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C 75 027-8

ONE-STEP-AHEAD LOAD FORECASTING
FOR ON-LINE APPLICATIONS

Ali Keyhani

Ahmed El-Ablad

Purdue University
West Lafayette, Indiana

ABSTRACT

The problem of one-step-ahead forecasting of the
load demand of an interconnected power system for on-
line application is studied. It is proposed that at any
time instant K, a stochastic model with unknown order,
ARMA (n,m), be postulated. By using a recursive iden-
tification algorithm, the order of the model is identi-
fied on-line from the immediate past observations of
load data. Having determined the number of parameters
to be used (i.e., the order, n and m) at any instant K,
these parameters are to be estimated in real time using
the past few observations. This is done by applying a
recursive estimation algorithm [1].

INTRODUCT I ON

In this paper the basic concepts underlying the
very general stochastic models based on time series and
identification of such models are studied. Identifica-
tion and adaptive estimation techniques are used to
choose a model from the general class of autoregressive,
moving average, and mlxed-autoregressive-moving-average
models. The model then has been used for one-step-
ahead load forecasting; and under the assumption that
the resulting errors are normal, the corresponding
probability Timits are calculated.

As far as possible, the mathematical proofs are
omitted; but the general concepts of identification and
estimation techniques which have been employed are
Presented. Data provided by Public Service Indiana for
one-minute intervals, five-minute intervals and hourly
load are used for one-step~ahead forecasting to demon-
strate the application of the proposed method.

Finally, it has been the task of this investigation
to develop a computer software package which is recur-
sive and completely automatic in identifying a non-
seasonal time series and estimating the parameters of
the identified model for real time application. Also,
it should be pointed out that the method is applicable
for any one-step-ahead load prediction such as 24 hours,
one-week, and one-month-ahead for off-~1ine application.

NOMENCLATURE
K - Instant of time (sec., min., hour, ...)

Y(K) -~ The load demand as measured at time Instant K,
K = 0,1,2,

¢j(K) - An arbitrary function chosen by user, | =1,
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-
a(K) = (a,(K), ... a (K)) - The vector of unknown
T 1 ntmtl parameters T
5'(K) = (al(K), e §n+m+£(K)) - The estimate of a (K)

based on the observations {y(j), j < K}
W(K) - The residual at instant K

Y(K) - The one-step-ahead predictor of Y(K) based on
observations {Y(K-j), j > I}

e{K) - The prediction error at instant K
= Y(K) - Y(K)
E[*] - The operation of taking the expected value of [-]

C - Crosscovariance function between Y and W

yw(')
C(+) - Autocovariance function of a random variable
p(+) -

MA{m) - The moving average process of order m

Autocorrelation of a process

AR(n) - The autoregressive process of order n

ARMA(n,m) - The autoregressive moving average process
of order n and m

EO N Mean value of the error for N observations
L

E] N Absolute mean value of the error for N observa-
]

tions

E2 N Mean square value of the error for N observations
?

Pr[+] - The probability of [-]

g - Standard deviation

P.U.E. - Per Unit Error

_Y(K) - Y(K)

P.U.E. (K) VTR

LOAD FORECASTING PROBLEM BY MEANS OF
LINEAR STOCHASTIC DIFFERENCE EQUATION

In the present study, we are interested in pre-
dicting the one-step-ahead power demand of the entire
system as it is measured at the central dispatching
office. For any given power system, the power demand
is available at discrete intervals of time. Let Y(.)
represent the power demand, as measured at the dispatch-
ing office. The problem of one-step-ahead load fore-
casting, given a set of past observatlons Y(I),'Y(Z),."
Y(K-1), Y(K) (where K is the instant of time), is to
find the best estimate of the load at K+1; that is, to
predict ?(K+l). Naturally, if we are interested in



2-step-ahead prediction, we must first determine one-
step-ahead predictjon; that Is, Y(K+1), then two-step-
ahead prediction, Y(K+2), ... Y(K+#2-1), and finally
9(K+2) which is %-step-ahead prediction. In this study,
we are only interested in one-step-ahead prediction for
real time application.

