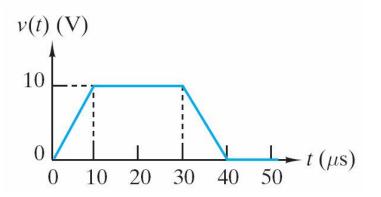


The Ohio State University Department of Electrical Engineering

ECE 205

Circuit Analysis

Home work Set # 7

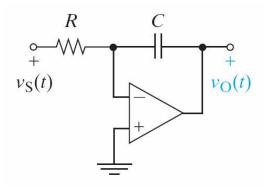

Print Your Name

Problem#1: Problem 6-2 textbook

The voltage across a 3mF capacitor is $v_c(t) = 20\sin(2\pi 10t)V$. Derive expressions for $i_c(t)$ and $p_c(t)$. Is the capacitor absorbing or delivering power?

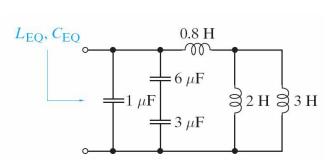
Problem#2: Problem 6-6 textbook

The voltage across a 0.5 μ F capacitor is shown in the Figure. Sketch i_C(t) and p_C(t). Is the capacitor absorbing or delivering power?

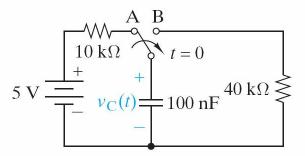


Problem#3: MATLAB Problem

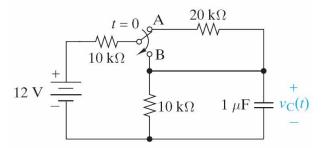
A voltage of $v_L(t) = 5\cos(1000t) - 2\sin(3000t)V$ appears across a 50mH inductor. Derive an expression for $i_L(t)$ assuming $i_L(0)=0$. Discuss the effect of frequency on the relative amplitudes of the sinusoidal components of $i_L(t)$ and $v_L(t)$. Sketch theses waveforms in MATLAB.


Problem#4: Problem 6-21 textbook

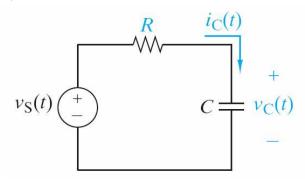
The OP AMP integrator in the Figure has R=40 k Ω , C=50 nF, and v₀(0)=10 V. The input is $v_s(t) = 10e^{-500t}u(t)$ V. Find v₀(t) for t>0.


Problem#5: Problem 6-40 textbook

For the circuit given find an equivalent circuit consisting of one inductor and one capacitor.


Problem#6: Problem 7-7 textbook

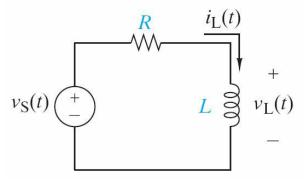
The switch has been in position A for a long time and is moved to position B at t=0. Find $v_c(t)$ for t≥0.


Problem#7: Problem 7-13 textbook

The switch has been in position A for a long time and is moved to position B at t=0. Find $v_{c}(t)$ for t ≥ 0 . Identify te forced and natural components in the response.

Problem#8: Problem 7-26 textbook

For t ≥ 0 the step response of the current through the capacitor in Figure is $i_C(t) = 20e^{-2000t} mA$. Find v_C(t) for t ≥ 0 when C=1µF and v_C(0)=5 V.



Problem#9: Problem 7-27 textbook

For t ≥ 0 the step response of the current through and voltage across the inductor are:

 $i_L(t) = 5 - 10e^{-2000t} mA$ and $v_L(t) = e^{-2000t} V$

- (a) Find v_s , R and L.
- (b) Find the energy stored in the inductor at t=ln(2)/2 ms.

