

The Ohio State University Department of Electrical Engineering

EE 341

Energy Conversion Homework Set # 8

Print Your Name

Solve the following problems:

1. 7-2, 7-4 (page 443), and 7-7 (page 444)

- 7-2 A 220-V three-phase six-pole 50-Hz induction motor is running at a slip of 3.5 percent. Find:
 (a) The speed of the magnetic fields in revolutions per minute
 - (b) The speed of the rotor in revolutions per minute
 - (c) The slip speed of the rotor
 - (d) The rotor frequency in hertz
- 7-4. A three-phase 60-Hz induction motor runs at 715 r/min at no load and at 670 r/min at full load.
 (a) How many poles does this motor have?
 - (b) What is the slip at rated load?
 - (c) What is the speed at one-quarter of the rated load?
 - (d) What is the rotor's electrical frequency at one-quarter of the rated load?

7-7.)

A 208-V four-pole 60-Hz Y-connected wound-rotor induction motor is rated at 15 hp. Its equivalent circuit components are

$R_1 = 0.220 \ \Omega$	$R_2 = 0.127 \ \Omega$	$X_M = 15.0 \ \Omega$
$X_1 = 0.430 \ \Omega$	$X_2 = 0.430 \ \Omega$	
$P_{\rm mech} = 300 \ {\rm W}$	$P_{\rm misc} pprox 0$	$P_{\rm core} = 200 \ { m W}$

For a slip of 0.05, find

- (a) The line current I_L
- (b) The stator copper losses P_{SCL}
- (c) The air-gap power P_{AG}

(d) The power converted from electrical to mechanical form P_{conv}

(e) The induced torque τ_{ind}

(f) The load torque τ_{load}

(g) The overall machine efficiency

(h) The motor speed in revolutions per minute and radians per second