Let {Y(.)} represent the observations of the power
demand, that is

Y(1), Y(2), ... Y{K-n), ...Y(K-2), Y(K-1), Y(K)

Let the given sequence {Y(.)} obey the following sto-
chastic difference equation as expressed by equation (1):

Y(K) = a](K)Y(K-l) + aZ(K)Y(K-Z) +
<+ a (K)Y(K-n) + W(K) (1)
in which the disturbance W(k) cannot be directly

observed. Alternatively, we can rewrite (1) in compact
form as given by (2):
n
Y(K) = L aj(K)Y(K-j) + W(K) (2)
J=1

A process which can be expressed as equation (2) is
called an autoregressive process of order n or, in
short, AR(n).

It can be shown that one-step-ahead,.prediction of
the stochastic process {Y(.)}, that is, Y(K+1), given
the past observations Y(1), Y(2), ..., Y(K-1), Y(K), is
given by equation (3):

V(K1) = a (K)Y(K) + oy (K)Y (K1) +

53(K)Y(K—2) + .. (3)

This can be written in compact form as

N n
Y(K+1) = ¢

a. (K)Y(K-j+1)
j=1

where we have assumed that E[W(K)] = 0 and "a(K)'" is
the estimate of "a(K)'" based on the observations

y(y), j < «l.

Once the observation Y{(K+l) is available, the
residue at instant k+1 can be calculated by equation (4):

~

W(K+D) = Y(K+1) - Y(K+1) (4)

which is also the error at K+1 instant.

Intuitively, it is clear that we should be able to
use the past errors to improve our prediction of the
future. Let us assume that the observations {Y(.)} and
its past residues under certain estimation techniques
are available to us. Then a better choice of a model
for our process may be written as (5):

Y(K) = a. (K)Y(K-j) +

1 4

e

J
m
I a, (KW(K-J) + W(K) (5)
j=1 ™
This is called an autoregressive moving average of order
n and m, or in short ARMA(n,m). The unknown parameters
in equation (5) are aj, j=1, ... n+m.

If there is reason to believe that our process has
deterministic terms and/or harmonic components with
period T, or observable inputs, we may choose the gen-
eral model as given by (6):

Y(K) = KW (Kk-§) +

n+j

I ™S

m
aj(K)Y(K-j) + L a

J=1 j=1

Sl S

. ]an+m+j(K)¢j(K) + W(K) (6
=

where the integer £ is equal to all possible functions
(deterministic or observable inputs) which we believe,
for one reason or another, will improve the ability of
our model to predict. For example, we may choose the

following functions:
¢] = 1 @h = some function of
temperature
_ 21k w2
(DZ = an(—-T—) (DS = YK
¢3 = cos (Z%E o = Yi , etc.

Finally, we can rewrite our general model in compact
form as (7):

Y(K) = a' (K)Z(K-1) + W(K) (7)
where
aT(K) = (2 (K, ooy (K)o (K))
T ,
22(K) =1z, (K), ...z (K 2z, (K), Z o (K)s
2o (K)o e 20 (K)]
= [Y(K-1) Y(K-n); W(K), ... W(K-m+1);
LA A

The stochastic processes are divided into two
classes: stationary and nonstationary. A stochastic
process {Y(K)} is stationary (in the strict sense) if
its statistics are not affected by a shift in the time
origin. Physically this means that the process is in a
particular state of statistical equilibrium. A less
restrictive requirement would be to assume that a pro-
cess is weakly stationary [2]. This requires the
existence of a time independent mean and autocovariance
matrix for the process. Finally, a nonstationary pro-
cess Is a process which has a time-varying mean and
variance.

A nonstationary stochastic process can be repre-
sented by equation (6) or (7).

Clearly, the model described by (6) or (7) is in
the most general form. In the present study, we are
only interested in one-step-ahead load prediction from
the immediate past observations for on-1ine applications.
To this end, we assume that a sample size of our process
is locally stationary (weakly), and the input disturb-
ance could be a discrete white noise. Hence, we only
consider ARMA (n,m) model with a constant trend term
which is given by (8):

n
Y{(K) = ao(K) + .g

a, (K)Y(R-]) +
jor d

1
m

z a,, (KWK-]) + W(K) (8)
aoq 4N

Jj=1 .

