

 1

LABORATORY EXPERIMENT 1

LABORATORY HARDWARE AND SOFTWARE FOR THE DEVELOPMENT OF

TMS320LF2407 DSP-BASED SYSTEMS

Objectives

 The objective of this lab is to introduce the students to the hardware and software

used in the laboratory for developing TMS320LF2407 DSP-based systems. The students

will learn about the TMS320LF2407 evaluation module (EVM), and familiarize

themselves with the various development software required. At the end of this lab, the

students should be able to do the following:

 Understand the working principle of the evaluation module and explain how it can be

used to assist in the development of the DSP system.

 Become familiar with the MS-Windows based integrated development environment

IDE – Code Composer 4.12, which is used to run the various software needed

including TMS320C2000 Assembler, Compiler and Linker, TMS320C2xx C Source

debugger.

 Write simple assembly language programs, assemble and link them, download the

assembled code to the evaluation board, and execute it.

 2

Equipment Required

Hardware :

 PC Specifications -

 PC running Windows 95/98/NT/XP

 1.44Mb 3.5-inch floppy drive

 4-bit standard parallel port (SPP4)/ 8-bit bi-directional standard parallel port

(SPP8) / enhanced parallel port (EPP)

 Minimum 4Mb memory

 Color VGA Monitor

 TMS320LF2407 Evaluation Module (EVM)

 XDS510PP-Plus Emulator

 +5V power supply for the EVM, converted to 3.3V for the 2407 CPU.

 5-pin DIN connector

 DB25 connector printer cable

 Power supply adapter cable

Software :

 Windows 95/98/NT/XP

 Code Composer 4.12

EXAMPLE PROGRAM 1:

Write a program to turn on LEDs 2 and 4 with LEDs 1 and 3 off on the EVM board.

The EVM has 4 LEDs. They are mapped at address 000Ch of I/O memory space. Thus

each LED can be turned on or off by setting or clearing the corresponding bit in the

register that is mapped at 000Ch in the I/O space.

7 6 5 4 3 2 1 0 Bit No. in reg 000Ch
 LED4

(DS7)
LED3
(DS6)

LED2
(DS5)

LED1
(DS4)

 3

Thus to turn on LEDs 2and 4 the register contents should be 000Ah. Thus our task is to

write these contents to the register 000Ch in I/O space. To write to I/O space, the OUT

instruction is used.

The OUT instruction writes a 16-bit value from a data memory location to a specified I/O

location. Only direct and indirect addressing can be used for this instruction. Thus, the

data first has to be written to a register in data memory and then output to the I/O space.

The instruction to store data to a data memory register is the SPLK instruction that used.

Thus the program segment to write 000Ah to the location 000Ch is:

SPLK #000Ah, LED_STATUS ;Load value into the

 ;uninitialized register

 ;LED_STATUS

OUT LED_STATUS, LEDS ;Write the value in LEDS to

 ;address 000Ch in the I/O

 ;memory space

LED_STATUS is defined as an uninitialized register i.e 16-bits of space is reserved for it

in memory. This is similar to the concept of a variable in programming languages. The

definition of LED_STATUS is done as follows -

.bss LED_STATUS,1 ;LED Status Register

The register LEDS refers to the address 000Ch. It is defined as a symbol with constant

with the .set directive as follows. Unlike the .bss, the .set defines a memory location with

a constant/ initialized value.

LEDS .set 000Ch ;LEDs Register

A listing of the complete program is shown below:
;***
; File Name: ch2_e1.asm
; Target System: C240x Evaluation Board
; Description: This sample program helps you get familiar with
; manipulating the I/O mapped LEDS (DS4-DS7) on the
; F2407 EVM Development Board

 4

;***

;~~~
;Global symbol declarations
;~~~
 .def _c_int0,PHANTOM,GISR1,GISR2,GISR3,GISR4,GISR5,GISR6

;~~~
;Address definitions
;~~~
 .include f2407.h

LEDS .set 000Ch ;EVM LED bank (I/O space)

;~~~
;Uninitialized global variable definitions
;~~~
 .bss GPR0,1 ;general purpose variable
 .bss LED_STATUS,1 ;LED Status Register

;===
; M A I N C O D E - starts here
;===
 .text
_c_int0
 NOP
;~~~
;Configure the System Control and Status Registers
;~~~
 LDP #DP_PF1 ;set data page

