
 1

CHAPTER 8

SERIAL COMMUNICATIONS INTERFACE (SCI)

 In this chapter, we will discuss the Serial Communication Interface (SCI) of the

TMS320F2407. These interfaces allow digital communication between the controller and

external peripherals / other controller, in asynchronous and isosynchronous modes.

8.1 Introduction to Serial Communication

In this laboratory, the serial communication between a TMS320LF2407 EVM and

a PC will be implemented and tested although the term “serial communication” itself can

be generalized to PC-to-PC, DSP-to-DSP, and so on. Without losing generality, the

introduction to the fundamentals of serial communication starts from what you may be

more familiar with – a PC:

All IBM PC and compatible computers are typically equipped with two serial

ports and one parallel port. Although these two types of ports are used for communicating

with external devices, they work in different ways.

A parallel port sends and receives data eight bits at a time over 8 separate wires.

This allows data to be transferred very quickly; however, the cable required is more

bulky because of the number of individual wires it must contain. Parallel ports are

typically used to connect a PC to a printer and are rarely used for much else. A serial port

sends and receives data one bit at a time over one wire. While it takes eight times as long

to transfer each byte of data this way, only a few wires are required. In fact, two-way

(full duplex) communications is possible with only three separate wires - one to send, one

to receive, and a common signal ground wire.

Bi-Directional Communications

The serial port on your PC is a full-duplex device meaning that it can send and

receive data at the same time. In order to be able to do this, it uses separate lines for

transmitting and receiving data. Some types of serial devices support only one-way

 2

communications and therefore use only two wires in the cable - the transmit line and the

signal ground.

Communicating by Bits

Once the start bit has been sent, the transmitter sends the actual data bits. There

may either be 5, 6, 7, or 8 data bits, depending on the number you have selected. Both

receiver and the transmitter must agree on the number of data bits, as well as the baud

rate. Almost all devices transmit data using either 7 or 8 data bits.

Notice that when only 7 data bits are employed, you cannot send ASCII values

greater than 127. Likewise, using 5 bits limits the highest possible value to 31. After the

data has been transmitted, a stop bit is sent. A stop bit has a value of 1 - or a mark state -

and it can be detected correctly even if the previous data bit also had a value of 1. This is

accomplished by the stop bit's duration. Stop bits can be 1, 1.5, or 2 bit periods in length.

The Parity Bit

Besides the synchronization provided by the use of start and stop bits, an

additional bit called a parity bit may optionally be transmitted along with the data. A

parity bit affords a small amount of error checking, to help detect data corruption that

might occur during transmission. You can choose even parity, odd parity, mark parity,

space parity or none at all. When even or odd parity is being used, the number of marks

(logical 1 bit) in each data byte are counted, and a single bit is transmitted following the

data bits to indicate whether the number of 1 bits just sent is even or odd.

For example, when even parity is chosen, the parity bit is transmitted with a value

of 0 if the number of preceding marks is an even number. For the binary value of 0110

0011 the parity bit would be 0. If even parity is in effect and the binary number 1101

0110 is sent, then the parity bit would be 1. Odd parity is just the opposite, and the parity

bit is 0 when the number of mark bits in the preceding word is an odd number. Parity

error checking is very rudimentary. While it will tell you if there is a single bit error in

the character, it doesn't show which bit was received in error. Also, if even number of

bits are in error then the parity bit would not reflect any error at all.

 3

Mark parity means that the parity bit is always set to the mark signal condition

and likewise space parity always sends the parity bit in the space signal condition. Since

these two parity options serve no useful purpose whatsoever, they are almost never used.

RS-232C

RS-232 stands for Recommend Standard number 232 and C is the latest revision

of the standard. The serial ports on most computers use a subset of the RS-232C standard.

The full RS-232C standard specifies a 25-pin "D" connector of which 22 pins are used.

Most of these pins are not needed for normal PC communications, and indeed, most new

PCs are equipped with male D type connectors having only 9 pins.

Baud vs. Bits per Second

The baud unit is named after Jean Maurice Emile Baudot, who was an officer in

the French Telegraph Service. He is credited with devising the first uniform-length 5-bit

code for characters of the alphabet in the late 19th century. What baud really refers to is

modulation rate or the number of times per second that a line changes state. This is not

always the same as bits per second (BPS). If you connect two serial devices together

using direct cables then baud and BPS are in fact the same. Thus, if you are running at

19200 BPS, then the line is also changing states 19200 times per second. But when

considering modems, this isn't the case.

