CHAPTER 9

CREATING A SINE MODULATED PWM SIGNAL

9.1 Overview

This chapter introduces one method to generate sine modulated PWM signals.
This application generates an asymmetrical pulse width modulated (PWM) signal with a
varying duty cycle. The period of the PWM signal is 0.05ms, which is equivalent to a
20kHz signal. The duty cycle is modulated with a sine function that can be varied in
frequency. The implementation of the sine wave modulation is through a look-up table.
This application is implemented using C2xx Assembly code. The algorithm described in
this application report was implemented using the TI TMS320F2407 EVM.

This application uses the Event Manager Module and General Purpose Timer 1 of
the DSP. The frequency of the sinusoidal function modulated by the PWM signal is
determined by variable declaration in the program and therefore no input signal is

needed. The output PWM signal goes from pin TIPWM / TLCMP on P1 connector.

9.2 Methodology- The Table Look-up Algorithm

The generation of the sine wave is performed using a look up table. To be able to control
the frequency of the modulation with some accuracy, a method based on the modulo
mathematical operation is used (i.e. any overflow is disregarded and only the remainder is kept).

In this application a 16-bit counter is used to determine the location of the next value. A
step value is added to the counter every time a new value from the sine table is to be loaded. By
changing the value of the step, one can accurately control the frequency of the sine wave.

Although a 16-bit counter is used, the upper byte determines the location of the next sine
value to be used; thus, by changing how quickly values overflow from the lower byte (i.e.,
manipulating the step value), the frequency of the sine wave can be changed. The modulo
mathematical operation is used when there is overflow in the accumulator from the lower word to
the upper word. When an overflow occurs, only the remainder (lower word) is stored.

For example, the counter is set to 0000h and the step value is set to 40h. Every time a

value is to be looked up in the table, the value 40h is added to the counter; however, since the

upper byte is used as the pointer on the look up table, the first, second, and third values will point
to the same location. In the fourth step, which results in an overflow into the upper byte, the value
that is loaded will change. Since the upper byte is used as the pointer, the look-up table has 256
values, which is equivalent to the number of possibilities for an 8-bit number: 0 to 255.
Additionally, since the upper word of the accumulator is disregarded, the pointer for the sine look

up table does not need to be reset.

Table 1. Look-Up Table Example 1

Step | Accumulator Counter | Pointer Step Value = 40h
0 0000 0000h 0000h 00h 1« value of sine table
0000 0040h 0040h 00h
0000 0080h 0080h 00h
0000 00COh 00COh 00h
0000 0100h 0100h 01h 2navalue of sine table

AW N |-

n 0000 FFCOh FFCOh FFh 256n value of sine table
n+1 0001 0000h 0000h 00h 1svalue of sine table
n+2 0000 0040h 0040h 00h

The step size controls the frequency that is output; as a result, the larger the step, the
quicker the overflow into the upper byte, and the faster the pointer traverses through the sine
look-up table.

Table 2. Look-Up Table Example 2

Step | Counter | Pointe Step Value = COh
r

0000h 00h 1svalue of sine table
00COh 00h
0180h 01h 2naValue of sine table
0240h 02h 3w value of sine table
0300h 03h 4w value of sine table

AW | NI]|O

Although the step size indicates how quickly the pointer moves through the look up table,
the step size does not provide much information about the approximate frequency that the sine
wave will be modulating the PWM signal. To determine the frequency of the sine wave,
determine how often the value in the compare register will be modified.

In this application, the routine to load a new value in the compare register is accessed
every time that the timer value matches the value in the period register. Consequently, the routine
will be accessed at the same frequency as the PWM signal (20kHz). Because the compare register
will be updated each time that the period register and the timer values are equal, the routine that
modifies the compare register will be implemented as an interrupt service routine. As a result, the
proper registers, EVIMRA and the core IMR need to unmask the proper interrupt levels so that
the compare register can be updated.

The frequency that the sine wave will be modulated at can be calculated from the
following formula

f (step) = _step_
T, x2"
where:
f(step) = desired frequency
T, = the time period between each update (in this case, the PWM period)
n = the number of bits in the counter register (n = 16 here)
step = the step size used

The frequency that the PWM signal will be modulated is proportional to the step size and
inversely proportional to the size of the counter register and the period at which the routine is
accessed. Thus, to increase the resolution that one can increment or decrement the frequency of
the PWM modulation, one needs to have a larger counting register or access the routine at a
slower frequency by increasing the period.

