CHAPTER 4

Timer and Interrupt Operations

Example 2
Write a program that generates a 1 kHz square-wave output at pin
T1IPWM/T1CMP/IOPBA4.

Solution:

Since the output is required at the TLIPWM/T1CMP/IOPB4 pin, we have to use
the GP timerl. There are many ways of generating a square wave. In this example, we
will use the continuous up counting mode of the timer. The period register is loaded with
the appropriate value. The compare register is loaded with a count corresponding to half
the period - so as to get a square wave.

Registers involved:

T1PR = 7500

The calculation of the value to be loaded in T1PR is as follows-

Period Value = CPUCLK / PRESCALER / DESIRED FREQ = 30x10°/ 4 / 1000 = 7500

CPUCLK = 30MHz.

PRESCALER = 4. This is set by bits 10-8 of TLCON.

T1CMPR = 3750

GPTCONA = 004Ah

Enable Compare outputs of all GPTs. GPT1 compare output - active high

T1CON =1242h

Select Continuous-Up counting mode, set input pre-scaler to 4, select internal clock,
enable timer operation, program the counter to stop immediately on emulation suspend.
MCRA = 3000h

Configure the o/p pin TLIPWM/T1CMP/IOPB4 pin for the TLPWM function.

Following is the complete code-

,-***

; File Name: ch4 e2.asm
; Target System: C240x Evaluation Board
; Description: This program generates a 1 kHz square-wave output at

pin T1PWM/T1CMP/IOPB4 to be observed on an

i
oscilloscope
’-***

bss GPRO, 1 ;general purpose variable
; MAIN C ODE - starts here
text
c into
NOP

LDP #DP_PF1 ;set data page
T e
*
* FEDCBA9876543210
* bit 15 0: reserved
* bit 14 0: CLKOUT = CPUCLK
* bit 13-12 00: IDLE1l selected for low-power mode
* bit 11-9 000: PLL x4 mode
* bit 8 0: reserved
* bit 7 1: 1 = enable ADC module clock
* bit 6 1: 1 = enable SCI module clock
* bit 5 1: 1 = enable SPI module clock
* bit 4 1: 1 = enable CAN module clock
* bit 3 1: 1 = enable EVB module clock
* bit 2 1: 1 = enable EVA module clock
* bit 1 0: reserved
* bit 0 1: clear the ILLADR bit
LACC SCSR2 ;ACC = SCSR2 register
OR #0000000000001011b ;OR in bits to be set
AND #?T??TT?TT?TTTTTTb ;AND out bits to be cleared
*
* FEDCBA9876543210
* bit 15-6 0's: reserved
* bit 5 0: do NOT clear the WD OVERRIDE bit
* bit 4 0: XMIF_HI-Z, O=normal mode, 1=Hi-Z'd
* bit 3 1: disable the boot ROM, enable the FLASH
* bit 2 no change MP/MC* bit reflects the state of the MP/MC* pin
* pbit 1-0 11: 11 = SARAM mapped to prog and data (default)
SACL SCSR2 ;store to SCSR2 register

LDP #0h ;set data page

SPLK #0h, IMR ;clear the IMR register
SPLK #111111b, IFR ;clear any pending core interrupts
SPLK #000000b, IMR ;enable desired core interrupts

LDP #DP_EVA ;set data page
SPLK #0FFFFh, EVAIFRA ;clear all EVA group A interrupts
SPLK #OFFFFh, EVAIFRB ;clear all EVA group B interrupts
SPLK #0FFFFh, EVAIFRC ;clear all EVA group C interrupts
SPLK #00000h, EVAIMRA ;enabled desired EVA group A interrupts
SPLK #00001h, EVAIMRB ;enabled desired EVA group B interrupts
SPLK #00000h, EVAIMRC ;enabled desired EVA group C interrupts
LDP #DP_EVB ;set data page
SPLK #OFFFFh, EVBIFRA ;clear all EVB group A interrupts
SPLK #0FFFFh, EVBIFRB ;clear all EVB group B interrupts
SPLK #0FFFFh, EVBIFRC ;clear all EVB group C interrupts
SPLK #00000h, EVBIMRA ;enabled desired EVB group A interrupts
SPLK #00000h, EVBIMRB ;enabled desired EVB group B interrupts
SPLK #00000h, EVBIMRC ;enabled desired EVB group C interrupts

;Enable global interrupts
CLRC INTM ;enable global interrupts

;Disable the watchdog timer
LDP #DP_PF1 ;set data page
SPLK #0000000011101000b, WDCR