The time-varying coefficients a;(K) are introduced to
account for the nonstationary behavior of one sample
size to the next sample of the stochastic process des-
cribing the load demand of a power system.



THE ALGORITHM FOR ESTIMATION
OF PARAMETERS OF PREDICTOR

We will use the algorithm developed by Kashyap iIn
reference [1] for estimating the coefficients of the
predictor.

In this method, the coefficients a,(K); j=o,
ntm found in a recursive manner by minimizing the square
of prediction error.

The algorithm for the coefficient of the predictor
is given by (9):

S(K+1) =S (K) - S(K)Z(K)ZT(K)S(K)/(HZT(K)S(K)Z(K))

a(K+l) =3(K) + S(K+1)Z (K) (Y (K+1) - ST(K)Z(K))

W(K+1) =Y (K+1). - AT (k+1)Z (K) (9)
The prediction error and predictor are given by (10):
Y(k+1) = 8T (K)Z(K)
e(K+1) = Y(KH) - ¥(k+1) (10)

The initial values for a(0) and $(0) are arbitrary as
long as S(0) is a positive definite matrix. It is
important to note the difference between_W(K) and e(K),
as it is defined by (9) and (10); i.e., W(K) is only a
residual and e(K) is the prediction error.

MULTIPLICATIVE PREDICTOR [3]

If the observations are strictly positive, as in
the case of the load demand of a power system, one can
choose the multiplicative model as given by (11):

a a, a, C
Y(K) = Y(K-T) Y(K-2) ... Y(K-n) W(K-1)
ah4m A n+mt1 ntm+l

W(K-m) @I(K) cow 02(K) W(K) (11)

If we let y(K) = 2n (Y(K)) where Y(K) is strictly
positive, then, for the log transformed process {y(*)}
we will have a one-step-ahead predictor of the form
given by (12):

(12)

which is in the same form as (10). It should be clear
that by replacing Y(K) by y(K) everywhere, we can apply
algorithm (9) for finding the coefficients of the multi-
plicative predictor. It also should be pointed out that
the effect of the log transformation is that of smooth-
ing the fluctuations in the original process {Y(-)}.
Hence, the multiplicative predictor has a better chance
of following the smoothed process {y(:)}.

§(k+1) = &' (K)Z(K)

IDENTIFICAT!ION

Basic Concepts

Before we proceed with a discussion of the method,
the term identification should be defined. Zadeh [4]
has given a definition that appears to be more or less
generally accepted:

""Identification is the determination, on the

basis of input and output, of a process* (model),

within a specified class of processes (models),

to which the process under test is equivalent.!

In order to use this definition, we must clarify
what is meant by "equivalent process'' and the ''specific

class of models." Clearly, the specific class of models
to be considered here is linear systems with finlte
dimensions. This class contains many of the systems of
practical importance. What s meant by an equivalent
model is a little harder to describe. In a practical
sense, the equivalent model] is a model which has cap-
tured the underlying mechanism which has generated the
original process. It should be pointed out that iden-
tification ts necessarily inexact. It |s inexact
because the question of what types of processes (models)
occur in practice cannot be determined by purely math-
ematical formulation.

Nevertheless, we accept an equivalent model from a
class of finlite dimensional stochastic models as a true
model if it results in the smallest variance of error,
or the smallest mean Square error, or any other possible
criteria over a flnite past history of the process.

From the preceding discussion, it should be clear
that we would like to identify the underlying structure
which generates the process, that Is, to determine the
integers n and m.

Kashyap & Rao, in reference [5], tried different
integers n and m and checked the accuracy of predictions
of corresponding models, then chose the mode] among
them which had the best prediction capability. This
method determines n and m, that is, the order of the
stochastic model which represents the structure of the
finite past history of the process. It is clear that
this method requires extensive simulation.

