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Introduction

Landing an autonomous helicopter on a vessel undergoing an
unknown vertical motion

The vessel oscillates vertically, but the parameter of its motion

(frequencies, amplitudes and phases) are unknown
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Introduction

� The problem: tracking of unknown trajectories and/or
rejection of unknown disturbances

� The technical approach: a feedback control that
incorporates an “internal model" of the exogenous inputs

� Main features:
� Continuous-time adaptation of the internal model
� Stabilization based on combined low-amplitude /

high-gain feedback
� Guaranteed convergence and robustness
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Helicopter model - rigid body

Mp̈ i = Rf b Jω̇b = −S(ωb)Jωb + τ b

Ṙ = RS(ωb) ⇒







q̇0 = −1
2
qTωb

q̇ = 1
2
[q0I + S(q)]ωb

pi position of the center of mass (inertial frame)

R rotation matrix, (q0, q) unit quaternions

ωb angular velocity (body frame)

f b external force (body frame)

τ b external torque (body frame)
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Helicopter model - control inputs

� TM

a b

�TT

?g ?g

TM�

TM Main thrust

TT Tail thrust

a Longitudinal deflection of the rotor plane

b Lateral deflection of the rotor plane
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Full model

f b =





XM

YM + YT

ZM



+RT





0

0

Mg





Main / tail rotors gravity

τ b =





τf1

τf2

τf3



+





RM

MM +MT

NM





Aerodynamic forces
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Full model

XM = −TM sin a RM = cM
b b−QM sin a

ZM = −TM cos a cos b MM = cM
a a+QM sin b

YM = TM sin b NM = −QM cos a cos b

YT = −TT MT = −cQ
T T

1.5
T −D

Q
T

QM = c
Q
M T 1.5

M +D
Q
M

τf1
= YMhM + ZMyM + YThT

τf2
= −XMhM + ZM`M

τf3
= −YM`M − YT`T
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Full model: structure

Mp̈ i = Rf b

6

Ṙ = RS(ωb)

Jω̇b = −S(ωb)Jωb + τ b

R

�

�

?

g

�
�
�
�

TM

TT

a
b

Force and torque
generation process

τ b

f b
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Simplified model

� We let

sin(a) = a , sin(b) = b , cos(a) = cos(b) = 1

� neglect the contribution of TM and TT along xb, yb

f b =





0

0

−TM



+R
T





0

0

Mg





� approximate τ b with

τ b(v) = A(TM)v +B(TM) , v := col(a, b, TT )
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Simplified model: structure

The simplified model neglects the weak couplings in the
force/moment generation mechanism

Mp̈ i = Rf b

6

Ṙ = RS(ωb)

Jω̇b = −S(ωb)Jωb + τ b

R

�

?
g

�

�
�
�

TM

TT

a
b

τ b

f b

?

�

TM

Force generation

Torque generation
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Simplified model

Since inertial and aerodynamic parameters are uncertain,

M = M0 +M∆ , J = J0 + J∆

A(TM) = A0(TM) +A∆(TM)

B(TM) = B0(TM) +B∆(TM)

All uncertain parameters are collected into a vector

µ = µ0 + µ∆ , µ∆ ∈ P ⊂ IRp

where P is a compact set.
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Problem statement

Control objective:

� Synchronization of z(t) with the vertical motion z∗(t) of the
ship, at a given safety distance H.
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Problem statement

Control objective:

� Synchronization of z(t) with the vertical motion z∗(t) of the
ship, at a given safety distance H.

� Smooth landing, H → 0, while keeping the center of mass
on target and the orientation constant.
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Problem statement

Control objective:

� Synchronization of z(t) with the vertical motion z∗(t) of the
ship, at a given safety distance H.

� Smooth landing, H → 0, while keeping the center of mass
on target and the orientation constant.

