The Ohio State University
Department of Electrical Engineering

ECE 205

Circuit Analysis

Home work Set \# 2

Print Your Name

Problem\#1: Problem 2-31 textbook

Find the equivalent resistance between terminals A-B, A-C, A-D, B-C, B-D, and C-D.

Problem\#2: Problem 2-34 textbook
Find the equivalent practical voltage source at terminals A and B.

Problem\#3: Problem 2-39 textbook
What is the range of R_{EQ} ?

Problem\#4: Problem 2-42 textbook

Use the current division to obtain an expression for V_{L} in terms of R and R_{L} and i_{s}.

Problem\#5: Problem 2-43 textbook

Find i_{x} in the given circuit.

Problem\#6: Problem 2-50 textbook

Select a positive value for Rx so that $\mathrm{v}_{\mathrm{L}}=6 \mathrm{~V}$.

Problem\#7: Problem 2-48 textbook

Select the values of R_{1} and R_{2} and R_{3} so that the voltage divider produces the shown output voltages.

Problem\#8: Problem 2-56 textbook
Use source transformation to find i_{x}.

Problem\#9: Problem 2-60 textbook

The box in the circuit is a resistor whose value can be anywhere between $8 \mathrm{k} \Omega$ and 80 $\mathrm{k} \Omega$. Write a MATLAB program to find the range of values of v_{x} using circuit reduction.