Because modems transfer signals over a telephone line, the baud rate is actually

limited to a maximum of 2400 baud. This is a physical restriction of the lines provided by

the phone company. The increased data throughput achieved with 9600 or higher baud

modems is accomplished by using sophisticated phase modulation, and data compression

techniques.

Synchronous and Asynchronous Communications

There are two basic types of serial communications, synchronous and

asynchronous. With Synchronous communications, the two devices initially synchronize

themselves to each other, and then continually send characters to stay in sync. Even when

data is not really being sent, a constant flow of bits allows each device to know where the

other is at any given time. That is, each character that is sent is either actual data or an

 4

idle character. Synchronous communications allows faster data transfer rates than

asynchronous methods, because additional bits to mark the beginning and end of each

data byte are not required. The serial ports on IBM-style PCs are asynchronous devices

and therefore only support asynchronous serial communications.

Asynchronous means "no synchronization", and thus does not require sending and

receiving idle characters. However, the beginning and end of each byte of data must be

identified by start and stop bits. The start bit indicate when the data byte is about to begin

and the stop bit signals when it ends. The requirement to send these additional two bits

cause asynchronous communications to be slightly slower than synchronous however it

has the advantage that the processor does not have to deal with the additional idle

characters.

An asynchronous line that is idle is identified with a value of 1, (also called a

mark state). By using this value to indicate that no data is currently being sent, the

devices are able to distinguish between an idle state and a disconnected line. When a

character is about to be transmitted, a start bit is sent. A start bit has a value of 0, (also

called a space state). Thus, when the line switches from a value of 1 to a value of 0, the

receiver is alerted that a data character is about to come down the line.

8.2 Serial Communication Interface of 2407
(Read the TI document: TMS320LF/LC240x DSP Controllers Reference Guide -
System and Peripherals, Chapter 8 – Serial Communication Interface)

8.3 DSP Program

Having studied the details of the SCI communication, let us now take a look at an

example in order to understand how the SCI is programmed.

Example 1:

Write a program to initialize the SCI in idle-line mode with 8 character bits, 1 stop bit

and odd parity. The baud rate of transmission and reception should be 19200 bps. The

program should conduct asynchronous communication between 2407 and its host PC.

The DSP receives characters from the PC keyboard input and transmits characters to

HyperTerminal screen on the PC. User enters a password through HyperTerminal using

 5

the keyboard. The DSP examines the value of the password and returns “Right” if it is

correct or “Wrong” if it is incorrect. About the usage of HyperTerminal, please refer to

the lab procedure below.

Solution:

Registers involved:

SCICCR = 0027h

Number of stop bits is 1. This is set by bit 7 = 0.

Odd parity is set by bit 6 = 0.

Parity is enabled by setting bit 5 = 1.

Loop back test mode is disabled by setting bit 4 =0.

The IDLE MODE is selected by setting bit 3 = 0.

8 bits per character are selected by setting bits 2-0 to 111.

SCICTL1 = 0003h to reset and 0023h to enable SCI

Bit 7 Reserved.

Bit 6 =0. Receive error interrupt is disabled.

Bit 5 = 0. SCI software reset initializes the SCI state machines and operating flags

(SCICTL2 and SCIRXST) to the reset condition. Set it to 1 to enable SCI.

Bit 4 = 0. Reserved.

Bit 3 = 0. Transmit feature is not selected

Bit 2 = 0. SCI Sleep mode is disabled.

Bit 1 = 1. SCI transmitter enable.

Bit 0 = 1. SCI receiver enable.

SCICTL2 = 0002h

Bit 1 = 1. Receiver-buffer/break interrupt enabled.

Bit 0 = 0. Disable TXRDY interrupt.

SCIHBAUD = 0000h

SCILBAUD = 194

 6

SCI 16-bit baud selection. SCIHBAUD (MSbyte) and SCILBAUD (LSbyte) concatenate

to form a 16-bit baud value. The internally generated serial clock is determined by the

CPUCLK and the two baud select registers. The SCI uses the 16-bit value of these

registers to select one of 64K serial clock rates for the communication modes. The SCI

baud rate for the different communication modes is determined in the following ways:

 For BRR = 1 to 65 535

SCI asynchronous baud = {CPUCLK / [(BRR + 1) * 8]}

 For BRR = 0

SCI asynchronous baud = CPUCLK / 16

Thus, in our problem,

BRR = {30×106/(19200*8)} - 1 = 194

SCIPRI = 0000h

Set all interrupts to be high-priority requests (INT1)

