
 1

Assembly Language Warm up

Addressing Modes

The 3 addressing modes used by the TMS320LF2407 instruction set are -

Immediate Addressing Mode

Direct Addressing Mode

Indirect Addressing Mode

Immediate Addressing Mode

In this mode, the instruction word contains a constant to be manipulated by the

instruction. There are 2 types of immediate addressing mode:

Short immediate addressing - Instructions that use this mode take an 8-bit, 9-bit or 13-bit

constant as an operand. These instructions require a single word with the constant

embedded in that word.

Example 2.1:

Long immediate addressing - Instructions that use long-immediate addressing take a 16-

bit constant as an operand and require two instruction words. The constant is sent in the

second instruction word. This 16-bit value can be used as an absolute constant or as a 2's

complement value.

Example 2.2:

Direct Addressing Mode

In this mode, the data memory is addressed in blocks of 128 words called data pages.

Thus the entire 64K of data memory can be addressed by 512 pages, which are labeled

from 0 to 511 (000000000b to 111111111b). The value in the 9-bit data page pointer

LACC #99 ; Load the number 99 into the accumulator

ADD #16384,2 ; Shift the value 16384 left by two bits

; and add the result to the accumulator

 2

(DP) in the status register ST0 determines the current data page. The particular being

referenced within a page is determined by a 7-bit offset, which is specified by the seven

LSBs of the instruction register.

When using the direct addressing mode, the steps to be followed are-

1. Set the data page - Load the appropriate value between 0-511 in the DP register using

the LDP instruction. For example, to set the current data page to 2 i.e. addresses

0100h-017Fh the following instruction should be used -

2. Specify the Offset - Supply the 7-bit offset as an operand of the instruction. For

example, if you want to use the ADD instruction for the second value in the current

page, the command is

Indirect Addressing Mode

As mentioned earlier, the eight auxiliary registers (AR0-AR7) are employed for indirect

addressing. The address of the operand is contained in the currently selected auxiliary

register. A specific auxiliary register is selected by loading a 3-bit value in the auxiliary

register pointer (ARP) of the status register ST0. The register pointed to by the ARP is

referred to as the current auxiliary register or the current AR. The data address (i.e.

contents of AR) is passed either to the data-read bus or data-write bus by the ARAU

depending on the instruction. The ARAU performs arithmetic operation on the contents

of the AR during the decode phase depending upon the mode of addressing used in the

instruction.

There are seven indirect addressing modes:

Operand Option Example

* No increment or decrement LT* loads the temporary

register (TREG) with the

contents of the data memory

LDP #2 ; Initialize data page pointer

ADD 1h ; Add to accumulator the value in the current

; data page, offset of 1

 3

address referenced by the

current AR.

*+ Increment by 1 (Auto-

increment)

LT*+ loads the temporary

register (TREG) with the

contents of the data memory

address referenced by the

current AR and then adds 1

to the contents of the

current AR.

*- Decrement by 1 (Auto-

decrement)

LT*- loads the temporary

register (TREG) with the

contents of the data memory

address referenced by the

current AR and then

subtracts 1 to the contents

of the current AR.

*0+ Increment by index amount

(Post-indexing by adding

contents of AR0)

LT*0+ loads the temporary

register (TREG) with the

contents of the data memory

address referenced by the

current AR and then adds

the contents of AR0 to the

contents of the current AR

*0- Decrement by index amount

(Post-indexing by

subtracting contents of

AR0)

LT*0- loads the temporary

register (TREG) with the

contents of the data memory

address referenced by the

current AR and then

subtracts the contents of

AR0 from the contents of

the current AR

 4

*BRO+ Increment by index amount,

adding with reverse carry

(used in FFTs)

LT *BRO+ loads the

temporary register (TREG)

with the contents of the data

memory address referenced

by the current AR and then

adds the content of AR0 to

the content of the current

AR, adding with reverse

carry propagation

*BRO- Decrement by index

amount, subtracting with

reverse carry

(used in FFTs)

LT *BRO- loads the

temporary register (TREG)

with the contents of the data

memory address referenced

by the current AR and then

subtracts the content of

AR0 to the content of the

current AR, subtracting

with reverse carry

propagation

Many instructions also specify a value of next AR, in addition to the current AR. This is

current AR after the instruction is complete. Then the APR is loaded with the value of

next AR, the previous value is loaded into the auxiliary register pointer buffer (ARB).

Modifying the Auxiliary Register Content

The LAR, ADRK, SBRK and MAR are specialized instructions for changing the contents

of an auxiliary register.

 The LAR instruction loads an AR.

 The ADRK instruction adds an immediate value to an AR; SBRK subtracts an

immediate value.

 5

 The MAR instruction can increment or decrement an AR value by 1 or by an index

amount.

Assembly Language Instructions

Before we start with the instruction set, here are a few tips on how to use the instruction

descriptions.