If the mechanism which will generate the entire
future observations remains the same as the mechanism
which generated the finite past history, then the model
chosen this way would be entirely adequate. This is
indeed the case in process control. For example, the
output of a chemical plant can be modeled In this
fashion. But, in the case of one-step-ahead load pre-
diction, this is far from being adequate. What would
happen a few minutes from now has very little or nothing
to do with what has happened in the last few hours.
Furthermore, unforeseen events like strikes, a sudden
storm, or a fuel crisis, only to name a few, cannot be
adequately represented in an equivalent mode! which
represents the finite past history of the process.
above discussions clearly point out the need for
frequent Identification.

The

We chose to Identify the integers n and m by
analyzing a short sample size of the past history of the
process at instant K in real time operation. Naturally,
we would expect the model identified by this method to
have a better or equal (if the process remains the same
over finite history) prediction capablility as the one
identified by the previous method [5].

Before proceeding with on-1ine identification, the
survey of literature in determining the order of the
stochastic linear equation (n,m) from the autocorrela-
tion and partial autocorrelation is in order.

As a first step in the modeling procedure (6], the
model identification is done by examining the pattern
of sample .autocorrelations as well as partial autocor-
relation functions. In practice, a set of such corre-
lation plots is made for identifying possible underlying
behavior. This method is not very effective when the
process is ARMA (n,m). Furthermore, the success of
identifying a mixed model! relies on the ability of the
Individual analyst. Consequently, this method does not

*Zadeh originally used the word system here but the
word process (model) is more appropriate. Our models
are actually systems.



provide definite criteria for determining the exact
order of a mixed model.

The problem of determining n and m was further dis-
cussed by Astrém and Bohlin [7] and was also analyzed by
Trether and Steiglitz [8], and Jenkins and Wattes [9].
Later, Chow [10] gave a preliminary algorithm for deter-
mining the order of a linear stochastic dynamic system
solely from the observation of the system output.

In the next sections, we further revise Chow's
method and develop a recursive procedure which is de-
signed to be simple, systematic and easily computerized.

ON-LINE IDENTI{FICATION

In order that we might be able to use the identifi~
cation algorithm on-line in real time operations, we
must obey two restrictions:

1. At any instant K, only a finite, pre-specified
number of real numbers can be stored in the com-
puter, ruling out the possibility of storing a
large sample size of the past history {y(j),

J < K} at that instant.

2. The amount of computations such as the number
of additions, multiplications, etc., needed to
obtain the n and m shall be pre-specified and
independent of K.

To overcome the above restrictions, a predetermined
highest autoregressive order n is specified before
searching for a model within (n,m) class of models. This
requirement may seem to be restrictive, but hardly would
present any problem in application because it is unlike-
ly that we would need a model with AR and MA both of
infinitely large orders.

THE RECURSIVE
IDENTIFICATION ALGOR!THM

Consider the linear difference equation for a mixed

ARMA (n,m) process as given by (5) which is repeated
below:

Y(K) =

TR

m
a}K)Y(K-j)+ z

a (KW(K-3) + W(K) (5)
j=1 0

J

where we shall assume W(K) is a white excitation and is

independent of Y(K-j) occurring prior to the time Instant
K. ( T?e autocovariance function for (5) can be written

as (13):

C(j) = EIY(K) - VI[Y(K~}) - V] (13)

Without loss of generality, we set the mean of Y(.),
E(Y) =Y = 0. Then we will have

c(j) =a]C(j-l) +a2C(j-2) + ... anC(j-n) +

€., )+

v C -1 +...+

an+l yw (14)

an+mcyw(J-m)

wherecyw(j) =E[Y(k-j)W(K)]is a cross-covariance function

of lag j between y and w. The Y{(K-j) depends on noises

which have occurred up to the instant K-j. Therefore,
cyw(i)=o >0
2 .
) =
cyw( ) W(‘)Gw i <0

which implies that for j > mtl we will have

C(J')=B]C(_i‘])+82C(j-2)+...+anc(j-n) (15)

s . 2
If the process is stationary, then variance g~ = C_ is
constant. From (15) we can write the autocorrelation
for the process as (16):

o) = G or o<K>=5—éoﬁ’- (16)

where we have changed j to K, finally.

