Autonomous Helicopter Landing A Nonlinear Output Regulation Perspective

Andrea Serrani

Department of Electrical and Computer Engineering Collaborative Center for Control Sciences

The Ohio State University

Introduction

Landing an autonomous helicopter on a vessel undergoing an unknown vertical motion

The vessel oscillates vertically, but the parameter of its motion (frequencies, amplitudes and phases) are unknown

Introduction

- The problem: tracking of unknown trajectories and/or rejection of unknown disturbances
- The technical approach: a feedback control that incorporates an "internal model" of the exogenous inputs
- Main features:
 - Continuous-time adaptation of the internal model
 - Stabilization based on combined low-amplitude / high-gain feedback
 - Guaranteed convergence and robustness

Helicopter model - rigid body

$$\begin{split} M\ddot{p}^{i} &= Rf^{b} \qquad J\dot{\omega}^{b} = -S(\omega^{b})J\omega^{b} + \tau^{b} \\ \dot{R} &= RS(\omega^{b}) \implies \begin{cases} \dot{q}_{0} &= -\frac{1}{2}q^{T}\omega^{b} \\ \dot{q} &= -\frac{1}{2}[q_{0}I + S(q)]\omega^{b} \end{cases} \end{split}$$

- p^i position of the center of mass (inertial frame)
- R rotation matrix, (q_0, q) unit quaternions
- ω^{b} angular velocity (body frame)
- f^b external force (body frame)
- τ^{b} external torque (body frame)

Helicopter model - control inputs

- T_M Main thrust
- T_T Tail thrust
- *a* Longitudinal deflection of the rotor plane
- *b* Lateral deflection of the rotor plane

Full model

Full model

$$X_M = -T_M \sin a \qquad R_M = c_b^M b - Q_M \sin a$$

$$Z_M = -T_M \cos a \cos b \qquad M_M = c_a^M a + Q_M \sin b$$

$$Y_M = T_M \sin b \qquad N_M = -Q_M \cos a \cos b$$

$$Y_T = -T_T \qquad M_T = -c_T^Q T_T^{1.5} - D_T^Q$$

$$Q_M = c_M^Q T_M^{1.5} + D_M^Q$$

$$\tau_{f_1} = Y_M h_M + Z_M y_M + Y_T h_T$$

$$\tau_{f_2} = -X_M h_M + Z_M \ell_M$$

$$\tau_{f_3} = -Y_M \ell_M - Y_T \ell_T$$

Full model: structure

Simplified model

We let

$$\sin(a) = a$$
, $\sin(b) = b$, $\cos(a) = \cos(b) = 1$

 \blacksquare neglect the contribution of T_M and T_T along x^b , y^b

$$f^{b} = \begin{pmatrix} 0 \\ 0 \\ -T_{M} \end{pmatrix} + R^{\mathrm{T}} \begin{pmatrix} 0 \\ 0 \\ Mg \end{pmatrix}$$

 \blacksquare approximate τ^b with

 $\tau^{b}(\mathbf{v}) = A(T_M)\mathbf{v} + B(T_M), \quad \mathbf{v} := \operatorname{col}(a, b, T_T)$

Simplified model: structure

The simplified model neglects the weak couplings in the force/moment generation mechanism

Simplified model

Since inertial and aerodynamic parameters are uncertain, $M = M_0 + M_\Delta$, $J = J_0 + J_\Delta$ $A(T_M) = A_0(T_M) + A_\Delta(T_M)$ $B(T_M) = B_0(T_M) + B_\Delta(T_M)$

All uncertain parameters are collected into a vector $\mu = \mu_0 + \mu_\Delta, \quad \mu_\Delta \in \mathcal{P} \subset {I\!\!R}^p$

where \mathcal{P} is a compact set.

Control objective:

Synchronization of z(t) with the vertical motion $z^*(t)$ of the ship, at a given safety distance H.

Control objective:

- Synchronization of z(t) with the vertical motion $z^*(t)$ of the ship, at a given safety distance H.
- Smooth landing, $H \rightarrow 0$, while keeping the center of mass on target and the orientation constant.