Since this program is interrupt driven, once the registers have been set for the PWM
signal, the program can be ended with an unconditional branch and the output will continue
because of the interrupt structure. The output will stop when the user halts the program or the
software masks the corresponding interrupt levels.

The value of *FREQSTEP can be changed in the watch window of Code Composer
under real-time mode, so that one can modify the step size to change the frequency of

modulation.

The complete code is given below -

EAEAEEAEAAAEAAAEAAXAEAAXAEAAXAEAAXAAAXAEAAXAAAXAAXAXAXAXAAAXAAXAXAALAXAALAAALAAAAXAAXAAAXAAAXAAXAAX%

File Name: ch9 _el.asm
Target System: C240x Evaluation Board
Description: Pulse Width Modulator - Sets up the registers for an
asymmetric PWM output. The output is a square wave with
a sine wave modulated duty cycle. Timer compare value
is updated every PWM cycle, which is the timer period.
PWM (timer T1) Period is 0.05ms => 20kHz

Real-time mode enabled.
AAEAIXEAXIEAIAIAAXAAXAAXAXTAIAAXAAXAAXAAXAAXAIAAIAAIAAIAIAXAAXAAAITAIAAIAIAXAIAXAAXAAAITAIAIdxAdhhAiAihiXx

Bl ok R S S R S R R S R AR R R SR R R SR AR R R R SR R S R SR AR R R S S S S SR R S SR AR R SR S R R S R S R R R
’

; SYSTEM OPTIONS

’
Bl e e e R R AR R R AR AR R R e R AR R AR AR R R R R AR R R R AR R R R R R e R e R R e R R Ak
El

real_time .set 1 ; 1 for real time mode, otherwise set 0O
BUFFER .set 8000h ; buffer location

BUFFER_size .set 500 ; buffer size 500

T1COMPARE .set O ; TlCompare Initialized to O

T1PERIOD -set 1500 ; TlPeriod Initialized to 1500 = 20kHz
NORMAL .set 750 ; Half of T1PR value

STEPSIZE .set 4 ; Step size constant value

Bl e e e R R AR R R AR R R R R e S e e e e R R R R o e S e R AR R R R R R R R R R R R AR R e
El

-include 2407 .h"
-global MON_RT_CNFG

.ref SYS INIT, STABLE STABLE is the starting address of

; the sine table

.def GPRO ;General purpose register.
.bss GPRO,1 ;General purpose register.
.bss ctr,1 ;variable for the main background loop
-bss BUFFER write ptr,1 ;data buffer location pointer
-bss BUFFER_ctr,1 ;data counter for writing buffer
.bss TABLE,1 ;Stores pointer address in the SINE Table
.bss TOPTABLE,1 ;Stores the reset value for the pointer
.bss COMPARET1,1 ;A variable to do calculations since the
;TICMPR register is double buffered
.bss FREQSTEP, 1 ;Step size of counter increment
.bss MODREG, 1 ;Rolling Modulo Register
-bss SINEVAL,1 ;value from look up table
s VECTOR TABLE (including RT monitor traps)

.include "c200mnre.i1"

; Include conditional assembly options.

-global _c_intO,PHANTOM,GISR1,GISR2,GISR3,GISR4,GISR5,GISR6

MATITN C ODE - starts here

-text
_c_into0:
CALL SYS_INIT ;DSP initialization

---Real Time option----——-—-———————-
.iT (real_time)
CALL MON_RT_CNFG ;For Real-Time

;-—-Real Time option - -———————————— -
-if (real_time)
SPLK #0000000001000010b,IMR ;En Int 2 & 7 for T1 and RT
SERRLERLLI il
;5432109876543210
-endif

_if (real_time 1= 1)
SPLK #0000000000000010b, IMR ;Enable Int 2 only for T1
ULt
;5432109876543210

SPLK #OFFFFh, 1FR ;Clear any pending Ints

;Setup shared 1/0 pins

LDP #DP_PF2 ;set data page
SPLK #0011000000000000b,MCRA ;set TxPWM pins
* PLLLLELrennn
* FEDCBA9876543210
* bit 13 1: 0=10PB5, 1=T2PWM/T2CMP
* bit 12 1: 0=10PB4, 1=T1PWM/T1CMP