p(K) = a;p(K-1) +a,p(K-2) +... +a p(K-n)  (17)

for K > mtl

Equation (17) says that in ARMA(n,m) models, the auto-

correlation function after lag m follows the Yule-Walker
equation exactly the same way as does a pure AR process.
This is the key to the method. Using (16), we can write

(14) in compact notation as (18):
n
p(K) = = aip(K-i)i-Q(K) K=1,2 ... (18)
i=l
where
owz m
QK) = g = B.¥(i-k) for K <'m
. i -
0 i=0
=0 for K>m

3
For a given n=n,, the modified Yule-Walker

equation in
matrix form is given by (19):

[-p(mﬂ) ] [ o(m) o(m=1)... p(mn*+1)] _a‘ ]
p{m+2) p(m+1) p(m)..... o (m=n*+2) a,
) = : j ; S 109)
Lp(m;n*) Lp(6+n*-l) p(m+;*-2) ----- p(m) ak
Hence
p(m) ++vv p(m+l) --.po(m+n™-1)
I T L T PO o(m|i=1,2...n%
oo™ p(m) ... plm+1-1) . p(mnk-1) (20)
pkm+n*—l)-p(m+;*-i) ..... é(m)

For identification purposes, we only need to com-

pute the VTE) which are the determinants in the numera-
tor. Equation (20) will determine the first n* of V's.

For i > n*, the lag V's can be calculated recur-
sively by (21):

V) = 0" (i) - V) plmei-1) - ... - Vn#)p (ki ~n)

(21)
The test for determining the order of ARMA (n* -
sists of the following steps: (n™,m) con

1. Fix the order of MA at m = 0

2. Calculate V?i) using (20) and (2}) where i =1,
2, ....



3. Check the significance of VTi). If VTI) #0
for 1 >n%*, then it indicates that the model is
not ARMA (n*,m). On the other hand, if VTI)
is insignificant for i>n], where n, <n*, then

the model is ARMA (n],m).

1

L. otherwise, fix m=m+] and repeat steps 2 and 3.

If a model cannot be found when m=m*, where m* is
a preselected MA order, then this indicates the need
for fitting a mode! higher than ARMA {(n*,m*). This
problem can be avoided if high enough values of n* and
m* are used for a given type of process. In the Appen-
dix the identification of ARMA(2,m) is discussed.

RESULTS OF PARTICULAR STUDIES

From the identification and estimation algorithms
proposed in this paper, a computer software package was
developed [11]. The load data of Public Service
Indiana for one-minute intervals (125 points), five-
minute intervals (425 points) and hourly load (550
points) were used for one-step-ahead forecasting. The
graphs of each case with associated errors vs. time are
given in Figures 1, 2, and 3 respectively. The simu-
lations of each time series showed that the one-minute
load is ARMA (1,0) process, and the five-minute load is
mostly ARMA (1,1) and occasionally ARMA (2,1) process.
The hourly load is ARMA (2,0) process.

After identifying the order of the stochastic pro-
cess (i.e. n,m) representing each time series, other
models of the order n*l, mtl were also simulated. In
each case, the changing of the order of the identified
model resulted in increased errors, which also confirms
that the identified model adequately represents the
underlying mechanism of the process [11]. The results
for the final coefficients and errors for the three
cases are given in Table 1.

Table 1:

The Final Coefficients

CONCLUS 1 ONS

The proposed identification and estimation algor-
ithms can be successfully used for on{off)-1ine applica-
tion of one-step-ahead prediction of load demand of a
power system.

In addition, the advantages of the proposed method
are that the method is completely automatic in Identi-
fying a non-seasonal time series, and that it is recur-
sive in estimating the parameters of the identified
model, in contrast to the usual approach which depends
on the capabllity of the individual analyst.