Control objective:

- Synchronization of z(t) with the vertical motion $z^*(t)$ of the ship, at a given safety distance H.
- Smooth landing, $H \rightarrow 0$, while keeping the center of mass on target and the orientation constant.

Reference trajectory:

$$(x^{\text{ref}}(t), y^{\text{ref}}(t), z^{\text{ref}}(t)) = (0, 0, H + z^{*}(t)), \quad R^{\text{ref}}(t) = I$$

The motion $z^*(t)$ is modeled as the sum of a fixed number of sinusoidal signals

$$z^*(t) = \sum_{i=1}^N A_i \cos(\Omega_i t + \varphi_i)$$

of *unknown* amplitude, phase and frequency

$$(A_i, \varphi_i, \Omega_i), \qquad i = 1, \dots, N$$

The problem fits naturally in the framework of *nonlinear output regulation theory*, as $z^{ref}(t)$ is generated by

exosystem
$$\begin{cases} \dot{H} = 0 \\ \dot{w} = S(\varrho)w \\ z^{\text{ref}}(t) = H + r(w) \end{cases}$$

where

$$\varrho = \operatorname{col}(\Omega_1, \dots, \Omega_N), \quad r(w) = Qw$$
$$S(\varrho) = \operatorname{diag}(S_1, \dots, S_N), \quad S_i = \begin{pmatrix} 0 & \Omega_i \\ -\Omega_i & 0 \end{pmatrix}$$

Given any (arbitrarily small) $\delta > 0$,

Given any (arbitrarily small) $\delta > 0$, design a controller

$$egin{array}{rl} \dot{\eta} &=& arphi(\eta, \mathbf{e}, \dot{\mathbf{e}}, q, \omega^b) \ T_M &=& \psi_{T_M}(\eta, \mathbf{e}, \dot{\mathbf{e}}, q, \omega^b) \ \mathbf{v} &=& \psi_{\mathbf{v}}(\eta, \mathbf{e}, \dot{\mathbf{e}}, q, \omega^b) \end{array}$$

where $\mathbf{e} := (x, y, z - z^{\mathrm{ref}})$,

Given any (arbitrarily small) $\delta > 0$, design a controller

$$egin{array}{rl} \dot{\eta} &=& arphi(\eta, \mathbf{e}, \dot{\mathbf{e}}, q, \omega^b) \ T_M &=& \psi_{T_M}(\eta, \mathbf{e}, \dot{\mathbf{e}}, q, \omega^b) \ \mathbf{v} &=& \psi_{\mathbf{v}}(\eta, \mathbf{e}, \dot{\mathbf{e}}, q, \omega^b) \end{array}$$

where $\mathbf{e} := (x, y, z - z^{\text{ref}})$, such that $\lim_{t \to \infty} |z(t) - z^{\text{ref}}(t)| = 0, \quad \|\mathbf{e}(t)\| \le \delta, \ \|q(t)\| \le \delta, \ \forall t \ge T$

Given any (arbitrarily small) $\delta > 0$, design a controller

$$egin{array}{rl} \dot{\eta} &=& arphi(\eta, \mathbf{e}, \dot{\mathbf{e}}, q, \omega^b) \ T_M &=& \psi_{T_M}(\eta, \mathbf{e}, \dot{\mathbf{e}}, q, \omega^b) \ \mathbf{v} &=& \psi_{\mathbf{v}}(\eta, \mathbf{e}, \dot{\mathbf{e}}, q, \omega^b) \end{array}$$

where $\mathbf{e} := (x, y, z - z^{\text{ref}})$, such that $\lim_{t \to \infty} |z(t) - z^{\text{ref}}(t)| = 0, \quad ||\mathbf{e}(t)|| \le \delta, \ ||q(t)|| \le \delta, \ \forall t \ge T$

with a semi-global domain of attraction, for all $\mu_{\Delta} \in \mathcal{P}$.

The vertical error dynamics is stabilized wrapping a nonlinear regulator around T_M and $e_z(t)$, $\dot{e}_z(t)$

- The vertical error dynamics is stabilized wrapping a nonlinear regulator around T_M and $e_z(t)$, $\dot{e}_z(t)$
- The design of the regulator is non-standard, since the natural frequencies of the exosystem are unknown

- The vertical error dynamics is stabilized wrapping a nonlinear regulator around T_M and $e_z(t)$, $\dot{e}_z(t)$
- The design of the regulator is non-standard, since the natural frequencies of the exosystem are unknown
- The lateral, longitudinal, and attitude dynamics are stabilized using v as input.

