EE341 Homework #8 Solutions

- 7-2 A 220-V three-phase six-pole 50-Hz induction motor is running at a slip of 3.5 percent. Find:
 - (a) The speed of the magnetic fields in revolutions per minute
 - (b) The speed of the rotor in revolutions per minute
 - (c) The slip speed of the rotor
 - (d) The rotor frequency in hertz

SOLUTION

(a) The speed of the magnetic fields is

$$n_{\text{sync}} = \frac{120 f_e}{P} = \frac{120 (50 \text{ Hz})}{6} = 1000 \text{ r/min}$$

(b) The speed of the rotor is

$$n_m = (1 - s) n_{\text{sync}} = (1 - 0.035)(1000 \text{ r/min}) = 965 \text{ r/min}$$

(c) The slip speed of the rotor is

$$n_{\text{slip}} = s n_{\text{sync}} = (0.035)(1000 \text{ r/min}) = 35 \text{ r/min}$$

(d) The rotor frequency is

$$f_r = \frac{n_{\text{slip}}P}{120} = \frac{(35 \text{ r/min})(6)}{120} = 1.75 \text{ Hz}$$

7-4. A three-phase 60-Hz induction motor runs at 715 r/min at no load and at 670 r/min at full load.

- (a) How many poles does this motor have?
- (b) What is the slip at rated load?
- (c) What is the speed at one-quarter of the rated load?
- (d) What is the rotor's electrical frequency at one-quarter of the rated load?

SOLUTION

(a) This machine has 10 poles, which produces a synchronous speed of

$$n_{\text{sync}} = \frac{120 f_e}{P} = \frac{120(60 \text{ Hz})}{10} = 720 \text{ r/min}$$

(b) The slip at rated load is

$$s = \frac{n_{\text{sync}} - n_m}{n_{\text{sync}}} \times 100\% = \frac{720 - 670}{720} \times 100\% = 6.94\%$$

(c) The motor is operating in the linear region of its torque-speed curve, so the slip at $\frac{1}{4}$ load wil s = 0.25(0.0694) = 0.0174

The resulting speed is

$$n_m = (1 - s) n_{\text{sync}} = (1 - 0.0174)(720 \text{ r/min}) = 707 \text{ r/min}$$

(d) The electrical frequency at 1/4 load is

$$f_r = sf_e = (0.0174)(60 \text{ Hz}) = 1.04 \text{ Hz}$$

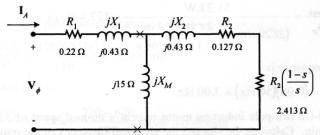
7-7. A 208-V four-pole 60-Hz Y-connected wound-rotor induction motor is rated at 15 hp. Its equivalent circuit components are

$$R_1 = 0.220 \ \Omega$$
 $R_2 = 0.127 \ \Omega$ $X_M = 15.0 \ \Omega$ $X_1 = 0.430 \ \Omega$ $X_2 = 0.430 \ \Omega$ $P_{\text{mech}} = 300 \ \text{W}$ $P_{\text{misc}} \approx 0$ $P_{\text{core}} = 200 \ \text{W}$

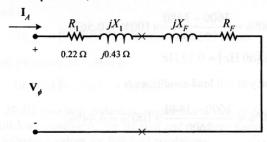
For a slip of 0.05, find

- (a) The line current I_L
- (b) The stator copper losses $P_{\rm SCL}$
- (c) The air-gap power P_{AG}
- (d) The power converted from electrical to mechanical form $P_{\rm conv}$
- (e) The induced torque τ_{ind}
- (f) The load torque τ_{load}
- (g) The overall machine efficiency
- (h) The motor speed in revolutions per minute and radians per second

SOLUTION The equivalent circuit of this induction motor is shown below:



(a) The easiest way to find the line current (or armature current) is to get the equivalent impedance Z_F of the rotor circuit in parallel with jX_M , and then calculate the current as the phase voltage divided by the sum of the series impedances, as shown below.