The complete program listing is as follows – This program is about serial

communication between a DSP and a PC. The software running on the PC side and the

relative settings are described in Laboratory 7.
;***
; File Name: ch8_e1.asm
; Target System: C240x Evaluation Board
; Description:
; This program uses the SCI module to implement a simple
; asynchronous communications routine. The SCI is initialized
; to operate in idleline mode with 8 character bits, 1 stop
; bit, and odd parity. The SCI Baud Rate Registers (BRR) are
; set to transmit and receive data at 19200 baud. The SCI
; generates an interrupt every time a character is loaded into
; the receive buffer (SCIRXBUF). The interrupt service routine
; (ISR)reads the receive buffer and determines if the carriage
; return button, <CR>,has been pressed. If so, the character
; string is compared with the value of password expected. If the
; password is correct, the character string "Right" is transmitted
; otherwise, the character string "Wrong" is transmitted.
;
;***

;***
; SYSTEM OPTIONS
;***
real_time .set 0 ; 1 for real time mode, otherwise set 0
LENGTH .set 16 ; length of the data stream to be transmitted
LENGTH2 .set 8
PASWD .set 4321h ; 4 digit numeric password

 7

B2_SADDR .set 60h ; On-chip DRAM B2 starting address (data memory)

;***

;---
; External references
;---
 .include "f2407.h"
; .global MON_RT_CNFG

 .ref SYS_INIT

;---
; Local Variable Declarations
;---
 .def GPR0 ;General purpose register.

 .bss GPR0,1 ;General purpose register.
 .bss RX_PASWD,1 ;Storage for received password
 .bss CHR_CNT,1 ;Counter for number of characters received

;===
; V E C T O R T A B L E (including RT monitor traps)
;===
; .include "c200mnrt.i" ; Include conditional assembly options.

 .global _c_int0,PHANTOM,GISR1,GISR2,GISR3,GISR4,GISR5,GISR6

;===
; M A I N C O D E - starts here
;===
 .text
_c_int0:
 CALL SYS_INIT ;DSP initialization

;--
; Initialise the Real time monitor
;--

 POINT_PG0

;---Real Time option---------------
 .if (real_time)
 CALL MON_RT_CNFG ;For Real-Time
 .endif
;----------------------------------

;--
; System Interrupt Init.
;--

;---Real Time option --
 .if (real_time)
 SPLK #0000000001000001b,IMR ;En Int lvl 1 & 7
 ;|||||||||!|||||| for SCI and RT
 ;5432109876543210
 .endif

 .if (real_time != 1)

 8

 SPLK #0000000000000001b,IMR ;Enable Int 1 only for SCI
 ;||||!!!!||||!!!!
 ;5432109876543210
 .endif

 SPLK #0FFFFh, IFR ;Clear any pending Ints
;---

;~~~
;Setup shared I/O pins
;~~~
 LDP #DP_PF2 ;set data page

 SPLK #0000000000000011b,MCRA ;set SCI TX & RX pins
* ||||||||||||||||
* FEDCBA9876543210
* bit 15 0: 0=IOPB7, 1=TCLKINA
* bit 14 0: 0=IOPB6, 1=TDIRA
* bit 13 0: 0=IOPB5, 1=T2PWM/T2CMP
* bit 12 0: 0=IOPB4, 1=T1PWM/T1CMP
* bit 11 0: 0=IOPB3, 1=PWM6
* bit 10 0: 0=IOPB2, 1=PWM5
* bit 9 0: 0=IOPB1, 1=PWM4
* bit 8 0: 0=IOPB0, 1=PWM3
* bit 7 0: 0=IOPA7, 1=PWM2
* bit 6 0: 0=IOPA6, 1=PWM1
* bit 5 0: 0=IOPA5, 1=CAP3
* bit 4 0: 0=IOPA4, 1=CAP2/QEP2
* bit 3 0: 0=IOPA3, 1=CAP1/QEP1
* bit 2 0: 0=IOPA2, 1=XINT1
* bit 1 1: 0=IOPA1, 1=SCIRXD
* bit 0 1: 0=IOPA0, 1=SCITXD

;===
; Initialize user variables
;===
 LDP #RX_PASWD
 SPLK #0, RX_PASWD
 SPLK #0, CHR_CNT
;===
; Initialize B2 RAM to zero’s.
;===
 LAR AR2,#B2_SADDR ; AR2 <- B2 start address
 MAR *,AR2 ; Set ARP=AR2
 LACL #0 ; Set ACC = 0
 RPT #1Fh ; Set repeat cntr for 31+1 loops
 SACL *+ ; Write zeros to B2 RAM
;===
; Initialize DATAOUT with data to be transmitted.
;===
 LAR AR2,#B2_SADDR ;Reset AR2 B2 start address
 RPT #(LENGTH - 1) ;set repeat counter for LENGTH loops
 BLPD #TXDATA,*+ ;loads B2 with TXDATA

