

The Ohio State University Department of Electrical Engineering

ECE 205

Circuit Analysis

Home work Set # 5

Print Your Name

Problem#1: Problem 4-2 textbook

Find the voltage gain vo/v1 and the current gain i_0/i_s for the given circuit. If the input current is $i_s=2mA$, find the power supplied by the input current source.

Problem#2: Problem 4-7 textbook

Find the output voltage.

Problem#3: Problem 4-13 textbook

Find the input resistance R_{IN}.

Problem#4: Problem 4-16 textbook

The circuit parameters are R_B=50 k Ω , R_C=3 k Ω , β =100, V_{γ}=0.7 V, and V_{CC}=15 V. Find the collector current i_C and V_{CE} for v_s=2 V.

Problem#5: MATLAB Program

The input to the circuit is a series connection of a dc source and signal source v_s . The parameters of the circuit are R_B=500 k Ω , R_C=5 k Ω , β =100, V_y=0.7 V, and V_{CC}=15 V.

- a) With $v_s=0$ select the value of V_{BB} so that the circuit is in active mode when $v_{CE}=V_{CC}/2$.
- b) Using the same value of V_{BB} plot the characteristics of v_{CE} versus v_s as the signal voltage changes from -10V to +10V.

Problem#6: Problem 4-23 textbook

Find v_0 in terms of v_s .

Problem#7: Problem 4-26 textbook

Find v_0 in terms of inputs v_1 and v_2 .

Problem#8: Problem 4-30 textbook

Find vo in terms of vs1 and vs2.

Problem#9: Problem 4-33 textbook

Using node voltage analysis, find the input- output relationship.

Problem#10: Problem 4-11 textbook

Find an expression for vo/vs.