Syntax

The notations used in the syntax expressions are -

italic Italic symbols in an instruction syntax represent variables.

symbols Example : For the syntax

 ADD dma

 Any value can be used for dma such as

 ADD DAT, ADD 21 etc.

boldface Boldface characters in an instruction syntax must be typed as shown

characters Example : For the syntax

 ADD dma , 16

 A variety of values may be used for dma, but ADD and 16 must be typed

 shown. ADD 7h, 16 or ADD X, 16

[,x] Operand x is optional

 Example : For the syntax

 ADD dma, [,shift]

 dma must be supplied as in the instruction:
 ADD 7h

 There is an option to provide a shift value as in the instruction:
 ADD 7h, 5

[,x1 [,x2]] Operands x1 and x2 are optional. However, x2 cannot be included without

including x1.

 6

 Example : For the syntax

 ADD ind, [,shift[,ARn]]

 ind has to be supplied as in the instruction
 ADD *+

 Including of shift in the instruction is optional.
 ADD *+, 5

 Once the shift is included, you have an option of including ARn too
 ADD *+, 5 ,AR1

The # is a prefix for constants used in immediate addressing.

 Example :

 RPT #15 causes the next instruction to be repeated 16 times

RPT 15 causes the next instruction to be repeated a number of times

determined by the value in that memory location.

The instruction set summary is attached. As we progress through the various chapters, the

relevant instructions will be discussed in detail.

The assembly language source files are translated into machine language COFF (common

object file format) files. Apart from the various instructions discussed above, the source

files also contain assembler directives, which control various aspects of the assembly

process such as source listing format, data alignment listing and section content. A source

statement can contain four ordered fields and has the general syntax as follows ;

[label] [:] mnemonic [operand list] [;comment]

Example:

SYM1 .set 2 ;Set SYM1 = 2

Start: LDPK SYM1 ;Load DP with 2

Label Field : A label can contain up to 32 alpha-numeric characters, should not begin

with a number and is case-sensitive. The value of a label is the current value of the

section program counter. The section program counter (SPC) represents the current

 7

address within a section of code or data. Thus in the example, Start points to the

instruction LDPK SYM1.

Mnemonic Field: The mnemonic field can contain machine instructions (LDPK in

example above) or assembler directives (.set in example above). This field should not

start in column 1 or it will be interpreted as a label.

Operand Field: This is the list of operands that follow the mnemonic field. An operand

can be a constant, a symbol or a combination of the two depending on the mnemonic

preceding it.

Comment Field: A comment can begin in any column and extends to the end of the

source line. A comment can contain any ASCII character. Comments are printed in the

assembly source listing, but do not affect the assembly.

Assembler Directives

A summary of the various assembler directives is attached. The most commonly used

directives will be discussed in this chapter.

Directives that define sections

The smallest unit of an object file is called a section. A section is a block of data or code

that occupies a contiguous space in the memory map. COFF files have three default

sections:

.text section usually contains executable code

.data section usually contains initialized data

.bss section usually reserves space for uninitialized variables

There are 2 basic types of sections-

Initialized sections contain data or code. .text and .data sections and named

section created with the .sect directive lie in this category.

 8

Uninitialized sections reserve space in the memory map for uninitialized data.

.bss sections and named sections created with the .usect

directive lie in this category

Since all sections are independently relocatable, they enable efficient use of the target

memory since any section can be placed in any allocated block of target memory. This

partitioning of memory into logical blocks is illustrated in the figure below.

The assembler has 6 directives for handling sections-

 .bss

 .usect

 .text

 .data

 .sect

 .asect

The .bss and. usect create uninitialized sections while the others create initialized

sections. If no directive is used, the assembler assembles everything into the .text

directive.

Uninitialized sections-

These reserve space in the RAM, which the program can use at runtime for creating and

storing variables. The syntax for the relevant directives is:

 .bss symbol, size in words [blocking flag]

Initialized
Program Memory

Uninitialized
Data Memory

on-chip

ROM

on-chip

ROM

.data

.text

.bss

on-chip
RAM

Object File

 9

symbol .usect "section name", size in words, [blocking flag]

symbol This corresponds to the name of the variable for which the space is being

reserved. It can be referenced by any other section and can also be

declared as global.

size in words It is an absolute value which determines the words to be reserved in the

section.

blocking flag This is an optional parameter. If a value greater than 0 is specified, the

assembler associates size words contiguously; the allocated space will not

cross a page boundary, unless size is greater than a page in which case the

object will start on a page boundary.

section name This is a 8 character name that tells the assembler what named section to

reserve space in. A named section is created by the user and can be used

like the default .test, .data and .bss sections except that they are assembled

separately.

Initialized sections-

These contain executable code or initialized data. The contents of these sections are

stored in the object file and placed in the device memory where the program is stored.