- The vertical error dynamics is stabilized wrapping a nonlinear regulator around T_M and $e_z(t)$, $\dot{e}_z(t)$
- The design of the regulator is non-standard, since the natural frequencies of the exosystem are unknown
- The lateral, longitudinal, and attitude dynamics are stabilized using v as input.
- Note that we need to stabilize a 10-dimensional system using a 3-dimensional input.

- The vertical error dynamics is stabilized wrapping a nonlinear regulator around T_M and $e_z(t)$, $\dot{e}_z(t)$
- The design of the regulator is non-standard, since the natural frequencies of the exosystem are unknown
- The lateral, longitudinal, and attitude dynamics are stabilized using v as input.
- Note that we need to stabilize a 10-dimensional system using a 3-dimensional input.

The two subsystems are not decoupled!

 $M\ddot{z} = -(1 - 2q_1^2 - 2q_2^2)T_M + Mg$

this may vanish

$$M\ddot{z} = -(1 - 2q_1^2 - 2q_2^2)T_M + Mg$$

this may vanish

choosing T_M as

$$T_M = \frac{gM_0 - (u)}{1 - \operatorname{sat}_c(2q_1^2 + 2q_2^2)}, \quad 0 < c < 1 \quad \text{external control}$$

$$M\ddot{z} = -\underbrace{(1 - 2q_1^2 - 2q_2^2)}_{M}T_M + Mg$$

this may vanish

choosing T_M as

$$T_M = \frac{gM_0 - (u)}{1 - \operatorname{sat}_c(2q_1^2 + 2q_2^2)}, \quad 0 < c < 1 \quad \text{external control}$$

we get

$$\begin{aligned} M\ddot{z} &= \phi_c^z(q)u + g[M - M_0\phi_c^z(q)] \\ &= u + gM_\Delta, \quad \text{if } q \text{ is small!} \end{aligned}$$

If q(t) is kept small so that $\phi_c^z(q(t)) \equiv 1$, the input u needed to keep $z(t) \equiv z^{ref}(t)$ is

 $u_{\rm ss}(w,\mu) = M\ddot{r}(w) - gM_{\Delta} = MQS^2(\varrho)w - gM_{\Delta}$

If q(t) is kept small so that $\phi_c^z(q(t)) \equiv 1$, the input u needed to keep $z(t) \equiv z^{ref}(t)$ is

 $u_{\rm ss}(w,\mu) = M\ddot{r}(w) - gM_{\Delta} = MQS^2(\varrho)w - gM_{\Delta}$

The control $u_{ss}(w,\mu)$ is generated by the internal model

$$\frac{\partial \tau}{\partial w} S(\varrho) w = \Phi(\varrho) \tau(w, \mu)$$
$$u_{ss} = \Gamma(\varrho) \tau(w, \mu)$$

where

$$\tau(w,\mu) = \left(\begin{array}{c} -gM_{\Delta} \\ Mw \end{array}\right)$$

The internal model $(\Phi(\varrho), \Gamma(\varrho))$ can not be used as such, as ϱ is unknown: we need a realization that is suitable for adaptation.

The internal model $(\Phi(\varrho), \Gamma(\varrho))$ can not be used as such, as ϱ is unknown: we need a realization that is suitable for adaptation.

Let $F_2 \in \mathbb{R}^{2N \times 2N}$ be Hurwitz, and $G_2 \in \mathbb{R}^{2N \times 1}$ be such that (F_2, G_2) is controllable.

The internal model $(\Phi(\varrho), \Gamma(\varrho))$ can not be used as such, as ϱ is unknown: we need a realization that is suitable for adaptation.

Let $F_2 \in \mathbb{R}^{2N \times 2N}$ be Hurwitz, and $G_2 \in \mathbb{R}^{2N \times 1}$ be such that (F_2, G_2) is controllable.