* REYRASNNRRRNNNS

* FEDCBA9876543210

* bits 15-8 0's reserved

* bit 7 1: clear WD flag

* bit 6 1: disable the dog

* bit 5-3 101: must be written as 101

* pbit 2-0 000: WDCLK divider = 1

;Setup external memory interface for LF2407 EVM
LDP #GPRO ;set current data page to

;the data page of variable GPRO

SPLK #0000000001000000b, GPRO

* REYRASNNRRRNNES

* FEDCBA9876543210

* bit 15-11 0's: reserved

* pbit 10-9 00: bus visibility off

* bit 8-6 001: 1 wait-state for I/O space

* bit 5-3 000: 0 wait-state for data space

* bit 2-0 000: 0 wait state for program space
ouT GPRO, WSGR

;Setup shared I/0 pins
LDP #DP_PF2 ;set data page
SPLK #0011000000000000b,MCRA ;set TxPWM pins

* RRYRASNERRRNNES

* FEDCBA9876543210

* bit 15 0: 0=I0PB7, 1=TCLKINA

* bit 14 0: 0=I0PB6, 1=TDIRA

* pbit 13 1: 0=IOPB5, 1=T2PWM/T2CMP

* bit 12 1: 0=I0PB4, 1=T1PWM/T1CMP

* bit 11 0: 0=I0PB3, 1=PWM6

* bit 10 0: 0=I0PB2, 1=PWM5

* bit 9 0: 0=I0OPB1, 1=PWM4

* bit 8 0: 0=I0PBO, 1=PWM3

* bit 7 0: 0=IO0PA7, 1=PWM2

* bit 6 0: 0=I0OPAS6, 1=PWM1

* bit 5 0: 0=IO0OPA5, 1=CAP3

* bit 4 0: 0=I0PA4, 1=CAP2/QEP2
* bit 3 0: 0=IO0PA3, 1=CAP1/QEP1
* bit 2 0: 0=I0PAZ2, 1=XINT1

* bit 1 0: 0=IO0OPA1, 1=SCIRXD

* bit 0 0: 0=IO0OPAO, 1=SCITXD

7

LDP #DP_EVA ;set data page
SPLK #0000h, T1CON ;disable timer 1
SPLK #0000h, T2CON ;disable timer 2
T .
*
* FEDCBA9876543210
* bit 15 0: reserved
* bit 14 0: T2STAT, read-only
* bit 13 0: T1STAT, read-only
* bit 12-11 00: reserved
* bit 10-9 00: T2TOADC, 00 = no timer2 event starts ADC
* bit 8-7 00: T1TOADC, 00 = no timerl event starts ADC
* bit 6 1: TCOMPOE, 0 = Hi-z all timer compare outputs
* bit 5-4 00: reserved
* bit 3-2 10: T2PIN, 10 = active high
* bit 1-0 10: T1PIN, 10 = active high
SPLK #7500, T1PR ;Load period register
SPLK #3750,T1CMPR ;Load count in compare register
SPLK #0h, TI1CNT ;Set initial count=0
SPLK #1242h, T1CON ;Select Continuous-Up counting mode
;Set input pre-scaler to 4
;Select internal clock
;Enable Timer Operation
;Program the counter to stop
;immediately on emulation suspend
END B END
; I SR - PHANTOM
; Description: Dummy ISR, used to trap spurious interrupts.
; Modifies: Nothing
PHANTOM B PHANTOM
GISR1 RET
GISR2 RET
GISR3 RET
GISR4 RET
GISR5 RET
GISR6 RET

To check the square wave output on the oscilloscope, the following connections

should be made-

1/0 Connector P1 on EVM

1 2 4
3 4
5 6
7 8
9 10

T1IPWM/T1CMP/IOPB4

Generating Pulse-Width Modulation outputs

A pulse width modulation signal is a fixed frequency on-off signal with variable
duty cycle. This signal plays important role in electromechanical system, especially for
electric machine drives. Recall that the duty cycle is defined as the percentage of time the
signal is high compared to the signal’s period. Figure 4.14 illustrate PWM signals with
different duty cycle. Note that a square wave is a special case of PWM signal with 50%

duty cycle.

’ duty cycle =25%

’ duty cycle =75%

’ duty cycle =50%

Figure 4.14 PWM signals
The TMS320F2407 offers a number of ways for generation of the PWM wave.

