{1}{f}\right) \cdot\left(\frac{V_{\text {out }}+V_{\mathrm{F}}-V_{\mathrm{in}}}{V_{\text {out }}}\right) \\
& \Delta I_{\mathrm{L}}=\frac{1}{L} \cdot V_{\mathrm{in}} \cdot t_{1} \text { and } \\
& I_{\max }=I_{\mathrm{in}}+\frac{1}{2} \Delta I_{\mathrm{L}}
\end{aligned}
$$

b. For $\boldsymbol{\Delta} \boldsymbol{I}_{\mathbf{L}}>\mathbf{2 I}_{\text {in }}$ the converter is in discontinuous mode and it follows that:

$$
\begin{aligned}
& t_{1}=\sqrt{2 I} \begin{array}{l}
\mathrm{out} \\
\cdot L \cdot\left(\frac{V_{\mathrm{out}}+V_{\mathrm{F}}-V_{\mathrm{in}}}{f \cdot V_{\mathrm{in}}{ }^{2}}\right) \\
t_{2}=t_{1} \cdot\left(\frac{V_{\mathrm{out}}+V_{\mathrm{F}}}{V_{\mathrm{out}}+V_{\mathrm{F}}-V_{\mathrm{in}}}\right) \text { and } \\
I_{\mathrm{max}}=\frac{1}{L} \cdot V_{\mathrm{in}} \cdot t_{1}
\end{array}, \$ \text {, }
\end{aligned}
$$

For the above design example, the required inductance can be calculated as follows:

$$
\begin{aligned}
L & =\frac{1}{f}\left(V_{\text {out }}+V_{F}-V_{\text {in }}\right)\left(\frac{V_{\text {out }}+V_{F}}{V_{\text {in }}}\right) \frac{1}{\Delta I_{L}} \\
& =\frac{1}{20 \times 10^{3}} \times(48+0.7-24) \times \frac{48+0.7}{24} \times \frac{1}{0.15 \times 10} \mathrm{H} \\
& =406 \mu \mathrm{H}
\end{aligned}
$$

Based on the inductor manufacturer MTE Corporation catalog in
able 1, onsidering the DC current capacity and some safety range, the type 18RB001 should be chosen, whose current capacity is $18 \mathrm{~A}>10 \mathrm{~A}$ and inductance is $650 \mu \mathrm{H}>406 \mu \mathrm{H}$.

The peak transistor current $\mathrm{I}_{\text {max }}$ can be calculated as follows assuming continuous conducting mode (CCM)

$$
\begin{aligned}
I_{\max } & =I_{\text {in }}+\frac{1}{2} \Delta I_{L}=I_{\text {in }}+\frac{1}{2}\left(\frac{1}{f}\right)\left(V_{\text {out }}+V_{F}-V_{\text {in }}\right)\left(\frac{V_{\text {in }}}{V_{\text {out }}+V_{F}}\right) \frac{1}{L} \\
& =10+\frac{1}{2} \frac{1}{20 \times 10^{3}}(48+0.7-24)\left(\frac{24}{48+0.7}\right) \frac{1}{650 \times 10^{-6}} \mathrm{~A} \\
& =10+0.468 \mathrm{~A}=10.468 \mathrm{~A}
\end{aligned}
$$

$\mathrm{I}_{\max }=10.468 \mathrm{~A}<15 \mathrm{~A}$, therefore the current capacity of the MOSFET meets the peak requirement.