 SPLK #0000000011111101b, SCSR1
* ||||||||||||||||
* FEDCBA9876543210
* bit 15 0: reserved
* bit 14 0: CLKOUT = CPUCLK
* bit 13-12 00: IDLE1 selected for low-power mode
* bit 11-9 000: PLL x4 mode
* bit 8 0: reserved
* bit 7 1: 1 = enable ADC module clock
* bit 6 1: 1 = enable SCI module clock
* bit 5 1: 1 = enable SPI module clock
* bit 4 1: 1 = enable CAN module clock
* bit 3 1: 1 = enable EVB module clock
* bit 2 1: 1 = enable EVA module clock
* bit 1 0: reserved
* bit 0 1: clear the ILLADR bit

 LACC SCSR2 ;ACC = SCSR2 register
 OR #0000000000001011b ;OR in bits to be set
 AND #0000000000001111b ;AND out bits to be cleared
* ||||||||||||||||
* FEDCBA9876543210
* bit 15-6 0's: reserved
* bit 5 0: do NOT clear the WD OVERRIDE bit
* bit 4 0: XMIF_HI-Z, 0=normal mode, 1=Hi-Z'd
* bit 3 1: disable the boot ROM, enable the FLASH
* bit 2 no change MP/MC* bit reflects the state of the MP/MC* pin
* bit 1-0 11: 11 = SARAM mapped to prog and data (default)

 SACL SCSR2 ;store to SCSR2 register

;~~~

 5

;Other setup
;~~~

;~~~
;Setup the core interrupts
;~~~
 LDP #0h ;set data page
 SPLK #0h,IMR ;clear the IMR register
 SPLK #111111b,IFR ;clear any pending core interrupts
 SPLK #000000b,IMR ;disable interrupts

;~~~
;Setup the event manager interrupts
;~~~
 LDP #DP_EVA ;set data page
 SPLK #0FFFFh, EVAIFRA ;clear all EVA group A interrupts
 SPLK #0FFFFh, EVAIFRB ;clear all EVA group B interrupts
 SPLK #0FFFFh, EVAIFRC ;clear all EVA group C interrupts
 SPLK #00000h, EVAIMRA ;disable EVA group A interrupts
 SPLK #00000h, EVAIMRB ;disable EVA group B interrupts
 SPLK #00000h, EVAIMRC ;disable EVA group C interrupts

 LDP #DP_EVB ;set data page
 SPLK #0FFFFh, EVBIFRA ;clear all EVB group A interrupts
 SPLK #0FFFFh, EVBIFRB ;clear all EVB group B interrupts
 SPLK #0FFFFh, EVBIFRC ;clear all EVB group C interrupts
 SPLK #00000h, EVBIMRA ;disable EVB group A interrupts
 SPLK #00000h, EVBIMRB ;disable EVB group B interrupts
 SPLK #00000h, EVBIMRC ;disable EVB group C interrupts

;~~~
;Enable global interrupts
;~~~
 CLRC INTM ;enable global interrupts

;~~~
;Disable the watchdog timer
;~~~
 LDP #DP_PF1 ;set data page

 SPLK #0000000011101000b, WDCR
* ||||||||||||||||
* FEDCBA9876543210
* bits 15-8 0's reserved
* bit 7 1: clear WD flag
* bit 6 1: disable the dog
* bit 5-3 101: must be written as 101
* bit 2-0 000: WDCLK divider = 1

;~~~
;Setup external memory interface for LF2407 EVM
;~~~
 LDP #GPR0 ;set current data page to
 ;the data page of variable GPR0

 SPLK #0000000001000000b, GPR0
* ||||||||||||||||
* FEDCBA9876543210
* bit 15-11 0's: reserved
* bit 10-9 00: bus visibility off
* bit 8-6 001: 1 wait-state for I/O space
* bit 5-3 000: 0 wait-state for data space
* bit 2-0 000: 0 wait state for program space

 6

 OUT GPR0, WSGR

 SPLK #000ah,LED_STATUS ;Turn on LEDs DS5, DS7
 OUT LED_STATUS,LEDS ;Turn off LEDs DS4, DS6

 ;0ah=01010b

END B END

;===
; I S R - PHANTOM and unused GISRs
;
; Description: Dummy ISR, used to trap spurious interrupts.
;
; Modifies: Nothing
;===
PHANTOM B PHANTOM
GISR1 RET
GISR2 RET
GISR3 RET
GISR4 RET
GISR5 RET
GISR6 RET

File “2407.h” in the .include line is the header file for the TMS320LF2407 processor.