5

1. Using the general-purpose timers.
2. Using the simple compare unit.

3. Using the full compare unit.

Example 3

Write a program that generates an asymmetric PWM waveform of frequency 1 kHz at
25% duty cycle.

Period Value = CPUCLK / PRESCALER / DESIRED FREQ = 30x10’ / 1 / 1000= 30000

The main part of the code is listed below:

per_val .set 30000
cmpr_val .set 7500
SPLK #0000000001000101b, GPTCONA

* (NRRRRRRRRRANNNY

* FEDCBA9876543210
* bit 15 0: reserved
* bit 14 0: T2STAT, read-only
* bit 13 0: T1STAT, read-only
* bit 12-11 00: reserved
* bit 10-9 00: T2TOADC, 00 = no timer2 event starts ADC
* bit 8-7 00: T1TOADC, 00 = no timerl event starts ADC
* bit 6 1: TCOMPOE, 0 = Hi-z all timer compare outputs
* bit 5-4 00: reserved
* bit 3-2 01: T2PIN, 01 = active low
* bit 1-0 01: T1PIN, 01 = active low
SPLK #per_val ,T1PR ;Load period register
SPLK #cmpr_val ,TICMPR ;Load count in compare register
SPLK #0h, TI1CNT ;Set initial count=0
SPLK #1042h, T1CON ;Select Continuous-Up counting mode

;Set input pre-scaler to 1
;Select internal clock
;Enable Timer Operation
;Program the counter to stop

;immediately on emulation suspend

END B END

Measuring Period (Frequency, Speed)

The period of a repetitive signal includes both the high and low parts of the cycle.
To measure period, a program needs to capture the time of two successive rising (or
falling) edges. Below is an example program that measures the frequency of a signal. The
basic scheme is to measure the number of rising edges encountered in one second. The
rising edges are captured by the CAP1 input. The capture interrupt is enabled. Thus, the
processor is interrupted at every rising edge. The ISR for the capture interrupt increments
its counter CNT thus keeping track of the number of rising edges. The Timerl is set for a
period of 1 second and the period interrupt is enabled. This ISR stores the number of

rising edges in "FREQ" and resets the counter for rising edges CNT.

Example 4

Write a program that measures the frequency of a square wave signal at CAP1 pin.
Solution:

Count the number of input pulses in 0.25 sec. and multiply it by 4, which is the number

of pulses in 1 sec. This is right the value of frequency in Hertz.

Registers involved:

T1PR = 58594 ~ E4E2h for 0.25 second.

The calculation of the value to be loaded in T1PR is as follows-

Period Value = CPUCLK / PRESCALER / DESIRED FREQ = 30x10’ / 128 / 4 = 58594.75
CPUCLK = 30MHz.

PRESCALER = 128. This is set by bits 10-8 of TLCON.

GPTCONA =0045h

Enable Compare outputs of all GPTs. GPT1 compare output - active high
T1CON =1746h

Select continuous up counting mode, Prescaler = 128, enable timer compare operation,
enable timer operation.

MCRA =3038h

Configure pin TXPWM/TxCMP (x=1, 2) and CAP1/QEP1/I0PA3 to be primary function

CAPCONA = A040h

Bits 14-13: 01 - Enable capture units 1 and 2.

Bit 9: 0 - Select GP Timer 2 as time base for capture unit 1.
Bits 7-6: 01- Detect rising edge on capture unit 1.
CAPFIFOA =0h

This clears the capture unit FIFO initially.

EVAIMRA = 0080h

Enable timerl period interrupt

EVAIMRC =1

Enable capture unit 1 interrupt

The main part of the code is as follows:

.bss CNT,1 ;Counter for the rising edges
.bss FREQ,1 ;Measurement result

; MATN C ODE - starts here

-text
_c_int0:
NOP

;Setup the core interrupts

LDP #0h ;set data page

SPLK #0h, IMR ;clear the IMR register

SPLK #111111b, IFR ;clear any pending core
interrupts

SPLK #001010b, IMR ;enable INT2, INT4 interrupts

;Setup shared 1/0 pins

LDP #DP_PF2 ;set data page
SPLK #0011000000111000b,MCRA ;set TxPWM pins

* LLLELERLtntl

* FEDCBA9876543210

* bit 15 0: 0=10PB7, 1=TCLKINA

* bit 14 0: 0=10PB6, 1=TDIRA

* bit 13 1: 0=10PB5, 1=T2PWM/T2CMP

* bit 12 1: 0=10PB4, 1=T1PWM/T1CMP

bit
bit
bit
bit
bit
bit
bit
bit
bit
bit
bit
bit

ok Gk X o ok % X b ok X X

WAIT

i
or

OFRLNWAUITON®O

LDP
SPLK

SPLK

SPLK

SPLK
SPLK
SPLK

LDP
SPLK

LDP

SPLK

CLRC
B

0: 0=10PB3, 1=PWM6

0: 0=10PB2, 1=PWM5

0: 0=10PB1, 1=PWM4

0: 0=10PBO, 1=PWM3

0: 0=I10PA7, 1=PWM2

0: 0=10PAG, 1=PWM1

1: 0=I10PA5, 1=CAP3

1: 0=I10PA4, 1=CAP2/QEP2

1: 0=10PA3, 1=CAP1/QEP1

0: 0=I10PA2, 1=XINT1

0: 0=I10PAL, 1=SCIRXD

0: 0=I10PAO, 1=SCITXD
#DP_EVA ;set data page

#58594, T1PR

#0045h, GPTCONA

;Period=0.25 second (E4E2h)

; TIPR=30000000/128/4 for 30MHz DSP
;Enable compare outputs of all
;GPTs. GPT1 compare output "Active
;High"

#0A040h, CAPCONA ;Enable capture units 1 and 2

#0, CAPFIFOA
#0080h, EVAIMRA
#1, EVAIMRC

#CNT
#0, CNT

#DP_EVA

#1746h, T1CON

INTM
WAIT

;Select GP Timer 2 as time base for
;capture unit 1. This time base is not
;used in this program. Detect rising edge
;Clear the capture unit FIFO initially
;Enable timerl period interrupt

;Enable capture unit 1 interrupt

;Initialize the edge counter

;ENABLE GPT1
;Input clock prescalar 1/128
;Enable timer operations

;Enable maskable interrupts

ISR - GPTL1_ISR
Description:

Store the number of rising edges of input signal

every 1 second. Resets the counter which counts
the number of rising edges.

G

Modifies: FREQ, CNT

I1SR2
LDP #CNT ;Set data page
LT CNT ;Load rising edge number into TREG
MPY #4 ;Times 4 for 1 second
SPL FREQ ;Store the product as frequency
SPLK #0, CNT ;Reset rising edge counter
LDP #DP_EVA ;Set data page
SPLK #OFFFFh, EVAIFRA ;clear all EVA group A interrupts
CLRC INTM ;Enable maskable interrupts
RET ;Return from interruption

ISR - CAP1_ISR
Description: Counts the

Modifies: FREQ, CNT

number of rising edges of input signal

GISR4

LDP #CNT
LACC CNT
ADD #1
SACL CNT ;Increment the edge counter by 1
LDP #DP_EVA
SPLK #OFFFFh, EVAIFRC ;clear all EVA group C interrupts
CLRC INTM ;Enable maskable interrupts
RET ;Return from interruption
; 1 SR - PHANTOM
; Description: Dummy ISR, used to trap spurious interrupts.

* Modifies: Nothing

PHANTOM B PHANTOM
GISR1 RET

;GISR2 RET
GISR3 RET

;GISR4 RET
GISR5 RET

GISR6 RET

Example 5

Write a program that displays the number of seconds on the 4 LEDS on EVM.

Solution:
The GP timerl is set to interrupt the processor every 1ms. The ISR has 2 counters,
MSEC_CTR that counts the number of milliseconds and SEC_CTR that counts the

number of seconds and outputs the number to the LEDs.

Registers involved:

T1PR = 7500

The calculation of the value to be loaded in T1PR is as follows-

Period Value = CPUCLK / PRESCALER / DESIRED FREQ = 30x10’ / 4 / 1000 = 7500
CPUCLK = 30MHz.

PRESCALER = 4. This is set by bits 10-8 of TLCON.

GPTCONA =0h

T1CON = 1244h

Set input clock prescaler = 4, disable timer compare operation, enable timer operation.