Table 1 MTE Corporation power magnetic components - DC inductors

$\begin{gathered} \text { DC } \\ \text { AMPS } \end{gathered}$	$\begin{gathered} \text { INDUC. } \\ \mathbf{m H} \end{gathered}$	CATALOG No.	$\begin{gathered} \text { DC } \\ \text { AMPS } \end{gathered}$	$\begin{gathered} \text { INDUC. } \\ \mathbf{m H} \end{gathered}$	CATALOG No.
1	35.00	1RB001	40	0.50	40RB001
1	60.00	1RB002	40	0.75	40 RB 002
1	80.00	1RB003	40	1.00	40 RB 003
2	10.00	2RB001	40	2.50	40RB004
2	15.00	2RB002	50	0.625	50RB001
2	20.00	2RB003	50	0.97	50RB002
2	50.00	2RB004	50	1.35	50RB003
4	5.00	4RB001	50	2.00	50RB004
4	12.00	4RB002	62	0.32	62RB001
4	15.00	4RB003	62	0.61	62 RB 002
4	25.00	4RB004	62	0.67	62 RB 003
9	2.00	9RB001	62	1.20	62 RB 004
9	3.22	9RB002	62	1.50	62 RB 005
9	7.50	9 RB 003	80	0.31	80RB001
9	11.50	9 RB 004	80	0.40	80 RB 002
12	1.00	12RB001	80	0.50	80RB003
12	2.10	12 RB 002	80	0.75	80RB004
12	4.00	12 RB 003	80	1.25	80RB005
12	6.00	12RB004	92	0.20	92RB001
18	0.65	18RB001	92	0.60	92 RB 002
18	1.375	18RB002	92	1.00	92RB003
18	2.75	18 RB 003	110	0.25	110RB001
18	3.75	18RB004	110	0.30	110RB002
18	6.00	18RB005	110	0.45	110RB003
25	0.45	25RB001	125	0.11	125RB001
25	1.00	25RB002	125	0.22	125 RB 002
25	1.275	25RB003	125	0.50	125RB003
25	1.75	25RB004	125	0.85	125RB004
25	4.00	25RB005	150	0.15	150RB001
32	0.85	32RB001	150	0.22	150RB002
32	1.62	32 RB 002	150	0.32	150RB003
32	2.68	32 RB 003	150	0.65	150RB004

$\begin{array}{\|c} \text { DC } \\ \text { AMPS } \end{array}$	$\begin{array}{\|c} \text { INDUC. } \\ \mathrm{mH} \end{array}$	CATALOG No.
200	0.12	200RB001
200	0.21	200RB002
200	0.40	200RB003
200	0.50	200RB004
240	0.09	240RB001
240	0.25	240RB002
240	0.35	240RB003
300	0.08	300RB001
300	0.135	300RB002
300	0.32	300RB003
450	0.055	450RB001
450	0.11	450RB002
450	0.14	450RB003
450	0.25	450RB004
500	0.043	500RB001
500	0.09	500RB002
500	0.14	500RB003
500	0.19	500RB004
600	0.04	600RB001
600	0.11	600RB002
600	0.18	600RB003
700	0.044	700RB001
700	0.06	700RB002
700	0.15	700RB003
850	0.036	850RB001
850	0.065	850RB002
850	0.11	850RB003
1000	0.02	1000RB001
1000	0.042	1000RB002
1000	0.10	1000RB003

5.4 Design Tips

- The larger the chosen value of the inductor L, the smaller the current ripple ΔI_{L}. However this results in a physically larger and heavier inductor.
- Choose ΔI_{L} so that it is not too big. The suggestions proposed by us have adequately small current ripple along with physically small inductor size. With a
larger current ripple, the voltage ripple of the output voltage $V_{\text {out }}$ becomes clearly bigger while the physical size of the inductor decreases marginally.
- The higher the chosen value of the switching frequency f, the smaller the size of the inductor. However the switching losses of the transistor also become larger as f increases.
- The smallest possible physical size for the inductor is achieved when $\Delta I_{\mathrm{L}}=2 I_{\text {in }}$ at $V_{\text {in_min. }}$. However, the switching losses at the transistors are at their highest in this state.

5.5 Capacitor Design

Figure 7 A conventional boost converter

Figure 8 Output voltage ripple

Figure 1 and Figure 1 show a conventional boost converter and the output voltage ripple and diode current, respectively. Assuming that the diode current (i_{D}) is a square wave form, we can calculate the peak diode current ($I_{D, \text { peak }}$) for a duty ratio of 0.5

$$
I_{D, p e a k}=\frac{I_{0}}{D}=\frac{I_{0}}{0.5}=10 \mathrm{~A}
$$

where $\mathrm{I}_{0}=\mathrm{P} / \mathrm{V}_{0}=240 / 48=5 \mathrm{~A}$ and the RMS diode current $\left(\mathrm{I}_{\mathrm{D}, \mathrm{rms}}\right)$ is

$$
I_{D, r m s}=I_{D, \text { peak }} \cdot \sqrt{D}=10 \cdot \sqrt{0.5}=7.07 \mathrm{~A}
$$

