The Ohio State University
Department of Electrical Engineering

ECE 205

Circuit Analysis

Home work Set \# 7

Print Your Name

Problem\#1: Problem 6-2 textbook

The voltage across a 3 mF capacitor is $v_{C}(t)=20 \sin (2 \pi 10 t) \mathrm{V}$. Derive expressions for $\mathrm{i}_{\mathrm{C}}(\mathrm{t})$ and $\mathrm{p}_{\mathrm{C}}(\mathrm{t})$. Is the capacitor absorbing or delivering power?

Problem\#2: Problem 6-6 textbook

The voltage across a $0.5 \mu \mathrm{~F}$ capacitor is shown in the Figure. Sketch $\mathrm{i}_{\mathrm{C}}(\mathrm{t})$ and $\mathrm{p}_{\mathrm{C}}(\mathrm{t})$. Is the capacitor absorbing or delivering power?

Problem\#3: MATLAB Problem

A voltage of $v_{L}(t)=5 \cos (1000 t)-2 \sin (3000 t) V$ appears across a 50 mH inductor. Derive an expression for $\mathrm{i}_{\mathrm{L}}(\mathrm{t})$ assuming $\mathrm{i}_{\mathrm{L}}(0)=0$. Discuss the effect of frequency on the relative amplitudes of the sinusoidal components of $i_{L}(t)$ and $v_{L}(t)$. Sketch theses waveforms in MATLAB.

Problem\#4: Problem 6-21 textbook

The OP AMP integrator in the Figure has $\mathrm{R}=40 \mathrm{k} \Omega, \mathrm{C}=50 \mathrm{nF}$, and $\mathrm{v}_{\mathrm{O}}(0)=10 \mathrm{~V}$. The input is $v_{S}(t)=10 e^{-500 t} u(t) V$. Find $v_{\mathrm{O}}(\mathrm{t})$ for $\mathrm{t}>0$.

Problem\#5: Problem 6-40 textbook

For the circuit given find an equivalent circuit consisting of one inductor and one capacitor.

Problem\#6: Problem 7-7 textbook

The switch has been in position A for a long time and is moved to position B at $t=0$. Find $v_{c}(t)$ for $t \geq 0$.

Problem\#7: Problem 7-13 textbook

The switch has been in position A for a long time and is moved to position B at $t=0$. Find $v_{C}(t)$ for $t \geq 0$. Identify te forced and natural components in the response.

Problem\#8: Problem 7-26 textbook

For $\mathrm{t} \geq 0$ the step response of the current through the capacitor in Figure is $i_{C}(t)=20 e^{-2000 t} m A$. Find $\mathrm{v}_{\mathrm{C}}(\mathrm{t})$ for $\mathrm{t} \geq 0$ when $\mathrm{C}=1 \mu \mathrm{~F}$ and $\mathrm{v}_{\mathrm{C}}(0)=5 \mathrm{~V}$.

Problem\#9: Problem 7-27 textbook

For $\mathrm{t} \geq 0$ the step response of the current through and voltage across the inductor are:
$i_{L}(t)=5-10 e^{-2000 t} m A$ and $v_{L}(t)=e^{-2000 t} V$
(a) Find $\mathrm{v}_{\mathrm{s}}, \mathrm{R}$ and L .
(b) Find the energy stored in the inductor at $\mathrm{t}=\ln (2) / 2 \mathrm{~ms}$.