Reference trajectory:

(xref(t), yref(t), zref(t)) = (0, 0, H + z∗(t)) , Rref(t) = I

Applications of Nonlinear Output Regulation. CeSOS-NTNU 2005 – p.12/36



Problem Statement

The motion z∗(t) is modeled as the sum of a fixed number of
sinusoidal signals

z∗(t) =
N∑

i=1

Ai cos(Ωit+ ϕi)

of unknown amplitude, phase and frequency

(Ai, ϕi,Ωi) , i = 1, . . . , N
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Problem Statement

The problem fits naturally in the framework of nonlinear output
regulation theory, as zref(t) is generated by

exosystem







Ḣ = 0

ẇ = S(%)w

zref(t) = H + r(w)

where % = col(Ω1, . . . ,ΩN), r(w) = Qw

S(%) = diag(S1, . . . , SN) , Si =

(
0 Ωi

−Ωi 0

)
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Problem Statement

Given any (arbitrarily small) δ > 0,
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Problem Statement

Given any (arbitrarily small) δ > 0, design a controller

η̇ = ϕ(η, e, ė, q, ωb)

TM = ψTM
(η, e, ė, q, ωb)

v = ψ
v
(η, e, ė, q, ωb)

where e := (x, y, z − zref),
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Problem Statement

Given any (arbitrarily small) δ > 0, design a controller

η̇ = ϕ(η, e, ė, q, ωb)

TM = ψTM
(η, e, ė, q, ωb)

v = ψ
v
(η, e, ė, q, ωb)

where e := (x, y, z − zref), such that

lim
t→∞

|z(t) − zref(t)| = 0 , ‖e(t)‖ ≤ δ , ‖q(t)‖ ≤ δ , ∀ t ≥ T
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Problem Statement

Given any (arbitrarily small) δ > 0, design a controller

η̇ = ϕ(η, e, ė, q, ωb)

TM = ψTM
(η, e, ė, q, ωb)

v = ψ
v
(η, e, ė, q, ωb)

where e := (x, y, z − zref), such that

lim
t→∞

|z(t) − zref(t)| = 0 , ‖e(t)‖ ≤ δ , ‖q(t)‖ ≤ δ , ∀ t ≥ T

with a semi-global domain of attraction, for all µ∆ ∈ P .
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Controller structure

� The vertical error dynamics is stabilized wrapping a
nonlinear regulator around TM and ez(t), ėz(t)
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Controller structure

� The vertical error dynamics is stabilized wrapping a
nonlinear regulator around TM and ez(t), ėz(t)

� The design of the regulator is non-standard, since the
natural frequencies of the exosystem are unknown
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Controller structure

� The vertical error dynamics is stabilized wrapping a
nonlinear regulator around TM and ez(t), ėz(t)

� The design of the regulator is non-standard, since the
natural frequencies of the exosystem are unknown

� The lateral, longitudinal, and attitude dynamics are
stabilized using v as input.
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Controller structure

� The vertical error dynamics is stabilized wrapping a
nonlinear regulator around TM and ez(t), ėz(t)

� The design of the regulator is non-standard, since the
natural frequencies of the exosystem are unknown

� The lateral, longitudinal, and attitude dynamics are
stabilized using v as input.

� Note that we need to stabilize a 10-dimensional system
using a 3-dimensional input.
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Controller structure

� The vertical error dynamics is stabilized wrapping a
nonlinear regulator around TM and ez(t), ėz(t)

� The design of the regulator is non-standard, since the
natural frequencies of the exosystem are unknown

� The lateral, longitudinal, and attitude dynamics are
stabilized using v as input.

� Note that we need to stabilize a 10-dimensional system
using a 3-dimensional input.

The two subsystems are not decoupled!
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Controller structure

-

�

TM ez

-

�

v (ex, ey , q)-

�

Adaptive regulator

Vertical dynamics

Robust stabilizer

Lateral, longitudinal,
attitude dynamics

(TM , ez) q

A

B
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Vertical error dynamics

Mz̈ = − (1 − 2q2

1
− 2q2

2
)

︸ ︷︷ ︸
this may vanish

TM +Mg
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Vertical error dynamics

Mz̈ = − (1 − 2q2

1
− 2q2

2
)

︸ ︷︷ ︸
this may vanish

TM +Mg

choosing TM as

TM =
gM0 − u

1 − satc(2q2
1 + 2q2

2)
, 0 < c < 1 external control
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Vertical error dynamics

Mz̈ = − (1 − 2q2

1
− 2q2

2
)

︸ ︷︷ ︸
this may vanish

TM +Mg

choosing TM as

TM =
gM0 − u

1 − satc(2q2
1 + 2q2

2)
, 0 < c < 1 external control

we get

Mz̈ = φz
c(q)u+ g[M −M0φ

z
c(q)]

= u+ gM∆ , if q is small!
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Vertical error dynamics

If q(t) is kept small so that φz
c(q(t)) ≡ 1, the input u needed to keep

z(t) ≡ zref(t) is

uss(w, µ) = Mr̈(w) − gM∆ = MQS2(%)w − gM∆
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Vertical error dynamics