Therefore, the RMS capacitor current ($\mathrm{I}_{\mathrm{c}, \mathrm{rms}}$) is given by

$$
I_{c, r m s}=\sqrt{I^{2}{ }_{D, r m s}-I^{2}{ }_{0}}=\sqrt{7.07^{2}-5^{2}}=5 \mathrm{~A}
$$

Also, the output voltage ripple can be obtained using the following equation

$$
\Delta V_{0}=\frac{\Delta Q}{C}=\frac{I_{c, r m s} D T_{s}}{C}
$$

Putting the values below into the above equation, the capacitance is

$$
\begin{aligned}
& \mathrm{D}=0.5, \mathrm{~T}_{\mathrm{s}}=1 /\left(20 \times 10^{3}\right) \mathrm{sec}, \mathrm{I}_{\mathrm{c}, \mathrm{rms}}=5 \mathrm{~A}, \Delta \mathrm{~V}_{0}=48 \mathrm{mV} . \\
& \therefore C=\frac{\Delta Q}{\Delta V_{0}}=\frac{I_{c, r m s} D T_{s}}{\Delta V_{0}}=\frac{5 \cdot 0.5}{48 \times 10^{-3} \times 20 \times 10^{3}}=2600 \mu F
\end{aligned}
$$

Therefore, the capacitor should be selected based on the rated voltage, the rated ripple current, and the capacitance calculated above. Finally, we chose the rated voltage $(100 \mathrm{~V})$ considering over-voltage by a parasite inductance, the rated ripple current (at least 5 A), and the capacitance (at least $2600 \mu \mathrm{~F}$).

Next, we have to choose the supplier that manufactures the capacitors with the above specifications. In this case, we choose the Aluminum Electrolyte Capacitor manufactured by Sam Young Electronics Co., and the list of products is given below.

