The Ohio State University
Department of Electrical Engineering

ECE 205

Circuit Analysis

Home work Set \# 1

Print Your Name

Problem\#1: Problem 1-3 textbook

An ampere-hour (Ah) measures the time integral of the current. The recording of this meter in an 8 -hour period is 3300 Ah. Find the number of coulombs that flowed through the meter during the recording time period.

Problem\#2: Problem 1-8 textbook

The Figure shows the plot of the net positive charge flowing in a wire. Using MATLAB sketch the plot of the current during the same time period.

Problem\#3: Problem 1-9 textbook

The net positive charge flowing through the device varies with the equation $q(t)=3 t^{2} \mathrm{C}$.
Find the current through the device at $\mathrm{t}=0, \mathrm{t}=1$ and $\mathrm{t}=3 \mathrm{sec}$.

Problem\#4: Problem 1-17 textbook

The $i-v$ relationship of a photocell is $i=e^{v}-10$ A. For $v=-2,2$ and 3 V find the device power and state if it is absorbing power or delivering power.

Problem\#5: Problem 1-14 textbook

An incandescent lamp absorbs 60 W when connected to $120-\mathrm{V}$ source.
a) Find the current through the lamp.
b) Find the cost of operating the lamp for 24 hours when electricity cost is 6.8 cents/kWh.

Problem\#6: Problem 1-19 textbook

The maximum power a device can dissipate is 0.5 W . Determine the maximum current allowed by the device power rating when voltage is 15 V .

Problem\#7: Problem 1-23 textbook

The Figure shows a circuit with voltage and current variable assigned to each of the six devices. Use power balance to find v_{4} when $\mathrm{v}_{1}=20 \mathrm{~V}, \mathrm{i}_{1}=-2 \mathrm{~A}, \mathrm{p}_{2}=20 \mathrm{~W}, \mathrm{p}_{3}=10 \mathrm{~W}, \mathrm{i}_{4}=1$ A , and $\mathrm{p}_{5}=\mathrm{p}_{6}=2.5 \mathrm{~W}$. Is device 4 absorbing or delivering power?

Problem\#8: Problem 2-2 textbook

A $6.2 \mathrm{k} \Omega$ resistor dissipates 12 mW . Find the current through the resistor.

Problem\#9: Problem 2-17 textbook

In Figure $i_{2}=2 \mathrm{~A}, \mathrm{i}_{3}=-5 \mathrm{~A}$, and $\mathrm{i}_{4}=4 \mathrm{~A}$. Find i_{1} and i_{5}.

Problem\#10: Problem 2-22 textbook
a) Use the passive sign convention to assign a voltage and current to every element
b) Use KVL to find the voltage across each resistor.
c) By using Ohm's law find the current through each resistor.
d) Use KCL to find the current through each voltage source.