;===
; INITIALIZATION OF INTERRUPT DRIVEN SCI ROUTINE
;===
SCI_INIT:
 LDP #DP_PF1

 9

 SPLK #0027h, SCICCR ;1 stop bit,odd parity,8 char bits,
 ;async mode, idleline protocol
 SPLK #0003h, SCICTL1 ;Enable TX, RX, internal SCICLK,
 ;Disable RX ERR, SLEEP, TXWAKE
 ;Reset SCI
 SPLK #0002h, SCICTL2 ;Enable RX INT,disable TX INT
 SPLK #0000h, SCIHBAUD
 SPLK #194, SCILBAUD ;Baud Rate=19200 b/s (30 MHz CLKOUT)
 ; 30000000/19200/8-1 = 194
 SPLK #0000h, SCIPRI ;Set TXD & RXD INT high priority
 SPLK #0023h, SCICTL1 ;Enable TX, RX, internal SCICLK,
 ;Disable RX ERR, SLEEP, TXWAKE
 ;Enable SCI
 LAR AR0, #SCITXBUF ;Load AR0 with SCI_TX_BUF address
 LAR AR1, #SCIRXBUF ;Load AR1 with SCI_RX_BUF address
 LAR AR2, #B2_SADDR ;Load AR2 with TX data start address

 CLRC INTM ;Enable interrupts

WAIT: B WAIT

;===
; I S R INT1 ISR
; Description:
; The GISR1 first determines if the SCI RXINT caused
; the interrupt. If so, the SCI Specific ISR reads the
; character in the RX buffer. If the character received
; corresponds to a carriage return, <CR>, the character
; string received is compared with the expected value of
; password. If the value matches, "Right" is transmitted,
; else "Wrong" is transmitted. If the character received
; does NOT correspond to a carriage return, <CR>, then
; the ISR returns to the main program without transmitting
; a character string. If the SCI RXINT did not cause an
; interrupt, then the value ’0x0bad’is stored in the
; accumulator and program gets caught in the BAD_INT
; endless loop.
;===

GISR1 LDP #DP_PF1
 LACL PIVR ;Load peripheral INT vector address
 SUB #0006h ;Subtract RXINT offset from above
 BCND SCI_ISR,EQ ;verify RXINT initiated interrupt
 B BAD_INT ;Else, bad interrupt occurred
SCI_ISR LDP #CHR_CNT
 LARP 1 ;Set ARP=AR1
 LACC * ;Load ACC w/RX buffer character
 SUB #000Dh ;Check if <CR> has been pressed:
 BCND XMIT_CHAR,EQ ;YES? Transmit data.
 LACC *
 SUB #30h ;Extract the actual value from the
 ;ASCII equivalent of the number.
 RPT CHR_CNT
 SFL
 SFR
 OR RX_PASWD
 SACL RX_PASWD
 LACC CHR_CNT
 ADD #4
 SACL CHR_CNT

 10

 B ISR_END ;N0? Return from GISR1.

XMIT_CHAR
 SPLK #0, CHR_CNT
 LAR AR2, #B2_SADDR
 LACC RX_PASWD
 SUB #PASWD
 SPLK #0, RX_PASWD ;Check if received no. = password
 BCND XMIT_CHAR1, EQ
 LAR AR2, #(B2_SADDR + LENGTH2) ; if not point to starting
 ; address of the string "Wrong"

XMIT_CHAR1
 LARP 2
 LACC *+,AR0 ;Load char to be xmitted into ACC
 BCND ISR_END1,EQ ;Check for Null Character
 ;YES? Return from GISR1.
 SACL *,AR2 ;NO? Load char into xmit buffer.
XMIT_RDY
 LDP #DP_PF1
 BIT SCICTL2,BIT7 ;Test TXRDY bit
 BCND XMIT_RDY,NTC ;If TXRDY=0,then repeat loop
 B XMIT_CHAR1 ;else xmit next character
ISR_END1
 B ISR_END
ISR_END LAR AR2, #B2_SADDR ;Reload AR2 w/ TX data start address