If q(t) is kept small so that φz
c(q(t)) ≡ 1, the input u needed to keep

z(t) ≡ zref(t) is

uss(w, µ) = Mr̈(w) − gM∆ = MQS2(%)w − gM∆

The control uss(w, µ) is generated by the internal model

∂τ

∂w
S(%)w = Φ(%)τ(w, µ)

uss = Γ(%)τ(w, µ)

where

τ(w, µ) =

(

−gM∆

Mw

)
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Design of the internal model

The internal model (Φ(%),Γ(%)) can not be used as such, as % is
unknown: we need a realization that is suitable for adaptation.
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Design of the internal model

The internal model (Φ(%),Γ(%)) can not be used as such, as % is
unknown: we need a realization that is suitable for adaptation.

Let F2 ∈ IR2N×2N be Hurwitz, and G2 ∈ IR2N×1 be such that (F2, G2) is
controllable.
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Design of the internal model

The internal model (Φ(%),Γ(%)) can not be used as such, as % is
unknown: we need a realization that is suitable for adaptation.

Let F2 ∈ IR2N×2N be Hurwitz, and G2 ∈ IR2N×1 be such that (F2, G2) is
controllable.

Then, there exists H2 ∈ IR1×2N such that the pair

F =




0 H2

−G2 F2



 , G =




0

G2
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Design of the internal model

The internal model (Φ(%),Γ(%)) can not be used as such, as % is
unknown: we need a realization that is suitable for adaptation.

Let F2 ∈ IR2N×2N be Hurwitz, and G2 ∈ IR2N×1 be such that (F2, G2) is
controllable.

Then, there exists H2 ∈ IR1×2N such that the pair

F =




0 H2

−G2 F2



 , G =




0

G2





is controllable, and F is Hurwitz.
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Design of the internal model

Then, for any % ∈ IRN , there exists Ψ2,% ∈ IR1×2N such that

Ψ% = (1 Ψ2,%)

assigns the eigenvalues of Φ(%) to F +GΨ%,
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Design of the internal model

Then, for any % ∈ IRN , there exists Ψ2,% ∈ IR1×2N such that

Ψ% = (1 Ψ2,%)

assigns the eigenvalues of Φ(%) to F +GΨ%, hence

(Φ(%), Γ(%)) is similar to (F +GΨ%, Ψ%)
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Design of the internal model

Then, for any % ∈ IRN , there exists Ψ2,% ∈ IR1×2N such that

Ψ% = (1 Ψ2,%)

assigns the eigenvalues of Φ(%) to F +GΨ%, hence

(Φ(%), Γ(%)) is similar to (F +GΨ%, Ψ%)

The advantage is that the uncertainties are now lumped in Ψ%.

- -- ---Φ(%) Γ(%) G F Ψ%

Applications of Nonlinear Output Regulation. CeSOS-NTNU 2005 – p.21/36



Design of the regulator

We replace Ψ% by an estimate Ψ̂ = (1 Ψ̂2), and implement the
adaptive internal model-based regulator







ξ̇ = (F +GΨ̂) ξ +Gust

d

dt
Ψ̂2 = γ−1ξT

2
ust , γ > 0

u = Ψ̂ξ + ust

with ξ = col(ξ1, ξ2) ∈ IR× IR2N , where the stabilizing control ust is
selected as the high-gain feedback

ust = −k2(ėz + k1ez) , k1, k2 > 0 .
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Regulator structure

- - -

6

-

�

+
adaptive

internal model

high-gain
stabilizer

vertical error
dynamics

saturated
control

ezTMu

ust

The dynamic regulator yields boundedness of all internal variables.

It steers asymptotically the vertical error to zero, only if the attitude
error is kept sufficiently small.
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Regulator structure

- - -

6

-

�

+
adaptive

internal model

high-gain
stabilizer

vertical error
dynamics

saturated
control

ezTMu

ust

The dynamic regulator yields boundedness of all internal variables.

It steers asymptotically the vertical error to zero, only if the attitude
error is kept sufficiently small.

⇒ We need finite-time convergence of q(t) to a “small” ball
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Lateral/ longitudinal dynamics

The choice of TM to regulate the vertical error dynamics affects the
lateral and longitudinal dynamics as well.