;- Event Manager A Module Reset

=k _K_F_F_F_F_F_F_F_F_F_F_F_K*_F_F_K*_F_F_F*_F*_*_F*_K*_*_F*_K*_*_*_*K*_*_*_*_%*

mk_Kk_K_K_Kk_Kk_Kk_Kk_Kk_Kk_K*_Kk_Kk_K*_)_Kk_K*_)_*k_K*_)_*k_K*_k*_*k_*,_*_*)_*_*_*k _*_*_%*
’

LDP #DP_EVA ;DP_EVA Data Page for the Event Manager
SPLK #0000h,GPTCONA ;Clear General Purpose Timer Control
SPLK #0000h,T1CON ;Clear GP Timer 1 Control

SPLK #0000h,T2CON ;Clear GP Timer 2 Control

SPLK #0000h,COMCONA ;Clear Compare Control

SPLK #0000h,ACTRA ;Clear Compare Action Control Register
SPLK #0000h,DBTCONA ;Clear Dead-Band Timer Control Register

SPLK #0000h,CAPCONA ;Clear Capture Control

SPLK #OFFFFh,EVAIFRA ;Clear Interrupt Flag Register A
SPLK #OFFFFh,EVAIFRB ;Clear Interrupt Flag Register B
SPLK #OFFFFh,EVAIFRC ;Clear Interrupt Flag Register C

SPLK #0000h,EVAIMRA ;Clear Event Manager Mask Register A
SPLK #0000h,EVAIMRB ;Clear Event Manager Mask Register B
SPLK #0000h,EVAIMRC ;Clear Event Manager Mask Register C

=k _Kk_F_F_F_F_F_Kk_K_F_K*_K_F_K*_k_F_K*_k _K*_K*_* _K*_F*_k _*_*_)_*)_*_*)_* _*_*_%

; The main program - Launch Tl and initialize table look-up:

=k _h_K_K_K_K_Kk_K_Kk_K_K_K_K_Kk_K_K*_K_K_K_K_K*_K_K*_K,_K_K,_K_K*_Kk_*_*_*_*_%

LDP #DP_EVA ;DP_EVA Data Page for EVA
SPLK #T1COMPARE,T1CMPR ;T1CMPR <-- O

SPLK #0000001010101b, GPTCONA
IHLLLELLLnn

2109876543210
SPLK #T1PERIOD,T1PR ; T1IPR = 1500 = 30000000/1/20000
SPLK #0000h,T1CNT ; Initialize Timer 1
SPLK #0000h, T2CNT ; Initialize Timer 2

SPLK #0080h,EVAIMRA ; Enable Timer 1 Period Interrupt

SPLK #0001000001000110b,T1CON ; Start T1l counting, continuous up
PELEERRLLEnnnl Prescaler= 1

5432109876543210
SPLK #0000000000000000b,T2CON ; Not used
LDP #TABLE Load data page of user variables

SPLK #0000h, TABLE
SPLK #STABLE, TOPTABLE

Initialize Pointer to Top

Initialize TOPTABLE to

address of sine table

Set the step size

Initialize the 16 bit counter register

SPLK #STEPSIZE,FREQSTEP
SPLK #0000h,MODREG

* Initialize data buffer:
LDP #BUFFER_write_ptr ; Initialization for buffer operation
SPLK #BUFFER, BUFFER_write ptr ; Initial value for the pointer
SPLK #BUFFER_size, BUFFER_ctr ; Initial value for the counter

;Enable global interrupts

EINT ;Enable all interrupts; clear the INTM to O.