It contains all peripheral register declarations as well as other useful definitions. This file

must be included for all programs.

Code from the line with lable “_c_int0” to the line of “OUT GPR0, WSGR” is used to

initialize the DSP registers and parameters, which must be included in any programs. In

the following examples in this chapter, the initialization part of the code is omitted to

save space.

EXAMPLE PROGRAM 2:

Write a program to check the status of the DIP switches and accordingly manipulate the

corresponding LEDs i.e. if DIP switch 1 is ON, turn LED1 (DS4) ON and vice versa etc.

The EVM has 4 DIP switches that are mapped at address 0008h of I/O memory space. As

mentioned earlier, the LEDs are mapped at address 000Ch. Thus, we first define these

two registers so that they can be referred to as symbols as follows:

LEDS .set 000Ch ;LEDs Register

SWITCHES .set 0008h ;DIP SWITCH Register

 7

The first task is to read the status of the DIP switches. This is done using the IN

instruction. The status is read into a register DIP_STATUS which is defined as an

uninitialized variable. To write this data to the I/O space assigned to the LEDs, the OUT

instruction is used. The relevant code segment is as follows:

.bss DIP_STATUS,1 ;DIP SWITCH Register

IN DIP_STATUS, SWITCHES ; Get the status of each DIP

 ; switch status

OUT DIP_STATUS, LEDS ; Turn LEDs on/off depending

 ; on status of corresponding

 ; switch

To run the program, do the following:

Assemble, link and load the program as described earlier. Adjust the DIP switches such

that switched 1 and 3 are ON and switches 2 and 4 are OFF. Now press the F5 key to run

the program. If the execution is successful, LEDs DS4 and DS6 will be ON and DS5 and

DS7 will be OFF.

EXAMPLE PROGRAM 3:

Write a program to add 2 numbers that are stored as uninitialized variables.

We will use the ADD instruction with the direct addressing in this example. Let the

variables to be added, be initialized as 'var1' and 'var2'. The ADD instruction adds the

contents of a register to the contents of the accumulator and stores the result in the

accumulator. The relevant code segment is:

.bss var1,1

.bss var2,1

SPLK #0002h,var1 ;Store a value 2h in var1

 8

SPLK #0003h,var2 ;Store a value 3h in var2

LACC var1 ;Load contents of var1 in

 ;accumulator

ADD var2 ;Add contents of var2 to

 ;contents of accumulator.

 ;Store results in accumulator

Running the program:

Assemble, link and load the program. To check the program, the values of var1, var2 and

accumulator need to be checked. The CPU window of the debugger shows the contents of

the accumulator (ACC). To observe the values of var1 and var2, open the watch window

of Code Composer with the following command:

wa *var1 ↵

wa *var2 ↵

wa is the command to add a variable in the watch window. The * tells the debugger that

it is the data value of the variable that you wish to observe. If the * is omitted, then the

debugger keeps a watch on the address of the variable rather than its value. A detailed

discussion of the various debugger commands can be found in the appendix to this

chapter.

Now run the program by pressing the F5 key. Now observe the contents of the

accumulator and variables. For successful execution of the program the following values

are expected:

ACC 0x0005

var1 0x0002

var2 0x0003

EXAMPLE PROGRAM 4:

Write a program to add two numbers stored at specific memory locations. Store the result

in a third memory location. All these memory locations should be on the external

SARAM.

 9

Refer the memory map of the EVM as shown in Figure 11. The address range for

SARAM is 8000h - FFFFh. Let us select the addresses 8000h, 8002h and 8004h for this

program. The first task is to define symbols for these memory locations - var1, var2 and

res. When we use direct addressing, the address is formed with the 9 MSBs taken from

the data pointer and the 7 LSBs are taken from the operand of the instruction. This break-

up is as shown below-
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 var1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 var2

1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 res

 9 LSBs of Data Pointer Symbol address

Thus the DP value will be 0100h. The relevant code is:

var1 .set 0000h

var2 .set 0002h

res .set 0004h

 LDP #0100h ;Load Data Pointer

 LACC var1 ;Load value of var1 in accumulator

 ADD var2

 SACC res ;Store result in res i.e. memory

 ;location 8004h

Run the program. The checking of variables can be done by checking the memory

window in Code Composer: Menu->View->Memory->Address=0x8000.

