Corrections to Electric Machinery Fundamentals, $4^{\text {th }}$ Ed., by Stephen J. Chapman

App. A:

Page 682, Fig. A-1, (a). Note that the author uses the Sin($w t+$ angle) to define the complex phasor; the more commonly used approach is to use Cos (wt + angle) which I used in class and will use for EE 341.

Chap 1:

Page 25, Ex. 1-5, solution of (a); $\mathrm{B}=0.012 / 0.015$ NOT $\mathrm{B}=1.012 / 0.015$.
Page 63, Fig. P1-14, V = 120 @ 0 degrees.

Chap 2:

Page 122, Eq. 2-89 should be $\frac{V_{L P}}{V_{L S}}=\frac{a}{\sqrt{3}}$
Page 144, Prob. 2-2; two values for R_{s} are given, the $2^{\text {nd }}$ one should be X_{s}, i.e., $\mathrm{R}_{\mathrm{s}}=0.05$ Ω and $X_{s}=0.06 \Omega$.

Page 144, Prob. 2-3; for the S.C. test, if the source is on the high voltage side (230 V), then the S.C. test current should be $4.35 \mathrm{amps}(=1000 / 230)$.

Chap. 7:
Page 388, $3^{\text {rd }}$ line should be $\mathrm{n}_{\mathrm{m}}=(1-0.05)(1800 \mathrm{r} / \mathrm{min})=1710 \mathrm{r} / \mathrm{mim}$; s was incorrectly given as 0.95 , though the result ($1710 \mathrm{r} / \mathrm{min}$) was a result of using $\mathrm{s}=0.05$.