Then, there exists $H_2 \in I\!\!R^{1 \times 2N}$ such that the pair

$$F = \begin{pmatrix} 0 & H_2 \\ -G_2 & F_2 \end{pmatrix}, \qquad G = \begin{pmatrix} 0 \\ G_2 \end{pmatrix}$$

The internal model $(\Phi(\varrho), \Gamma(\varrho))$ can not be used as such, as ϱ is unknown: we need a realization that is suitable for adaptation.

Let $F_2 \in \mathbb{R}^{2N \times 2N}$ be Hurwitz, and $G_2 \in \mathbb{R}^{2N \times 1}$ be such that (F_2, G_2) is controllable.

Then, there exists $H_2 \in I\!\!R^{1 \times 2N}$ such that the pair

$$F = \begin{pmatrix} 0 & H_2 \\ -G_2 & F_2 \end{pmatrix}, \qquad G = \begin{pmatrix} 0 \\ G_2 \end{pmatrix}$$

is controllable, and F is Hurwitz.

Then, for any $\rho \in I\!\!R^N$, there exists $\Psi_{2,\rho} \in I\!\!R^{1 \times 2N}$ such that

 $\Psi_{\varrho} = (1 \ \Psi_{2,\varrho})$

assigns the eigenvalues of $\Phi(\varrho)$ to $F + G\Psi_{\varrho}$,

Then, for any $\rho \in I\!\!R^N$, there exists $\Psi_{2,\rho} \in I\!\!R^{1 \times 2N}$ such that

$$\Psi_arrho = (1 \; \Psi_{2, arrho})$$

assigns the eigenvalues of $\Phi(\varrho)$ to $F + G\Psi_{\varrho}$, hence

$$(\Phi(\varrho), \Gamma(\varrho))$$
 is similar to $(F + G\Psi_{\varrho}, \Psi_{\varrho})$

Then, for any $\rho \in I\!\!R^N$, there exists $\Psi_{2,\rho} \in I\!\!R^{1 \times 2N}$ such that

$$\Psi_{\varrho} = (1 \ \Psi_{2,\varrho})$$

assigns the eigenvalues of $\Phi(\varrho)$ to $F + G\Psi_{\varrho}$, hence

$$(\Phi(\varrho), \Gamma(\varrho))$$
 is similar to $(F + G\Psi_{\varrho}, \Psi_{\varrho})$

The advantage is that the uncertainties are now lumped in Ψ_{ϱ} .

$$\Phi(\varrho) \longrightarrow \Gamma(\varrho) \longrightarrow G \longrightarrow F \longrightarrow \Psi_{\varrho}$$

Design of the regulator

We replace Ψ_{ϱ} by an estimate $\hat{\Psi} = (1 \ \hat{\Psi}_2)$, and implement the adaptive internal model-based regulator

$$\dot{\xi} = (F + G\hat{\Psi})\xi + Gu_{\rm st}$$
$$\frac{\mathrm{d}}{\mathrm{d}t}\hat{\Psi}_2 = \gamma^{-1}\xi_2^{\mathrm{T}}u_{\rm st}, \quad \gamma > 0$$
$$u = \hat{\Psi}\xi + u_{\rm st}$$

with $\xi = \operatorname{col}(\xi_1, \xi_2) \in \mathbb{I} \times \mathbb{I} ^{2N}$, where the stabilizing control u_{st} is selected as the high-gain feedback

$$u_{\rm st} = -k_2(\dot{e}_z + k_1 e_z), \quad k_1, k_2 > 0.$$

Regulator structure

The dynamic regulator yields boundedness of all internal variables. It steers asymptotically the vertical error to zero, only if the attitude error is kept sufficiently small.

Regulator structure

The dynamic regulator yields boundedness of all internal variables. It steers asymptotically the vertical error to zero, only if the attitude error is kept sufficiently small.

 \Rightarrow We need finite-time convergence of q(t) to a "small" ball

Lateral/ longitudinal dynamics

The choice of T_M to regulate the vertical error dynamics affects the lateral and longitudinal dynamics as well.

$$\begin{aligned} \dot{x} &= x_2 \\ M\dot{x}_2 &= -d(t)q_0q_2 + m(\mathbf{q}, t)q_1q_3 + n_x(\mathbf{q})y_z(e_z, w) \\ \dot{y} &= y_2 \\ M\dot{y}_2 &= d(t)q_0q_1 + m(\mathbf{q}, t)q_2q_3 + n_y(\mathbf{q})y_z(e_z, w) \end{aligned}$$

The dynamics are time-varying due to the exogenous system, and perturbed by $e_z(t)$ and w(t).

