

The Ohio State University Department of Electrical Engineering

# ECE 205

**Circuit Analysis** 

# Home work Set #8

# **Print Your Name**

#### Problem#1: Problem 8-1 textbook

Transform the following sinusoids into phasor form and draw a phasor diagram. Use the additive property of phasors to find  $v_1(t)+v_2(t)$ .

a) 
$$v_1(t) = 250\cos(\omega t + 60^\circ)V$$

b)  $v_2(t) = 100\cos(\omega t) + 150\sin(\omega t)V$ 

### Problem#2: Problem 8-3 textbook

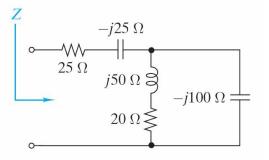
Convert the following phasors into sinusoidal waveforms.

a) 
$$\mathbf{V}_1 = 10e^{-j30^\circ}V, \omega = 10^4 rad / s$$
  
b)  $\mathbf{V}_2 = 60e^{-j220^\circ}V, \omega = 10^4 rad / s$   
c)  $\mathbf{I}_1 = 5e^{j90^\circ}A, \omega = 200rad / s$   
d)  $\mathbf{I}_2 = 2e^{j270^\circ}A, \omega = 200rad / s$ 

#### Problem#3: Problem 8-6 textbook

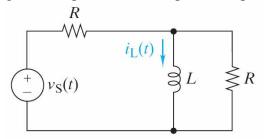
Convert the following phasors into sinusoids: a)  $\mathbf{V}_1 = 20 + j25V, \omega = 10rad/s$ 

b) 
$$\mathbf{V}_2 = 5(8 - j3)V, \omega = 20rad / s$$


c) 
$$\mathbf{I}_1 = 12 - j5 + \frac{4}{j}A, \omega = 300 rad / s$$
  
d)  $\mathbf{I}_2 = \frac{3 + j8}{2 - j6}A, \omega = 50 rad / s$ 

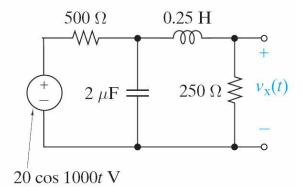
#### Problem#4: Problem 8-10 textbook

Given a sinusoid  $v_1(t)$  whose phasor is  $V_1 = -3 + j4 V$ , use phasor methods to find the voltage  $v_2(t)$  that leads  $v_1(t)$  by 90° and has an amplitude of 10 V.


#### Problem#5: Problem 8-12 textbook

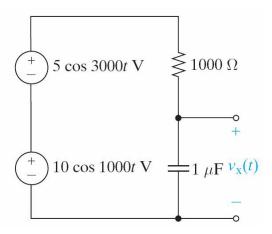
Find the equivalent impedance Z in the circuit. Express the result in both polar and rectangular form.




#### Problem#6: Problem 8-22 textbook

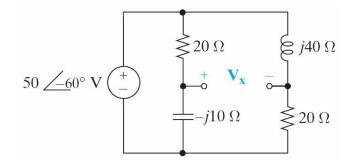
The circuit is operating in the sinusoidal steady state with  $v_s(t) = V_A \cos(\omega t)$ . Derive a general expression for the phasor response I<sub>L</sub>.




#### Problem#7: Problem 8-26 textbook

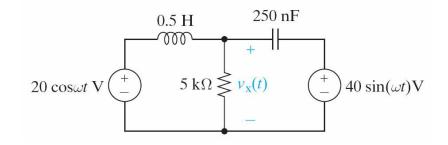
The circuit is operating in sinusoidal steady state. Find the steady state response  $v_x(t)$ .




### Problem#8: Problem 8-30 textbook

The circuit is operating in sinusoidal steady state. Use superposition to find the response  $v_x(t)$ . *Note:* the sources do not have the same frequency.




## Problem#9: Problem 8-32 textbook

The circuit is operating in the sinusoidal steady state. Find the phasor response  $V_x$ .



## Problem#10: Problem 8-41 textbook

The circuit is operating in the sinusoidal steady state with  $\omega=4$  krad/s. Use node-voltage analysis to find the steady-state response  $v_x(t)$ .