As far as the applications of one-step-ahead load
forecasting are concerned, the following can be
mentioned:

1) 1-10 minute Intervals for economic dispatch

2} 10-30 minute intervals for reserve evaluations
and security calculations

3) 30-60 minute intervals for contingency
assessments.

Clearly, the method can be used for forecasting
total system load, a region load, or a bus load.
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and Errors for the Various Models

Model Coefficients Error (MW) Confidence Region (MW)
Model
Multiplicative - 67 075
ao(N) a](N) az(N) o,N 1,N 2,N Pr{-6<e< 0}=,67| Pri-28<e<28)=.97
AR(],O)
(1-min. load) .0006 .978 - 899 7.2 . 164 -13.7, 11.9 -26.4, 24.6
N=125
ARMA(1,1)
(5-min. load) .036 .993 112 1.41 8.8 .134 -10.0, 12.0 -21.0, 24,0
N =425
AR(2,0) ‘
(hourly load) .037 1.61 | -.70 |-1.93| 30.9 | 1.62 -42.0, 38.8 -82.2, 78.5
N =550
N N N
. ] . _ 1 2
where Ej \ = JEI e(j) LN T N-ji] le(5) ] Ey N N—ji] e“(J)

Assuming that the errors are normal, the upper and lower probability limits are

Y{Kk+1) (Tower/upper) = Y(K+1) + confidence region (67% or 97%)

That s Pr{Y(K+l) lower < Y(K+1) < Y(K+!)upper} = .67 or .97 respectively.
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APPENDIX

IDENTIFICATION OF ARMA (2,m) MODELS

For a special case when n* = 2, equation (19) can
be written as

p(m+1) p(m) p(m-1) a
p (m+2) p(m+1)  p(m) a, (22)
From (22) a; and a, can be written as (23):
=l )
i i 1 " ) " (23)
where V(1) and V(2) are given by (24):
V(1) =p(mp () - pln-1)p (me2)
V(2) = p(m)p(m+2) - 0 (1) p(m+1) (24)

Using equation (21), the lag V's can be calculated
recursively for 1 > 2 by (25):

V(1) =0 o (m+1) - VI p(mei-1) = v{2) o (mei-2) (25)

where m m-1
p'=-V(2) for m > O

The equations (24) and (25) can be used for Iidenti-
fying any ARMA(2,m) models. In order to see the sig-
nificance of V"'s clearly, we compare the ratlo of

V(1) | /o n l-|nm|. In actual ldentification

0(K)'s are estimated by sample autocorrelations r(K}'s.
Next, we demonstrate the method by means of two examples:

wnere O =
whe m

Example 1: 100 points of the hourly load data
were used as a sample size for recursive identification
of the process. The first ten lags of V's with m=0
are calculated, and the results are given in Table 2.

Table 2
0
i r(i) v(i) V(i) ]/o 4
v

1 .958 .1396 21.39
2 .854 - .06k 9.83
3 71 .0002 .03
L .550 .0008 2
5 .oy L0011 A7
6 .272 .0014 .21
7 .169 .0018 .27
8 103 .0022 .33
9 .072 .0024 .36
10 .063 .0017 .27

Clearly, the V?i)'s are insignificant after lag 3.
Therefore, the sample process is identified as AR(2,0).

) Example 2: In this example, 100 points of five-
Tlnutg !oad were used as a sample size for recursive
identification. The first ten lags of V's with m=0 and

m=1 are calculated, and the results are given in
Table 3.

Table 3

. . 0 0 1 1
i r(i) v(i) v (i)]/0 o V() [v(i)|/o |
Vv

] 127 .118 1.51 -.097 13.
2 .068 .052 .67 .0038 B'g;
3 .066 .0507 .6k -.0027 6L
4 119 .106 1.35 .0026 .63
5 .076 .057 .73 -.0039 .94
6 .150 .133 1.69 -.0011 .26
7 181 .156 1.99 .0082 1.96
8 .032 .002 .03 -.0074 1.76
9 .163 b7 1.87 .0019 1.87
10 L .118 1.50 .0076 1.50

Clearly, with m=0, all the lags of V's, except for
V(8), have about the same significance. Therefore, no
decision can be made; and we proceed to check the sig-
nificance of Vlts. [t Is clear that only V1(1) Is slg-
nificant. Thus the sample process of flve-minute load
Is Identified as ARMA (1,1).