Lateral/ longitudinal dynamics

The only DOF left is the choice of \mathbf{v} , which must accomplish the following tasks:

Robustly stabilize the attitude dynamics, sending q(t) in a neighborhood of the origin *in finite time*

The only DOF left is the choice of \mathbf{v} , which must accomplish the following tasks:

- Robustly stabilize the attitude dynamics, sending q(t) in a neighborhood of the origin *in finite time*
- Render the lateral/longitudinal dynamics Input-to-State stable with respect to the disturbance induced by the vertical dynamics

The only DOF left is the choice of \mathbf{v} , which must accomplish the following tasks:

- Robustly stabilize the attitude dynamics, sending q(t) in a neighborhood of the origin *in finite time*
- Render the lateral/longitudinal dynamics Input-to-State stable with respect to the disturbance induced by the vertical dynamics
- Stabilize the interconnected subsystem (lat./long./attitude)

In principle, we could use q as a virtual control for the lateral/long. dynamics, but the system is not in *feedback form*.

In principle, we could use *q* as a virtual control for the lateral/long. dynamics, but the system is not in *feedback form*. However, the lateral/long. dynamics is in *feedforward form* and the attitude dynamics is in *strict feedback form*

In principle, we could use *q* as a virtual control for the lateral/long. dynamics, but the system is **not** in *feedback form*. However, the lateral/long. dynamics is in *feedforward form* and the attitude dynamics is in *strict feedback form*

Use a combined high/gain - low/amplitude control to induce a time-scale separation between the two subsystems.

Since

$$\tau^b(\mathbf{v}) = A(T_M)\mathbf{v} + B(T_M)\,,$$

Since

$$\tau^b(\mathbf{v}) = A(T_M)\mathbf{v} + B(T_M)\,,$$

choose

$$\mathbf{v} = A_0^{-1}(T_M)[\tilde{\mathbf{v}} - B_0(T_M)]$$

Since

$$\tau^b(\mathbf{v}) = A(T_M)\mathbf{v} + B(T_M)\,,$$

choose

$$\mathbf{v} = A_0^{-1}(T_M)[\tilde{\mathbf{v}} - B_0(T_M)]$$

where

$$\tilde{\mathbf{v}} = -K_4 \left(\omega + K_3 q \right) + K_4 K_3 \left(u_2 \right)$$

high-gain feedback low-amplitude, $||u_2(t)|| \le \lambda_2$

Since

$$\tau^b(\mathbf{v}) = A(T_M)\mathbf{v} + B(T_M)\,,$$

choose

$$\mathbf{v} = A_0^{-1}(T_M)[\tilde{\mathbf{v}} - B_0(T_M)]$$

where

$$\tilde{\mathbf{v}} = -K_4 \left(\omega + K_3 q \right) + K_4 K_3 \left(u_2 \right)$$

high-gain feedback low-amplitude, $||u_2(t)|| \le \lambda_2$

The control u_2 will be designed to stabilize the lateral dynamics

Attitude dynamics: main result

It can be shown that, for any compact set of initial conditions for $(q(t), \omega(t))$, and for any $T^* > 0$ there exists a choice of $K_3 > 0$, $K_4 > 0$ and $\lambda_2 > 0$ such that:

The trajectory $(q(t), \omega(t))$ is bounded for all $t \ge 0$, and $q_0(t)$ does not change sign

Attitude dynamics: main result

It can be shown that, for any compact set of initial conditions for $(q(t), \omega(t))$, and for any $T^* > 0$ there exists a choice of $K_3 > 0$, $K_4 > 0$ and $\lambda_2 > 0$ such that:

The trajectory $(q(t), \omega(t))$ is bounded for all $t \ge 0$, and $q_0(t)$ does not change sign

• $\phi_c^z(q(t)) = 1$ for all $t \ge T^*$.