EXAMPLE PROGRAM 5:

Write a program to multiply two numbers. Both the numbers are stored in memory

location in the SARAM.

 10

Let the memory locations be 8000h and 8002h. For the multiply instruction, the

multiplicand needs to be in the TREG and the result is stored in PREG. Accordingly the

relevant code is:

 mtplr .set 0000h

 mtplcnd .set 0002h

 LDP #0100h

 SPLK #0002h,mtplr

 SPLK #0003h,mtplcnd

 LT mtplcnd ;Load multiplicand into TREG

 MPY mtplr ;Multiply contents of TREG

 ;with multiplier

To view the contents of TREG and PREG, check the CPU window of the debugger. The

values of mtplr and mtplcnd can be checked with the wa command. The contents should

be:

 After Instruction

8000h / mtplr 0x0002

80002h/mtplcnd 0x0003

TREG 0x0003

PREG 0x00000006

EXAMPLE PROGRAM 6:

Check the value of a temporary register TEMP. If TEMP = 1, add the contents of var1

and var2. Store the result in res. If TEMP=2, subtract contents of var2 from var1 and

store result in res. For any other value of TEMP, multiply the contents of var1 and var2

and store result in res.

The purpose of this example is to introduce conditional .if/.elseif/.else/.endif directives.

The relevant code is:

 11

 TEMP .set 1

 var1 .set 000eh

 var2 .set 000fh

 res .set 0010h

 one .set 1

 two .set 2

 LDP #0100h

 SPLK #0005h,var1

 SPLK #0002h,var2

lbl_if: .if TEMP = one

 LACC var1

 ADD var2

 SACL res ;res = var1 + var2

 .elseif TEMP = two

 LACC var1

 SUB var2

 SACL res ;res = var1 - var2

 .else

 LT var1

 MPY var2

 SPL res ;res = var1 * var2

 .endif

EXAMPLE PROGRAM 7:

Write a program to increment a variable 10 times.

The main purpose of this program is to introduce the .loop/.break/.endloop directive.

The relevant code is:

 .bss ctr,1

 .bss var,1

 12

 SPLK #0,var

 .eval 0,ctr ;Set counter = 0

lbl .loop

 LACC #1

 ADD var

 SACL var ;var = var + 1

 .eval ctr+1,ctr ;Increment counter

 .break ctr=10 ;If counter=10, exit loop

 .endloop

Since the initial value of var is 0, the value of var after the completion of the program

will be 10 or 000Ah.

EXAMPLE PROGRAM 8:

Write a program to turn on the LEDs DS7 to DS4, one after the other.

The purpose of this program is to introduce the bit-shift operation. The Shift Right SFR

instruction will be employed. The key part of the code is listed below with infinite

iteration.

LEDS .set 000ch ; Address of LEDs

 .bss ctr,1 ; LED number counter

 .bss LED_STATUS,1 ; LED status

 .bss RPT_NUM,1 ; for delay subroutine

 .bss mSEC,1 ; for delay subroutine

strt SPLK #0080h,LED_STATUS

 .eval 0,ctr ; Set counter = 0

lbl .loop

 OUT LED_STATUS,LEDS ; Turn on LEDs

 ; based on status

 LACC LED_STATUS ; Load status into ACC

 SFR ; Shift right ACC

 SACL LED_STATUS ; Update LED status

 CALL mS_DELAY ; Delay for 1 sec

 13

 .eval ctr+1,ctr ; Increment counter

 .break ctr=8 ; If counter=8, exit loop

 .endloop

 B strt ; Repeat shifting

 ; from beginning

END B END

;===

; Subroutine: mS_DELAY,

; Discription: implement a delay of approximately 1 sec

;===

mS_DELAY: LDP #RPT_NUM ; Set data page

 LACC #6000 ; Load repeat number

 SACL RPT_NUM ; Store repeat number

 SPLK #5000,mSEC ; Initialize loop counter

mS_LOOP:

 RPT RPT_NUM ; Repeat next instruction

 NOP ; 4000 cycles = 0.2ms

 LACC mSEC ; Load value of counter

 SUB #1 ; Decrement ACC

 SACL mSEC ; Update loop counter

 BCND mS_LOOP,NEQ

 ; Jump to mS_LOOP

 ; if not zero

 RET ; Return

Look-up tables play a very important role in any programming language. In the next few

examples, we shall see how to access data from a look-up table, how to write data in

tabular form etc.