Table 2 List of Aluminum Electrolyte Capacitors

LIST OF PRODUCTS

MINIATURE ALUMINUM ELECTROLYTIC CAPACITORS

Series			Applications	$\begin{aligned} & \text { Load } \\ & \text { life } \\ & \text { Time } \\ & \text { (Hrs) } \end{aligned}$						Terminal type	Roted voltage range (VDC)	Capacitance range ($\mu \mathrm{F}$)
	General Purpose	MV	$5.5 \sim 10.5 \mathrm{~mm}$ max.height	$\begin{gathered} 85^{\circ} \mathrm{C} \\ 1000 \sim 200 \mathrm{hrs} \end{gathered}$		-			-	SMD	4~50	$0.1 \sim 1.000$
		MVG	$5.5 \sim 6.0 \mathrm{~mm}$ max. height, downsized	$85^{\circ} \mathrm{C} 2000 \mathrm{hrs}$	-				-	SMD	4~50	$0.1 \sim 220$
		$\frac{M V K}{d i v}$	$\begin{aligned} & 5.5 \sim 10.5 \\ & \text { mm } \\ & \text { max.height } \end{aligned}$	$\begin{gathered} 105^{\circ} \mathrm{C} \\ 1000 \sim 200 \mathrm{hrs} \end{gathered}$		-		-	-	SMD	$6.3 \sim 50$	$0.1 \sim 1,000$
		MVY	$5.5 \sim 10.5$ mm max.height, Low Imp	$\begin{gathered} 105^{\circ} \mathrm{C} \\ 1000 \sim 200 \mathrm{hrs} \end{gathered}$			-	-	-	SMD	6.3~35	4.7~470
	Bi-Polar	MV-BP	5.5 mm max. height, Bi-polar	$85^{\circ} \mathrm{C} 2000 \mathrm{hrs}$					-	SMD	4~50	0.1~47
		MVK-BP	6.0 mm max height, Bi-polar	$105^{\circ} \mathrm{C} 1000 \mathrm{hrs}$				-	-	SMD	6.3~50	$0.1 \sim 47$
	Low Profile	SRE	5 mm height	$85^{\circ} \mathrm{C} 2000 \mathrm{hrs}$		-				Radial	4~50	$0.1 \sim 330$
		SRA	7 mm height	$85^{\circ} \mathrm{C} 2000 \mathrm{hrs}$		-				Radial	4~63	$0.1 \sim 220$
		$\frac{\text { GSA }}{\text { (NEW) }}$	7 mm height, downsized	$85^{\circ} \mathrm{C} 2000 \mathrm{hrs}$	-					Radial	6.3~50	$0.1 \sim 220$
		KRE	5 mm height, Wide temp	$105^{\circ} \mathrm{C} 1000 \mathrm{hrs}$		-	-		-	Radial	4~50	$0.1 \sim 100$
		KMA	7 mm height	$105^{\circ} \mathrm{C} 1000 \mathrm{hrs}$		-	-		-	Radial	4~63	$0.1 \sim 150$
		SR	$9 \sim 16 \mathrm{~mm}$ height	$85^{\circ} \mathrm{C} 2000 \mathrm{hrs}$	-					Radial	4~50	22~1,000
	General Purpose	SHL	General	$85^{\circ} \mathrm{C} 2000 \mathrm{hrs}$	-	-				Radial	$6.3 \sim 450$	$0.1 \sim 15,000$
		$\frac{\text { MHA }}{\text { (NEW) }}$	High capacitance	$85^{\circ} \mathrm{C} 2000 \mathrm{hrs}$	-					Radial	160~450	1~820
		KMG	General	$\begin{gathered} 105^{\circ} \mathrm{C} \\ 1000 \sim 200 \mathrm{hrs} \end{gathered}$	-	-			-	Radial	$6.3 \sim 450$	0.1~15,000
		$\frac{\mathrm{NHA}^{(N)}}{(\mathrm{NEW})}$	High capacitance	$\begin{gathered} 105^{\circ} \mathrm{C} \\ 1000 \sim 200 \mathrm{hrs} \end{gathered}$	-					Radial	160~450	1~680
	Low Leakage	SRA-LL	Height 7mm	$85^{\circ} \mathrm{C} 2000 \mathrm{hrs}$	-					Radial	6.3~50	$0.1 \sim 100$
		LL	General	$85^{\circ} \mathrm{C} 2000 \mathrm{hrs}$		-				Radial	$6.3 \sim 100$	0.1~4,700
	Bi-polar	SRE-BP	5 mm height	$85^{\circ} \mathrm{C} 1000 \mathrm{hrs}$	\bigcirc					Radial	4~50	$0.1 \sim 47$
		SRA-BP	7 mm height	$85^{\circ} \mathrm{C} 2000 \mathrm{hrs}$	-					Radial	$6.3 \sim 50$	0.1~47
		SHL-BP	General	$85^{\circ} \mathrm{C} 2000 \mathrm{hrs}$		-				Radial	$6.3 \sim 250$	0.47~6,800
		KMG-BP	General, Wide temp	$105^{\circ} \mathrm{C} 1000 \mathrm{hrs}$		-		-	-	Radial	$6.3 \sim 250$	0.47~6,800
		SSP	Speaker Network	$85^{\circ} \mathrm{C} 2000 \mathrm{hrs}$		-				Radial	25~63	1~100
		SSA	Horizontal deflection	$85^{\circ} \mathrm{C} 1000 \mathrm{hrs}$		-				Radial	25, 50	2.2~10
		KSA	Horizontal deflection	$105^{\circ} \mathrm{C} 1000 \mathrm{hrs}$				-	-	Radial	25, 50	2.2~10