The syntax for the relevant directives is:

.text

.data

.sect "section name"

.asect "section name" , address

When the assembler encounters any of these directives, it stops assembling in the current

section and assembles the subsequent code into the designated section until it again

encounters any of the above 4 directives. It is important to note here that the .bss and the

 10

.usect directives do not end the current section or begin a new one. They merely reserve

the specified amount of space and the assembler resumes assembly of code or data in the

current section.

Example:

 .text

 .word 1,2 ; Initialize words with values 1

 ; and 2 in the .text section

 .sect "sect1"

 .word 3,4 ; Initialize words with values 3

 ; 4 in the named section sect1.

 .data

 .word 5,6 ; Initialize words with values 1

 ; and 2 in the .data section

.bss sym,20 ;Reserve 20 words in .bss

.word 7,8 ;Initialize words with values 7

 ;and 8 in the .data section

.text ;Resume assembly in .text sect

usym .usect "sect2", 25 ; Reserve 20 words in named

 ; section sect2

 .word 9,10 ; Initialize words with values 9

 ; and 10 in the .text section
Directives that initialize constants

The various directives that assemble values for the current section are as follows:

.word places one or more consecutive 16-bit values into words of the current

section

.int same as .word

.byte places one or more consecutive 8-bit values into words of the current

section

.string similar to .byte, except that two characters are packed into each word.

 11

.field places a specified value into a specified number of bits in the current

word.

 The assembler does not increment the SPC until the entire word is filled.

Example:

15 2 1 0
 0 1 0

15 8 7 6 5 4 3
 0 0 1 0 0 0 0 1 0

15 13 12 11 10 9
 1 0 0 0 0 0 0 1 0 0 0 0 1 0

.space reserves a specified no. of bits in the current section(i.e. fills them with 0s)

When a label is used with this directive, it points to the first word that

contains the reserved bits.

.bes reserves a specified no. of bits in the current section(i.e. fills them with 0s)

 When a label is used with this directive, it points to the last word that

contains the reserved bits.

Example:

Lbl1: .space 15

 .word 20

Lbl2: .bes 10

 .word 30

.float calculates the single-precision 32-bit ieee floating-point representation of a

single floating-point value and stores it n two consecutive words in the

current section

3 bits

.field 2,3

.field 8,6

5 bits

.field 16,5

15 bits
reserved

10 bits
reserved

Lbl1

Lbl2

 12

.bfloat same as .float except that it guarantees the object will not span a page

boundary.

.long places 32-bit values into consecutive two-word blocks in the current

section current.

.blong same as .long except that it guarantees that the object will not span the

page boundary

 Directives that align the section program counter

.align Aligns the SPC at a 128-word boundary thus ensuring that the code

following this directive begins on a new page boundary.

.even Aligns the SPC so that it points to the next full word. This can be used

after a .field directive. If the .field directive does not fill the word, the

.even directive fills the unused bits with 0s.

Conditional Assembly Directives

The .if/.elseif/.else/.endif directives tell the assembler to conditionally assemble a block

of code.

.if expression marks the beginning of a conditional block and assembles code if

the .if condition is true

.elseif expression marks a block of code to be assembled if the .if condition is false

and the .elseif condition is true

.else marks the block of code to be executed to be assembled if the .if

condition is false

.endif marks the end of a conditional block and terminates the block

Example:

var1 .set 2

 13

var2 .set 3

var3 .set 6

lbl_if : .if var3 = var1 * var2 ;Set the value equal

;to var1*var2

 .byte var3

 .else

 .byte var1*var2

 .endif

The .loop/.break/.endloop directives make the assembler repeatedly assemble a block of

code according to the evaluation of a particular expression.

.loop expression marks the beginning of a repeatable block of code

.break expression tells the assembler to repeatedly assemble the block of code if the

expression is false and to jump to the code immediately after the

.endloop in case the expression is false.

.endloop marks the end of a repeatable block.

Example:

 .eval 0,x ; Set x=0. Initialize count

loop1: .loop

 .word x*100 ; store x*100 at the current

; location

 .eval x+1,x ; Increment x i.e count

 .break x=6 ; If x=6 quit else goto loop1

 .endloop ; the word has a value 500

;when program quits the loop

Miscellaneous Directives

.asg assigns a character string to a substitution symbol. The value is stored in

the substitution symbol table so that whenever the assembler encounters

this symbol, it substitute it with the character string. Substitution symbols

can be redefined

 14

Example:

 .asg "1, 2, 3, 4, 5", char_sym

.set sets a constant value to a symbol and cannot be redefined.

Example:

bval .set 0020h

.equ same as .set

.global a symbol defined as global in a current module allows it to be accessed

from an external module. If the symbol is not defined in an external

module, then the current module can access it by defining it as global.

.end it is optional and terminates assembly. It should be the last source

statement of a program.

