

Electric Circuit Analysis

Homework No. 1

Instructor: Ali Keyhani

1. The operation of AC machines (in particular, transformers and induction machines) can be studied with the aid of the T-Circuit shown below.

Primary or Stator

Secondary or Rotor

Several parameter sets are given in the table below. Your solutions should be summarized in a table in format as shown below. Use polar form for all complex number. Show your calculations separately.

Set	V ₁	V ₂	I ₁	ľ2	۱ _f	
Example 1	2700∠22°	-	10∠-39°	10∠-39°	0	
Example 2	-	23∠-54.6°	259.4∠-54.6°	259.4∠-54.6°	23∠-55°	

(Example solution)

Practice all cases.

Only cases with parametes sets 1, 2, 4, and 11 will be graded. Write a Matlab program to solve case 11.

S E	Z ₁		Z _o Parallel		Z'2		ZL						
Т	R ₁	L ₁	R _f	L _m	R' ₂	L'2	RL	L	V1	V2	I ₁	ľ ₂	I _f
1	1	0.01	10000	8	1	0.01	Open Circuit		480∠ 0°	?	?	?	?
2	1	0.01	10000	8	1	0.01	200	0	480∠ 0°	?	?	?	?
3	0.02	0.00265	Open Circuit		0	0	Open Circuit		1∠0°	?	?	?	?
4	0.02	0.00265	Open Circuit		0	0	1.0	0	1∠0°	?	?	?	?
5	0.02	0.00265	Open Circuit		0	0	.707	1.875x 10 ⁻³	?	1∠0°	?	?	?
6	0	0	100	0.1	0.01	106x 10 ⁻⁶	1.0	0	1∠0°	?	?	?	?

S E	Z ₁		Z_{ϕ}	Parallel		Z' ₂		ZL					
Т	R ₁	L	R _f	L _m	R' 2	L'2	RL	L	V1	V2	I ₁	ľ ₂	I _f
7	0	0	100	0.01	.01	106 x10 ⁻⁶	1.414	3.75x1 0 ⁻³	1∠0°	?	?	?	?
8	.3	1.33x 10 ⁻³	Open Circuit	3.45 x10 ⁻²	.15	.56 x10 ⁻³	7.35	0	127 ∠0°	?	?	?	?
9	10	5.2 x10 ⁻²	Open Circuit		0	0	200	.4	?	5000 ∠0°	?	?	?
10	.15	2.54x 10 ⁻³	Open Circuit		1.57	6.24x 10 ⁻³	98.5	.178	2400 ∠0°	?	?	?	?
11	.3	0.003	1	4.25 x10 ⁻²	.2	.003	10	0	440 ∠0°	?	?	?	?
12	.3	0.003	0	4.25x10	.2	.003	1.0	0	380 ∠0°	?	?	?	?

Assume

- **1.** All elements are in series except R_f and L_m which are in parallel.
- **2.** R = ohms; L=henrys; V = volts; ω L=ohms.
- **3.** $\omega = 2\pi f = 377$ radsec; jX= j ωL for f=60Hz
- 4. Open circuit = R and/or L to infinity
- 5. Short circuit = R and/or L to $\rightarrow 0$

- 2. For the cases with parameters sets 1, 2, 4 and 11 in the table, draw the Thevenin equivalent circuits seen by the load Impedance Z_L ', connected to terminals A-B. Calculate the parameters of the Thevenin equivalents circuits.
- 3. For cases with parameter sets 1, 2, 4 and 11 in the table, and assuming L_{L} '=0. Find the values of R_{L} ' wich will result in the maximum power delivered to R_{L} '. (use the maximum power transfer principle).
- 4. As the power specialist in your company, you are asked to derive a model of an AC machine. With the machine terminals opencircuited, you are measure Voc=100V. With the machine terminals shorted, you measure Isc=50A. Calculate the parameters of the Thevenin Equivalent circuit of the machine.