LARGE SIZED ALUMINUM ELECTROLYTIC CAPACITORS

S	Series		Applications	Load life Time (Hrs)		Standard type		\qquad	$\overline{8}$ 훈 $\dot{4}$ ㅎ i	Terminal type	Roted voltage range (VDC)	Capacitance range ($\mu \mathrm{F}$)
	General Purpose	SMH	General	$\begin{gathered} 85^{\circ} \mathrm{C} \\ 200 \mathrm{hrs} \end{gathered}$		-				Pin	100~500	56~82,000
		RDA	Miniature	$\begin{gathered} 85^{\circ} \mathrm{C} \\ 2000 \mathrm{hrs} \end{gathered}$	-					Pin	160~450	68~2,700
		KMH	General, Wide temp	$\begin{gathered} 105^{\circ} \mathrm{C} \\ 2000 \mathrm{hrs} \end{gathered}$		\bigcirc		-		Pin	16~450	56~47,000
		TDA	Miniature	$\begin{aligned} & 105^{\circ} \mathrm{C} \\ & 2000 \mathrm{hrs} \end{aligned}$	\bigcirc			-		Pin	160~450	56~2,200
		SLT	20 mm height	$\begin{gathered} 85^{\circ} \mathrm{C} \\ 2000 \mathrm{hrs} \end{gathered}$	-					Pin	160~400	47~560
		KLT	20 mm height	$\begin{aligned} & 105^{\circ} \mathrm{C} \\ & 2000 \mathrm{hrs} \end{aligned}$	\bigcirc			-		Pin	160~400	47~560
		LXG	Miniature long life	$\begin{aligned} & 105^{\circ} \mathrm{C} \\ & 5000 \mathrm{hrs} \end{aligned}$	\bigcirc			-		Pin	10~400	56~47,000
	Special Application	KLG	No spark with DC overvoltage	$\begin{gathered} 105^{\circ} \mathrm{C} \\ 2000 \mathrm{hrs} \end{gathered}$)					Pin	200, 400	47~1,500
		DL	General Audio	$\begin{gathered} 85^{\circ} \mathrm{C} \\ 2000 \mathrm{hrs} \end{gathered}$		-				Pin	50~100	3,300~22,000
		AHS	Hi-Fi Audio Miniature	$\begin{gathered} 85^{\circ} \mathrm{C} \\ 2000 \mathrm{hrs} \end{gathered}$	\bigcirc					Pin	50~100	$3.300 \sim 22,000$
$\stackrel{\text { ® }}{\stackrel{\text { D }}{2}}$	General Purpose	SME	General	$\begin{gathered} 85^{\circ} \mathrm{C} \\ 2000 \mathrm{hrs} \end{gathered}$		-				Screw	10~250	560~680,000
		$\underline{\mathrm{KMH}}$	General, wide temp.	$\begin{aligned} & 105^{\circ} \mathrm{C} \\ & 2000 \mathrm{hrs} \end{aligned}$		\bigcirc		-		Screw	10~400	180~680,000
	For Inverter	RWA	High ripple	$\begin{gathered} 85^{\circ} \mathrm{C} \\ 2000 \mathrm{hrs} \end{gathered}$		\bigcirc				Screw	350, 400	270~10,000
		RWF	High ripple, long life	$\begin{gathered} 85^{\circ} \mathrm{C} \\ 5000 \mathrm{hrs} \end{gathered}$				\bigcirc		Screw	350~450	2,700~15.000
	Special Application	PH	For Photo Flash	$\begin{gathered} 5 \sim 35^{\circ} \mathrm{C} \\ 5,000 \\ \text { times } \end{gathered}$						Pin/	330	165~2,000
		DH	For Welding	$\begin{gathered} 40^{\circ} \mathrm{C} \\ 1,000,000 \\ \text { times } \end{gathered}$						Screw	315,475	100~330

In general, the price of capacitors is determined by the order of rated voltage, capacitance, maximum permissible ripple currents, maximum permissible temperature, and ESR (Equivalent Series Resistance). Therefore, designers have to choose the optimal type that can satisfy the requirements such as cost, permissible temperature, size, and ESR, etc. In this case, we selected KMH series used for General Purpose from the above catalog.

The below table shows only the information required for selection of our capacitor in full data sheets of KMH series. From "table of permissible ripple current", we have to consider a factor by switching frequency and case diameter when we calculate the maximum permissible currents. So, we selected $\Phi 35$ of rated voltage 100 V , and we have to multiply a factor (1.3) by the permissible ripple current (from table of "rating of KMH series") because the switching frequency is 20 kHz .

