

The Ohio State University Department of Electrical Engineering

ECE 205

Circuit Analysis

Home work Set # 4

Print Your Name

Problem#1: Problem 3-22 textbook

Find the proportionality constant $K=i_0/v_s$ for the given circuit.

Problem#2: Problem 3-29 textbook

Use the superposition principle to find the output current i₀.

Problem#3: Problem 3-38 textbook

Find the Norton equivalent circuit seen by R_L. Find the current when R_L=6 Ω , 12 Ω , and 60 Ω .

Problem#4: MATLAB Program

The i-v characteristics of an active circuit is 3v+300i=60. Write a MATLAB program to plot the output voltage versus R_L curve when the load resistance is changing form 500 Ω to 3 k Ω .

Problem#5: Problem 3-45 textbook

The Thevenin equivalent parameters of a voltage source are $v_T=25$ V and $R_T=150 \Omega$. Find the smallest load resistance for which the load voltage exceeds 15 V.

Problem#6: Problem 3-50 textbook (MATLAB Problem)

A nonlinear resistor is connected across a two terminal source whose Thevenin equivalent is $v_T=10$ V and $R_T=200 \Omega$. The i-v characteristics of the resistor is $v=4000i^2$. Plot the i-v characteristics of the source and the resistor with **MATLAB** and graphically determine the voltage across and current through the nonlinear resistor.

Problem#7: Problem 3-56 textbook

Find the value of R in the circuit so that maximum power is delivered to the $4k\Omega$ load. Find the maximum power.

Problem#8: Problem 3-61 textbook

The output current of the voltage source in the Figure must be less than 100mA. Design an interface circuit so that the load voltage is $v_2=4$ V and the source current is $i_1<100$ mA.