;Main system background loop

LDP #ctr

MAIN: SPLK #7FFFh, ctr ;An infinite loop is running in background

loop: LACC ctr ;doing counter decrementing operation while
SUB #1 ;waiting for next ADC interrupt request.
SACL ctr ;This background loop can be used to test
BCND loop,NEQ ;the real-time running mode
B MAIN

|

1SR - GISR2

Description: Look up the sine table for next value and update T1CMPR

and update the data buffer for graphical display

Ouiuturus

MAR
MAR
SST
SST
SACH
SACL

ISR2 ;Context save regs

*,AR1
*+
#1, *+
#0, *+
*+
*

;AR1 is stack pointer
;skip one position
;save ST1

;save STO

;save ACC high

;save ACC low

;Start main section of ISR

SINE LDP #MODREG
LACC MODREG
ADD FREQSTEP
SACL MODREG
LACC MODREG,8
SACH TABLE
LACC TABLE
ADD TOPTABLE
TBLR SINEVAL

DP <-- user variable page

ACC = 16 bit Counter Register

ACC = Counter + Step

Counter assigned new value

ACC = Counter shifted to left by 8
TABLE = upper byte of counter = pointer
ACC = TABLE = Pointer

Offset Addr from top of table

Read sine value and store to SINEVAL

;Normalization of the Sine value to prevent the compare value
;from being negative:
LT SINEVAL

MPY #NORMAL

PAC

TREG = SINEVAL
PREG = TREG * NORMAL where NORMAL = T/2
ACC = PREG

SACH COMPARET1,1 ;COMPARET1=high 16 bits of (ACC left shift 1 bit)
; which is equivalent to multiply by 2 and devide by 65536

LACC COMPARET1
ADD #NORMAL
LDP #DP_EVA
SACL T1CMPR

; Write BUFFER

LDP
LARP
LAR
SACL

SAR

LACC
SUB
BCND

RS_BUF:
SPLK

LACC
ST _CTR:
SACL

#BUFFER_writ
5

e

- ptr

ACC COMPARET1

ACC COMPARET1 + NORMAL

DP <-- EVA page

T1CMPR = ACC = Normalize Sine Value

; DP <-- user variable page
; Use AR5 to be the current AR

AR5, BUFFER_write_ptr ; Load buffer pointer into AR5

*+ ; Write ACC=T1CMPR value into the buffer location
; pointed by the pointer; Increment AR5
AR5, BUFFER_write ptr ; Store updated AR5 value back
;into the pointer
BUFFER_ctr ; Load data counter
#1 ; Decrement by 1
ST CTR,NEQ ; IFf ACC >= 0, branch to ST _CTR (store counter)

#BUFFER, BUFFER write_ptr ; ITf ACC = 0, buffer full, reset

; ptr to the beginning of the buffer

#BUFFER_size; Reset the data counter back to the buffer size

BUFFER_ctr

; Enable EVA interrupt:

LDP

SPLK #OFFFFh,EVAIFRA

#DP_EVA

; DP <-- EVA page
;Clear Interrupt Flag Register A

;End main section of ISR

;Context restore regs

POINT_PGO ;load data page O
MAR *, AR1 ;make stack pointer active
LACL *- ;Restore Acc low
ADDH *- ;Restore Acc high
LST #0, *- ;load STO
LST #1, *- ;load ST1
EINT ;Enable all interrupts; clear the INTM to O.
RET
I SR - PHANTOM
; Description: Dummy ISR, used to trap spurious interrupts.
PHANTOM B PHANTOM
GISR1 RET
;GISR2 RET
GISR3 RET
GISR4 RET
GISR5 RET
GISR6 RET

Laboratory Experiment 9

Objectives

To understand one technique to create a sine modulated PWM signal using the
DSP and control the frequency of the sinusoidal modulated function.

To observe the output sinusoidal waveform by applying a simple RC low-pass

filter.

Laboratory Assignments

1. Run the example program Ch9 el .asm and observe the output PWM waveform
from the pin TIPWM on P1 connector using an oscilloscope.

2. Connect the output signal to an RC filter through an optical isolation board as shown
in the figure below. Select filter parameters R=6.8kQ2, C=1uF. Change sine
modulation frequency to 60Hz by modifying the step value in the program. Observe
the output signal Vour using an oscilloscope. Answer:

e What’s the STEPSIZE value? What is the frequency of Vour observed from the

oscilloscope? How close is it from the desired value?

Why Vour is not purely sinusoidal?
Try different filter resistance R values based on the resistor provided in the lab

and observe the Vo, waveform changes.

VCC 1 |— | VCC
OuUT1

Optical
Isolation

GND 33 —— | GND Board C Vour
T1IPWM 12 [—— 3| IN1 GND L)

1/0 Connector P1