Table 3 Data sheet of KMH Series

PERMISSIBLE RIPPLE CURRENT
Frequency Multiplying Factor

RATINGS OF KMH Series

${ }_{\mu F}^{\mathrm{VDC}}$	100(2A)			160(2C)			$20012 \mathrm{D})$			260(2E)		
180												
220												
270										A6	0.8	0.15
330							A5	0.9	0.16	A6	0.9	0.16
390							A5	1.0	0.15	А6	1.0	0.15
470							A5	1.1	0.16	А6	1.1	0.15
560				A5	1.2	0.15	А5	1.2	0.16	A6	1.2	0.15
680				A5	1.3	0.15	A5	1.3	0.16	A6	1.4	0.15
820				A5	1.4	0.15	A5	1.4	0.15	A8	1.6	0.15
1,000				A5	1.6	0.15	A6	1.7	0.15	As	1.6	0.20
1,200				A6	1.9	0.15	A6	1.9	0.16	A8	1.8	0.20
1,500				A6	2.1	0.15	A8	2.3	0.15	A10	2.1	0.20
1,800	A5	2.7	0.10	$A B$	2.5	0.15	AB	2.5	0.16	A12	2.5	0.20
2,200	A5	3.0	0.10	A8	2.8	0.15	A10	2.5	0.16	A12	2.5	0.20
2,700	A6	3.5	0.10	A10	3.3	0.15	A12	3.6	0.15	C10	3.5	0.20
3,300	A8	4.2	0.10	A12	3.8	0.15	CB	4.1	0.15	C12	4.2	0.20
3,900	A8	4.2	0.12	8	3.8	0.20	C10	4.9	0.15	C12	4.6	0.20
4,700	A10	5.0	0.12	C10	4.6	0.20	D10	6.3	0.20	D12	6.7	0.20
5,600	A10	5.4	0.12	C10	5.1	0.20	D10	6.8	0.20	D12	6.3	0.20
6,800	A12	5.8	0.15	C12	6.1	0.20	D12	6.9	0.20	E12	7.7	0.20
8,200	$\mathrm{C8}$	6.4	0.15	D10	7.0	0.20	D12	7.6	0.20	E12	8.4	0.20
10,000	C10	7.8	0.15	D12	8.4	0.20	E12	9.3	0.20	E14	10.0	0.20
12,000	C12	9.3	0.15	E10	9.4	0.20	E12	10.2	0.20	F14	11.9	0.20
15,000	C12	10.4	0.15	E12	11.4	0.20	E12	10.2	0.20	F14	11.9	0.20
18,000	D10	10.4	0.20	E14	13.4	0.20	F14	13.1	0.25			
22,000	D12	12.5	0.20	F14	14.5	0.25						
27,000	E12	13.7	0.25	F14	16.0	0.25						
33,000	E12	16.2	0.25									
39,000	E14	16.1	0.30									
47,000	F14	19.3	0.30									
56,000	F14	21.1	0.30									

- Permissible Ripple Current(Arms / 105 C , 120 Hz)

A Case Code

Based on the above table ("Rating of KMH Series") and our requirements, even if we can choose any capacitor above $3300 \mu \mathrm{~F} / 4.2 \mathrm{~A}$ in 100 V rated voltage, we selected a 3900 $\mu \mathrm{F} / 4.2$ A because we have to consider ESR.

- Capacitance: $3900 \mu \mathrm{~F}>2600 \mu \mathrm{~F}$
- Maximum permissible ripple current: $4.2 \times 1.3=5.46 \mathrm{Arms}>5 \mathrm{~A}$

Therefore, our design is reasonable by conditions above.

Bibliography

1. N. Mohan, W. P. Robbin, and T. Undeland, Power Electronics: Converters, Applications, and Design, 2nd Edition, 1995.
2. Hoft, R., Semiconductor Power Electronics, Van Nostrand Reinhold, 1986.
3. Design of switch mode power supplies, http://henry.fbe.fh-darmstadt.de/smps_e/smps_e.asp