In reference [11], the identification of ARMA (k,m)
I's discussed.



ERROR
(IN mW x1000) Y AND ¥ (INmW x 1000)

<

ERROR
(IN mW x1000)

Y AND Y (IN mW x1000)

2,250

I.800-j

Al

0.200

0. 000 =™ €M, T AR N MDA MGG S0 0N e mem

Mmfmwﬁwfﬁwg*““mWﬁwmww&wmwwwwwwwwﬁﬁﬁﬁww# o e

Actual Load Y(K), the Forecast Load ¢(k|Kk-1),
Forecasy Error Y(K) - Y(K|K-1) and P.U. Error
(Y(K) - Y(K|K=1)/Y(K) Vs. K for 1-Min. Load

o
3

»

actual: +
forecast: *
Error: X
P.U.Error:®

-0.200 -
e .J.—v—{-k‘u‘-!—‘--.“,,.,b‘_-’l',s*x_-l_‘f.l_- it -»(ng%x.;.l.{;{.g.5.{.:;..5.5.1;'.4,5.1“:.:,. ettt adaad g 3ac e, "*"«,1—‘""‘\ i ,,;.',m,-,:.-.».'. Ve
Figure 1: 1-Minute Load
0.000 I 1 , , | T
1 15 30 ks 60 75 90 - 105
TIME STEPS IN 1-MINUTE INTERVALS
2.450 4 n
Actual Load Y(K), the Forecast Load Y(K{K-1),
Forecast Error Y(K) - $(K|K-1) and P.U. Error
Y(K)-?(KlK-])/y(K) Vs. K for 5-Min. Load
2.100
1.750
; %
* x *
3 actual: +
forecast: *
1.400— Error: X
P.U.Error: ©

Figure 2: 5-Minute Load

T | T } t
60 120 180 240 300 360 420
TIME STEPS IN 5-MINUTE INTERVALS

7

0.200

0.000

PU. ERROR

-0.200

0.200

ERROR

0.000 —

PU

-0.200



40¥Y3 Nd

002" 0

000 "0--%

00¢° 04

o4s

ow:

YNOH NI Sd31S 3Wil
0y 09¢ 00¢ oy
I 1 i Il

hi

peo] A{Jnoy

:¢ sunbi 4

%\_o.r_m_.:.n_
140443
13sess10y
: |en3oe
m £ %
*x ¥ TARE W
T b i ’ g ’ ; *
¥ 1 N + »ﬂwm M «w **M % VWM mﬂ m
r¥ gt F v l R x % 4 .*
* r i 3 1 , T N _J <4 + +ﬁ7 .3
x kot x ax Krod % ,.% ! x* x
» * pXooxh KK O KK %t
X { L ok, * XWW +*, Y
b * .
SRR T 5 TP S S
i . : * )
b S SRS w Py of U
+ - - TERE ) ; g ¥
« d ] ¥ w i * 1
ﬁv 3y w * %« ¥
& % S
* x Mw

peo A[INOH 104 N “SA (N)A/(1-X|W) 4 - (N)A)
doda3n 4 pue A_ax_xva - {M)A J0443 3SEDI3404
.A_nx_xv> peoT ummquow 24l ‘(¥)A peol |enidy

1 L ¥
4 +
+ _.wm % #
L DI T ®
*wﬂ .».T <« m +
% x e 0041
15 R
T K Dy ¥
wwmx FroxX & 4y
LR X *
M%T 4 .—.x x
; t*r.*x — 05" 1
¥
v *M. &
B4,
. W
—001°¢
UL O O
NAS VAvS | fydl HLYG3M ] 3L | NOW

w.

000°0

050" 1

-+ 09¢°¢

(OOOL X Mw N
H0YY3

A ANV A

v

(0001 x mw NI)