ẋ = x2

Mẋ2 = −d(t)q0q2 +m(q, t)q1q3 + nx(q)y
z
(ez, w)

ẏ = y2

Mẏ2 = d(t)q0q1 +m(q, t)q2q3 + ny(q)y
z
(ez, w)

The dynamics are time-varying due to the exogenous system, and per-

turbed by ez(t) and w(t).
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Lateral/ longitudinal dynamics

vanishes asymptotically if q is small

closed-loop
vertical error

dynamics

Mẏ2 = d(t)q0(t)q1 + m(q, t)q2q3+

+ny(q)yz

Mẋ2 = −d(t)q0(t)q2 + m(q, t)q1q3+

+nx(q)yz

q̇ = 1

2
[q0I + S(q)]ωb

Jω̇b = −S(ωb)Jωb+

+A(TM )v + B(TM )

6

-

6

-

�
vq

TM

yz

(q, q0)
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Multi-objective control

The only DOF left is the choice of v, which must accomplish the
following tasks:

� Robustly stabilize the attitude dynamics, sending q(t) in a
neighborhood of the origin in finite time
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Multi-objective control

The only DOF left is the choice of v, which must accomplish the
following tasks:

� Robustly stabilize the attitude dynamics, sending q(t) in a
neighborhood of the origin in finite time

� Render the lateral/longitudinal dynamics Input-to-State stable with
respect to the disturbance induced by the vertical dynamics
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Multi-objective control

The only DOF left is the choice of v, which must accomplish the
following tasks:

� Robustly stabilize the attitude dynamics, sending q(t) in a
neighborhood of the origin in finite time

� Render the lateral/longitudinal dynamics Input-to-State stable with
respect to the disturbance induced by the vertical dynamics

� Stabilize the interconnected subsystem (lat./long./attitude)
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Multi-objective control

q̇ = 1

2
[q0I + S(q)]ωb

Jω̇b = −S(ωb)Jωb+

+A(TM )v + B(TM )

Mẏ2 = d(t)q0(t)q1 + · · ·

Mẋ2 = −d(t)q0(t)q2 + · · ·

qv

?

TM yz(ez, w)

-

?

-

In principle, we could use q as a virtual control for the lateral/long.
dynamics, but the system is not in feedback form.
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Multi-objective control

q̇ = 1

2
[q0I + S(q)]ωb

Jω̇b = −S(ωb)Jωb+

+A(TM )v + B(TM )

Mẏ2 = d(t)q0(t)q1 + · · ·

Mẋ2 = −d(t)q0(t)q2 + · · ·

qv

?

TM yz(ez, w)

-

?

-

In principle, we could use q as a virtual control for the lateral/long.
dynamics, but the system is not in feedback form.

However, the lateral/long. dynamics is in feedforward form and the
attitude dynamics is in strict feedback form
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Multi-objective control

q̇ = 1

2
[q0I + S(q)]ωb

Jω̇b = −S(ωb)Jωb+

+A(TM )v + B(TM )

Mẏ2 = d(t)q0(t)q1 + · · ·

Mẋ2 = −d(t)q0(t)q2 + · · ·

qv

?

TM yz(ez, w)

-

?

-

In principle, we could use q as a virtual control for the lateral/long.
dynamics, but the system is not in feedback form.

However, the lateral/long. dynamics is in feedforward form and the
attitude dynamics is in strict feedback form

� Use a combined high/gain - low/amplitude control to induce a
time-scale separation between the two subsystems.

Applications of Nonlinear Output Regulation. CeSOS-NTNU 2005 – p.27/36



Next step: attitude dynamics

Since

τ b(v) = A(TM)v +B(TM) ,
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Next step: attitude dynamics

Since

τ b(v) = A(TM)v +B(TM) ,

choose

v = A−1
0 (TM)[ṽ − B0(TM)]
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Next step: attitude dynamics

Since

τ b(v) = A(TM)v +B(TM) ,

choose

v = A−1
0 (TM)[ṽ − B0(TM)]

where

ṽ = −K4 (ω +K3q)
︸ ︷︷ ︸

+K4K3 u2

high-gain feedback low-amplitude, ‖u2(t)‖≤ λ2
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Next step: attitude dynamics

Since

τ b(v) = A(TM)v +B(TM) ,

choose

v = A−1
0 (TM)[ṽ − B0(TM)]

where

ṽ = −K4 (ω +K3q)
︸ ︷︷ ︸

+K4K3 u2

high-gain feedback low-amplitude, ‖u2(t)‖≤ λ2

The control u2 will be designed to stabilize the lateral dynamics
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Attitude dynamics: main result

