EE341 - Course Notes Electric Circuit Analysis

Homework No. 1

Instructor: Ali Keyhani

Homework No. 1

1. The operation of AC machines (in particular, transformers and induction machines) can be studied with the aid of the T-Circuit shown below.

Homework No. 1

Several parameter sets are given in the table below. Your solutions should be summarized in a table in format as shown below. Use polar form for all complex number. Show your calculations separately.

Set	V_{1}	$\mathrm{~V}_{2}$	I_{1}	I_{2}	I_{f}
Example 1	$2700 \angle 22^{\circ}$	-	$10 \angle-39^{\circ}$	$10 \angle-39^{\circ}$	0
Example 2	-	$23 \angle-54.6^{\circ}$	$259.4 \angle-54.6^{\circ}$	$259.4 \angle-54.6^{\circ}$	$23 \angle-55^{\circ}$

(Example solution)

Homework No. 1

Practice all cases.

Only cases with parametes sets $1,2,4$, and 11 will be graded.
Write a Matlab program to solve case 11.

S	Z_{1}		$\mathrm{Z}_{\phi} \quad$ Parallel		Z_{2}		Z_{L}		V1	V2	I_{1}	I_{2}	I_{f}
T	R_{1}	L_{1}	R_{f}	L_{m}	$\mathbf{R}^{\prime}{ }_{2}$	$\mathrm{L}^{\prime}{ }_{2}$	\mathbf{R}_{L}	L_{L}					
1	1	0.01	10000	8	1	0.01	Open Circuit		$\begin{aligned} & 480 \angle \\ & 0^{\circ} \end{aligned}$?	?	?	?
2	1	0.01	10000	8	1	0.01	200	0	$\begin{aligned} & 480 \angle \\ & 0^{\circ} \end{aligned}$?	?	?	?
3	0.02	0.00265	Open Circuit		0	0	Open Circuit		$1 \angle 0^{\circ}$?	$?$?	?
4	0.02	0.00265	Open Circuit		0	0	1.0	0	$1 \angle 0^{\circ}$?	?	?	?
5	0.02	0.00265	Open Circuit		0	0	. 707	$\begin{aligned} & 1.875 x \\ & 10^{-3} \end{aligned}$?	$1 \angle 0^{\circ}$?	?	?
6	0	0	100	0.1	0.01	$\begin{aligned} & 106 x \\ & 10^{-6} \end{aligned}$	1.0	0	$1 \angle 0^{\circ}$?	$?$?	?

Homework No. 1

$\begin{aligned} & \mathrm{S} \\ & \mathrm{E} \end{aligned}$	Z_{1}		$\mathrm{Z}_{\phi} \quad$ Parallel		Z^{\prime}		Z_{L}		V1	V2	I_{1}	l_{2}	If_{f}
	R_{1}	L_{1}	R_{f}	L_{m}	$\mathrm{R}^{\prime}{ }_{2}$	L^{\prime}	R_{L}	L_{L}					
7	0	0	100	0.01	. 01	$\begin{aligned} & 106 \\ & \times 10^{-6} \end{aligned}$	1.414	$\begin{aligned} & 3.75 \times 1 \\ & 0^{-3} \end{aligned}$	$1 \angle 0^{\circ}$?	?	?	?
8	. 3	$\begin{aligned} & 1.33 x \\ & 10^{-3} \end{aligned}$	Open Circuit	$\begin{aligned} & 3.45 \\ & \times 10^{-2} \end{aligned}$. 15	$\begin{aligned} & .56 \\ & \times 10^{-3} \end{aligned}$	7.35	0	$\begin{aligned} & 127 \\ & \angle 0^{\circ} \end{aligned}$?	?	?	?
9	10	$\begin{aligned} & 5.2 \\ & \times 10^{-2} \end{aligned}$	Open Circuit		0	0	200	. 4	?	$\begin{aligned} & 5000 \\ & \angle 0^{\circ} \end{aligned}$?	?	?
10	. 15	$\begin{aligned} & 2.54 x \\ & 10^{-3} \end{aligned}$	Open Circuit		1.57	$\begin{aligned} & 6.24 x \\ & 10^{-3} \end{aligned}$	98.5	. 178	$\begin{aligned} & 2400 \\ & \angle 0^{\circ} \end{aligned}$?	?	?	?
11	. 3	0.003	1	$\begin{aligned} & 4.25 \\ & \times 10^{-2} \end{aligned}$. 2	. 003	10	0	$\begin{aligned} & 440 \\ & \angle 0^{\circ} \end{aligned}$?	?	?	?
12	. 3	0.003	0	${ }_{-2} 4.25 \times 10$. 2	. 003	1.0	0	$\begin{aligned} & 380 \\ & \angle 0^{\circ} \end{aligned}$?	?	?	?

Homework No. 1

Assume

1. All elements are in series except R_{f} and L_{m} which are in parallel.
2. $\mathbf{R}=$ ohms; L=henrys; $\mathrm{V}=$ volts; $\omega \mathrm{L}=\mathrm{ohms}$.
3. $\omega=\mathbf{2} \pi \mathrm{f}=\mathbf{3 7 7}$ radsec; $\mathrm{jX}=\mathrm{j} \omega \mathrm{L}$ for $\mathrm{f}=\mathbf{6 0 H z}$
4. Open circuit $=R$ and/or L to infinity
5. Short circuit $=\mathbf{R}$ and/or L to $\rightarrow \mathbf{0}$

Homework No. 1

2. For the cases with parameters sets 1, 2, 4 and 11 in the table, draw the Thevenin equivalent circuits seen by the load Impedance $Z_{L}{ }^{\prime}$, connected to terminals A-B. Calculate the parameters of the Thevenin equivalents circuits.
3. For cases with parameter sets 1, 2, 4 and 11 in the table, and assuming $L_{L}{ }^{\prime}=0$. Find the values of R_{L} ' wich will result in the maximum power delivered to $\mathrm{R}_{\mathrm{L}}{ }^{\prime}$. (use the maximum power transfer principle).
4. As the power specialist in your company, you are asked to derive a model of an AC machine. With the machine terminals opencircuited, you are measure Voc=100V. With the machine terminals shorted, you measure Isc=50A. Calculate the parameters of the Thevenin Equivalent circuit of the machine.