EXAMPLE PROGRAM 9:

Write a program that reads data from the program memory and writes it to the address

8000h of external data memory. The total number of words written is 10.

The TBLR instruction allows a word from a location in program memory to be

transferred to a specific location in data memory. We will use this instruction in order to

achieve the above objective. The table in program memory is defined as TABLEA and

the destination table in data memory is defined as TABLEB. A counter (CTR) is setup in

 14

order to transfer 10 words. The BNZ (Branch if ACC > 0) conditional branch is maintains

the loop for 10 word transfer. The key part of the program is as below -

TABLEB .set 8000h ;Starting address of the

 ;destination table

COUNT .set 10 ;Defines the number of entries

 ;in the table

 .bss SRCTBL,1

 .bss CNT,1

 LACC #COUNT

 SACL CNT ;Store the no. of data entries

 ;in CNT

 LARP 1 ;Select AR1 as the current AR

 LDP #SRCTBL ;Set data page

 LAR AR1,#TABLEB ;Load the starting address of

 ;the destination table in AR1

 LACC #TABLEA

 SACL SRCTBL ;Point the data pointer SRCTBL

 ;to the top of the source data LOOP

 LACC SRCTBL

 TBLR *+ ;Read the value from the table

 ;and store the destination

 ;table. Increment AR1 to point

 ;to the next address in the

 ;destination table

 ADD #1

 SACL SRCTBL ;Increment source data pointer

 LACC CNT

 SUB #1

 SACL CNT ;Decrement loop count

 BNZ LOOP ;Continue if CNT > 0; i.e.

 ;until the end of the source

 ;data table is reached.

END B END ;End Program

;---

; Data look-up table

; No. Entries : 10

;---

TABLEA .word 0

 15

 .word 1h

 .word 2h

 .word 3h

 .word 4h

 .word 5h

 .word 6h

 .word 7h

 .word 8h

 .word 9h

To check this program, open a memory window in Code Composer as mentioned before.

EXAMPLE PROGRAM 10:

Write a program that reads data from a location in data memory (8310h) and writes it to

another location in data memory (8410h). The total number of words written is 10.

The BLDD instruction allows a word in data memory pointed to by source to be copied

into another data memory location pointed by destination. The various addressing modes

allowed for this instruction are -

BLDD #lk, dma

BLDD #lk,ind[, ARn]

BLDD dma, #lk,

BLDD ind, #lk [, ARn]

In this example, we'll use the BLDD #lk,ind[, ARn] mode. The RPT instruction is

employed to repeat the transfer 10 times. The number of words to be transferred is stored

in the RPTCNT. When the BLDD instruction is repeated, the source address specified by

the long immediate constant is stored in the PC. Since, the PC is incremented after every

repetition, the source address is also incremented. In case of the destination, the auto-

increment option of indirect addressing is used. The key part of the code listing is given

below-

TABLEA .set 8310h ;Starting address of the

 ;source table

TABLEB .set 8410h ;Starting address of the

 ;destination table

 16

RPTCNT .set 10 ;Defines the number of entries

 ;in the table

 LARP 1 ;Select AR1 as the current AR

 LDP #0100h ; DP for addresses 8000h-807Fh

 LAR AR1,#TABLEB ;Load the starting address of

 ;the destination table in AR1

 RPT #COUNT ;Perform the following

 ;operation 10 times

 BLDD #TABLEA,*+ ;Transfer data from TABLEA to

 ;TABLEB. After the

 ;instruction, pointers to data

 ;in both the tables are

 ;incremented.

END B END ;End Program

Laboratory Assignments

1. Read and run all the example programs. Draw flow charts for all the programs

with reasonable details.

2. Write a program to turn on the LEDs from DS1 to DS8 or inversely, one after the

other and repeat for N (N<8) times (cycles). Use DIP switches to set the value of

N. If a variable TEMP=0, turn on the LEDs form DS1 to DS8, otherwise, reverse

the sequence. Use assembler directives and branch instructions to control the

flow.

3. Write a program to store integer vector A=[1, …, 9]T into data memory starting

from address 8000h and integer vector B=[9, …, 1]T into data memory starting

from address 8100h. Then compute the inner product of these two vectors (ATB)

and store the result in 8200h. (Hint: use indirect addressing mode)