It can be shown that, for any compact set of initial conditions for
(q(t), ω(t)), and for any T ∗ > 0 there exists a choice of K3 > 0, K4 > 0

and λ2 > 0 such that:

� The trajectory (q(t), ω(t)) is bounded for all t ≥ 0, and q0(t) does
not change sign
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Attitude dynamics: main result

It can be shown that, for any compact set of initial conditions for
(q(t), ω(t)), and for any T ∗ > 0 there exists a choice of K3 > 0, K4 > 0

and λ2 > 0 such that:

� The trajectory (q(t), ω(t)) is bounded for all t ≥ 0, and q0(t) does
not change sign

� φz
c(q(t)) = 1 for all t ≥ T ?.
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Attitude dynamics: main result

It can be shown that, for any compact set of initial conditions for
(q(t), ω(t)), and for any T ∗ > 0 there exists a choice of K3 > 0, K4 > 0

and λ2 > 0 such that:

� The trajectory (q(t), ω(t)) is bounded for all t ≥ 0, and q0(t) does
not change sign

� φz
c(q(t)) = 1 for all t ≥ T ?.

Hence, q(t) is brought in finite time in a neighborhood of the origin.
This is already enough to conclude that

lim
t→∞

|z(t) − zref(t)| = 0 .
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Putting everything together

Now it’s time to design the bounded control u2 to stabilize the
interconnection of the attitude and the lateral/long. dynamics.

We will use q1 and q2 as “virtual controls" for y and x respectively.

To remove drifts, we augment the dynamics with the bank of
integrators

η̇x = x , η̇y = y , η̇q = q3

and introduce smooth vector saturation functions σ(s):

|σ′(s)| := |dσ(s)/ds| ≤ 2 ∀ s, sσ(s) > 0 ∀ s 6= 0, σ(0) = 0.

σ(s) = sgn(s) for |s| ≥ 1. |s| < |σ(s)| < 1 for |s| < 1.
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Putting everything together

Define new state variables as

ζ0 :=




ηy

ηx



 , ζ1 :=




y

x



+ λ0σ(
K0

λ0

ζ0)

ζ2 :=







y2

x2

ηq







+ λ1σ(
K1

λ1
ζ1)

and choose the “nested saturation" control

u2 = −λ2σ(
K2

λ2

ζ2)
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Main result

It can be shown that there exists a choice of the gains K0, K1, K2 and

the saturation levels λ0, λ1, λ2 such that:

Applications of Nonlinear Output Regulation. CeSOS-NTNU 2005 – p.32/36



Main result

It can be shown that there exists a choice of the gains K0, K1, K2 and
the saturation levels λ0, λ1, λ2 such that:

� The interconnected system satisfies an asymptotic I/O bound with
respect to the external disturbance ⇒ all trajectories are bounded.
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Main result

It can be shown that there exists a choice of the gains K0, K1, K2 and
the saturation levels λ0, λ1, λ2 such that:

� The system is indeed a small-gain theorem interconnection of two
(weak) ISS-systems ⇒ overall system is (weakly) ISS, and the
gain can be assigned through K4.

(ζ0, ζ1, ζ2)

(q, ω) �

u2-

q
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A case study: a small AUV

For the simulations, we use the full nonlinear model, with parameter
uncertainties up to 20% of the nominal values.

Jx = 0.142413 Jy = 0.271256 Jz = 0.271492

`M = −0.015 yM = 0 hM = 0.2943

`T = 0.8715 hT = 0.1154 M = 4.9

C
Q
M

= 0.004452 D
Q
M

= 0.6304 c
Q
M

= 25.23

C
Q
T

= 0.005066 D
Q
T

= 0.008488 c
Q
T

= 25.23

Nominal parameters of the plant

Vertical dynamics k1 = 0.1 k2 = 45 γ = 1

Lateral/longit. dynamics K0 = 0.09 K1 = 0.081 K2 = 0.75

Attitude dynamics K3 = 0.8 K4 = 30 ε = 0.1

Saturation levels λ0 = 2000 λ1 = 8.1 λ2 = 0.2952

Controller parameters
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Simulation results - vertical error
Regulation error z(t) − z∗(t)
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Simulation results - attitude
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Simulation results - attitude

Steady-state behavior of the attitude
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Simulation results - lateral/ long.
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