10

The main part of the code is as follows:

LEDS .set 000Ch ;LEDs Register

;Uninitialized global variable definitions

.bss GPRO,1 ;general purpose variable
.bss MSEC _CTR,1 ;Milli-second counter
.bss SEC CTR,1 ;Second counter

; MATN CODE - starts here

.text
c_int0:
NOP

;Setup the core interrupts

LDP #0h ;set data page

SPLK #0h, IMR ;clear the IMR register

SPLK #111111b,IFR ;clear any pending core interrupts
SPLK #000010b, IMR ;enable INT2 interrupts

LDP #DP_EVA ;Set data page

SPLK #0h,GPTCONA ;GP timers are configured (no compare)
SPLK #0080h, EVAIMRA ;Enable timerl period interrupt

SPLK #7500,T1PR ;Period = 1 ms

SPLK #0h,T1CNT ;Initial value of the counter

SPLK #1244h,T1CON ;Input clock prescaler = 4

;Disable timer compare operation
;Enable timer operations

CLRC INTM ;Enable maskable interrupts
WAIT B WAIT
I SR - GISR2
; Description: Calculates the number of seconds elapsed and

accordingly outputs the numbers to the LEDs

; Modifies: MSEC_CTR, SEC_CTR

G

ISR2 LDP #MSEC_CTR ;Set data page
LACC MSEC_CTR
ADD #1
SACL MSEC_CTR ;Increment millisecond counter
SUB #1000 ;Test 1T it reaches 1000
BCND BR1,NEQ ;1 not, branch to BR1
SPLK #0, MSEC_CTR ;Else reset millisec counter
LACC SEC_CTR
ADD #1
SACL SEC_CTR ;Increment second counter

11

ouT SEC_CTR,LEDS ;Display second counter content
SUB #00Fh ;Test if It reaches its maximum
BCND BR1, NEQ ;1T not, branch to BR1
SPLK #0, SEC_CTR ;EIse reset second counter

BR1 LDP #DP_EVA ;Set data page
SPLK #0FFFFh, EVAIFRA ;clear all EVA group A interrupts
CLRC INTM ;Enable maskable interrupts
RET ;Return from interruption

; 1 SR - PHANTOM

; Description: Dummy ISR, used to trap spurious interrupts.

; Modifies: Nothing

PHANTOM B PHANTOM

GISR1 RET

;GISR2 RET

GISR3 RET

GISR4 RET

GISR5 RET

GISR6 RET

12

LABORATORY EXPERIMENT 3

TIMER OPERATIONS

Objectives

In this lab, the students will learn the operations of timer functions found in the
Event module of TMS320F2407. The timer functions covered in this lab are GP timer
compare, input capture, and pulse-width modulation functions. Students will write
programs to control the operations of these timer functions for various applications

including waveforms generations and period/frequency measurements.

Procedure

Setup

1. Make sure that the EVM system has been properly setup as in the previous lab.

2. Turnon the PC and run the EVM Testing program.

Laboratory Assignments

1. Square-wave signals generation using output compare function

Write a program for that outputs a square-wave with frequency of 2 kHz at pin
T2PWM/T2CMPR/IOPBS.

1) Compile the program and download it to the EVM.

2) Connect the pin T2PWM/T2CMPR/IOPB5 (pin 13 on connector P1) and GND (pin
33 on connector P1) to oscilloscope.

3) Run the downloaded program.

4) Verify that the signal has the desired frequency on oscilloscope.

5) Repeat step 1 to 4 above for the following square wave signal frequencies :
(@) 20 kHz
(b) 100 kHz
(c) 500 Hz

13

(d) 60 Hz

2. PWM signals generation

1)

2)
3)
4)
5)

6)

Write a program that outputs a 500 Hz PWM signal with 30% duty cycle at pin
T2PWM/T2CMPR/IOPBS.

Compile the program and download it.

Run the downloaded program.

Verify that the signal has the desired frequency and duty cycle on oscilloscope.
Change the values of the duty cycle in your program to the following:

(@) 75% (b) 50% (c) 25% (d) 10 %

and repeat step 2 to 4

Investigate the result of your program for high duty cycle PWM signals. Try
different duty cycle values which are close to 100 % and observe the results. Does
you program produce the intended results? Explain what happens when your
program tries to generate PWM signals with duty cycle close to 100%. Obtain the
maximum duty cycle your program can generate! Does your program have the

same problems when generating PWM signal with low duty cycle? Explain.

3. Period and Frequency Measurements using Capture Functions

1)

2)

3)
4)

Write a program that measures the period and frequency of a square wave signal.
Use the input capture pin CAP2 as the signal input.

Connect a square wave input from the signal generator to CAP2 (pin 22 of
connector P1) and GND (pin 33 of connector P1)

Compile, download and run your program.

Tabulate results for the following input frequencies from signal generator:

Q0 100 Hz

QO 1kHz

Q 50 Hz

14