 CLRC INTM ;Clear INT Mask flag
 RET ;Return from GISR1

BAD_INT LACC #0BADh ;Load ACC with "bad"
 B BAD_INT ;Repeat loop

;===
; I S R - PHANTOM
;
; Description: Dummy ISR, used to trap spurious interrupts.
;===
PHANTOM B PHANTOM
;GISR1 RET
GISR2 RET
GISR3 RET
GISR4 RET
GISR5 RET
GISR6 RET

; Initialize Transmit Data for Interrupt Service Routine
 .data
TXDATA .word 0052h ;Hex equivalent of ASCII character ’R’
 .word 0069h ;Hex equivalent of ASCII character ’i’
 .word 0067h ;Hex equivalent of ASCII character ’g’
 .word 0068h ;Hex equivalent of ASCII character ’h’
 .word 0074h ;Hex equivalent of ASCII character ’t’
 .word 000Ah ;Hex equivalent of line feed
 .word 000Dh ;Hex equivalent of carriage return
 .word 0000h ;Hex equivalent of NULL

WRONG .word 0057h ;Hex equivalent of ASCII character ’W’
 .word 0072h ;Hex equivalent of ASCII character ’r’
 .word 006fh ;Hex equivalent of ASCII character ’o’

 11

 .word 006eh ;Hex equivalent of ASCII character ’n’
 .word 0067h ;Hex equivalent of ASCII character ’g’
 .word 000Ah ;Hex equivalent of line feed
 .word 000Dh ;Hex equivalent of carriage return
 .word 0000h ;Hex equivalent of NULL

Laboratory Experiment 7

Objectives

To use serial communication using the SCI module of the DSP and the RS232 interface

of the EVM to establish communication with the PC COM port.

Discussion

RS232 Interface on 2407 EVM

The ’C240x evaluation board has an RS-232 compatible DB-9 serial port for

asynchronous communication. The DB-9 serial port (P6) interfaces to the SCI peripheral

on the ’LF2407 device through an RS-232 transceiver. This RS232 connector allows the

user to connect an external instrument or computer to the EVM320LF2407. This means

data can be logged or commands given to the control algorithm. Five RS-232 signals can

be used to implement various communications protocols with software and hardware

handshaking on the ’C240x EVM. These signals are:

_ Receive data (RX)

_ Transmit data (TX)

_ Clear to send (CTS)

_ Request to send (RTS)

_ Data terminal ready (DTR)

The pin positions for the P6 connector as viewed from the edge of the EVM320LF2407.

The pin numbers and their corresponding signals are shown in the table below:

 12

An RS-232 cable is required to connect the serial port on the evaluation board to a

host. The pin-out for the evaluation board and host serial ports is provided in Table

below. The cable labeled RS232 Cable conforms to these specifications.

The HyperTerminal:

In order to test the program example discussed in the previous section, we employ

the Windows HyperTerminal. This is a program that allows asynchronous

communication with the PC. The protocol can be specified in this software.

Procedure:

1. Turn off PC and EVM. Connect the cable labeled "RS232 Cable" such that the 9-pin

connector end is connected to DB-9 on EVM, and the 9-pin connector end is

connected to the COM1 port on the PC. Now power on the PC and EVM.

2. Launch HyperTerminal from “Accessories” of Windows. The following menu pops

up. Enter the name of the session: e.g. LAB7. Select the port COM1, since this is the

port we are going to use for communication.

 13

3. Another menu pops up asking for the configuration details. Set up the port as shown

in the figure below:

 14

4. Once the Hyperterm settings are done, start the C-source debugger and run the

program. Now enter a password 1234, the terminal responds with a "Right". Try

another password e.g. 5476, the terminal responds with a "Wrong". This is clearly

shown in figure below:

Laboratory Assignments

1. Add comments for all lines in the interrupt service routine of the example

program Ch8_e1.asm where there are no comment lines existing.

2. Write a program to enhance the password checking mechanism shown in the

example – add features to simulate a real password checking interface:

• Display a password input prompt on the Hyperterm screen at the beginning;

• Display an asterisk “*” for each digit of password input;

 15

• If wrong, give prompt to reenter;

• If wrong for 3 times, display some fail information;

• If correct, display some information indicating the success.

Hint: use short words for prompts since the memory space in B2 is only 1Fh, so make

your prompts short.

The ASCII code table is attached below:

 0 1 2 3 4 5 6 7 8 9 A B C D E F
0 NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO SI
1 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US
2 SP ! " # $ % & ' () * + , - . /
3 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
4 @ A B C D E F G H I J K L M N O
5 P Q R S T U V W X Y Z [\] ^ _
6 ` a b c d e f g h i j k l m n o
7 p q r s t u v w x y z { | } ~ DEL