The equivalent impedance of the rotor circuit in parallel with jX_M is:

$$Z_F = \frac{1}{\frac{1}{jX_M} + \frac{1}{Z_2}} = \frac{1}{\frac{1}{j15\Omega} + \frac{1}{2.54 + j0.43}} = 2.337 + j0.803 = 2.47 \angle 19^{\circ}\Omega$$

The phase voltage is $208/\sqrt{3} = 120 \text{ V}$, so line current I_L is

$$I_{L} = I_{A} = \frac{V_{\phi}}{R_{1} + jX_{1} + R_{F} + jX_{F}} = \frac{120 \angle 0^{\circ} \text{ V}}{0.22 \Omega + j0.43 \Omega + 2.337 \Omega + j0.803 \Omega}$$

$$I_{L} = I_{A} = 42.3 \angle -25.7^{\circ} \text{ A}$$

(b) The stator copper losses are

$$P_{\text{SCL}} = 3I_A^2 R_1 = 3(42.3 \text{ A})^2 (0.22 \Omega) = 1180 \text{ W}$$

(c) The air gap power is $P_{AG} = 3I_2^2 \frac{R_2}{s} = 3I_A^2 R_F$

(Note that $3I_A^2R_F$ is equal to $3I_2^2\frac{R_2}{s}$, since the only resistance in the original rotor circuit was R_2/s ,

and the resistance in the Thevenin equivalent circuit is R_F . The power consumed by the Thevenin equivalent circuit must be the same as the power consumed by the original circuit.)

$$P_{AG} = 3I_2^2 \frac{R_2}{s} = 3I_A^2 R_F = 3(42.3 \text{ A})^2 (2.337 \Omega) = 12.54 \text{ kW}$$

(d) The power converted from electrical to mechanical form is

$$P_{\text{conv}} = (1 - s)P_{AG} = (1 - 0.05)(12.54 \text{ kW}) = 11.92 \text{ kW}$$

(e) The induced torque in the motor is

$$\tau_{\text{ind}} = \frac{P_{\text{AG}}}{\omega_{\text{sync}}} = \frac{12.54 \text{ kW}}{\left(1800 \text{ r/min}\right) \left(\frac{2\pi \text{ rad}}{1 \text{ r}}\right) \left(\frac{1 \text{ min}}{60 \text{ s}}\right)} = 66.5 \text{ N} \cdot \text{m}$$

(f) The output power of this motor is

$$P_{\text{OUT}} = P_{\text{conv}} - P_{\text{mech}} - P_{\text{core}} - P_{\text{misc}} = 11.92 \text{ kW} - 300 \text{ W} - 200 \text{ W} - 0 \text{ W} = 11.42 \text{ kW}$$

The output speed is

$$n_{\text{ne}} = (1 - s) n_{\text{sync}} = (1 - 0.05) (1800 \text{ r/min}) = 1710 \text{ r/min}$$

Therefore the load torque is

$$\tau_{\text{load}} = \frac{P_{\text{OUT}}}{\omega_m} = \frac{11.42 \text{ kW}}{\left(1710 \text{ r/min}\right) \left(\frac{2\pi \text{ rad}}{1 \text{ r}}\right) \left(\frac{1 \text{ min}}{60 \text{ s}}\right)} = 63.8 \text{ N} \cdot \text{m}$$

(g) The overall efficiency is

$$\eta = \frac{P_{\text{OUT}}}{P_{\text{IN}}} \times 100\% = \frac{P_{\text{OUT}}}{3V_{\phi}I_{A}\cos\theta} \times 100\%$$

$$\eta = \frac{11.42 \text{ kW}}{3(120 \text{ V})(42.3 \text{ A})\cos 25.7^{\circ}} \times 100\% = 83.2\%$$

(h) The motor speed in revolutions per minute is 1710 r/min. The motor speed in radians per second is $\omega_m = \left(1710 \text{ r/min}\right) \left(\frac{2\pi \text{ rad}}{1 \text{ r}}\right) \left(\frac{1 \text{ min}}{60 \text{ s}}\right) = 179 \text{ rad/s}$