Attitude dynamics: main result

It can be shown that, for any compact set of initial conditions for $(q(t), \omega(t))$, and for any $T^* > 0$ there exists a choice of $K_3 > 0$, $K_4 > 0$ and $\lambda_2 > 0$ such that:

The trajectory $(q(t), \omega(t))$ is bounded for all $t \ge 0$, and $q_0(t)$ does not change sign

• $\phi_c^z(q(t)) = 1$ for all $t \ge T^*$.

Hence, q(t) is brought in finite time in a neighborhood of the origin. This is already enough to conclude that

$$\lim_{t \to \infty} |z(t) - z^{\operatorname{ref}}(t)| = 0 \; .$$

Putting everything together

Now it's time to design the bounded control u_2 to stabilize the interconnection of the attitude and the lateral/long. dynamics. We will use q_1 and q_2 as "virtual controls" for y and x respectively. To remove drifts, we augment the dynamics with the bank of integrators

$$\dot{\eta}_x = x \,, \quad \dot{\eta}_y = y \,, \quad \dot{\eta}_q = q_3$$

and introduce smooth vector saturation functions $\sigma(s)$:

 $\begin{aligned} |\sigma'(s)| &:= |d\sigma(s)/ds| \le 2 \forall s, \quad s\sigma(s) > 0 \forall s \neq 0, \ \sigma(0) = 0. \end{aligned}$ $\sigma(s) &= \operatorname{sgn}(s) \text{ for } |s| \ge 1. \qquad |s| < |\sigma(s)| < 1 \text{ for } |s| < 1. \end{aligned}$

Putting everything together

Define new state variables as

$$\zeta_0 := \begin{pmatrix} \eta_y \\ \eta_x \end{pmatrix}, \quad \zeta_1 := \begin{pmatrix} y \\ x \end{pmatrix} + \lambda_0 \sigma(\frac{K_0}{\lambda_0}\zeta_0)$$

$$\zeta_2 := \begin{pmatrix} y_2 \\ x_2 \\ \eta_q \end{pmatrix} + \lambda_1 \sigma(\frac{K_1}{\lambda_1}\zeta_1)$$

and choose the "nested saturation" control

$$u_2 = -\lambda_2 \sigma(\frac{K_2}{\lambda_2}\zeta_2)$$

Main result

It can be shown that there exists a choice of the gains K_0 , K_1 , K_2 and the saturation levels λ_0 , λ_1 , λ_2 such that:

Main result

It can be shown that there exists a choice of the gains K_0 , K_1 , K_2 and the saturation levels λ_0 , λ_1 , λ_2 such that:

The interconnected system satisfies an asymptotic I/O bound with respect to the external disturbance \Rightarrow all trajectories are bounded.

Main result

It can be shown that there exists a choice of the gains K_0 , K_1 , K_2 and the saturation levels λ_0 , λ_1 , λ_2 such that:

The system is indeed a small-gain theorem interconnection of two (weak) ISS-systems \Rightarrow overall system is (weakly) ISS, and the gain can be assigned through K_4 .

A case study: a small AUV

For the simulations, we use the full nonlinear model, with parameter uncertainties up to 20% of the nominal values.

$J_x = 0.142413$	$J_y = 0.271256$	$J_z = 0.271492$
$\ell_M = -0.015$	$y_M = 0$	$h_M = 0.2943$
$\ell_T = 0.8715$	$h_T = 0.1154$	M = 4.9
$C_M^Q = 0.004452$	$D_M^Q = 0.6304$	$c_M^Q = 25.23$
$C_T^Q = 0.005066$	$D_T^Q = 0.008488$	$c_T^Q = 25.23$

Nominal parameters of the plant

Vertical dynamics	$k_1 = 0.1$	$k_2 = 45$	$\gamma = 1$
Lateral/longit. dynamics	$K_0 = 0.09$	$K_1 = 0.081$	$K_2 = 0.75$
Attitude dynamics	$K_3 = 0.8$	$K_4 = 30$	arepsilon=0.1
Saturation levels	$\lambda_0 = 2000$	$\lambda_1 = 8.1$	$\lambda_2 = 0.2952$

Controller parameters

Simulation results - vertical error

Regulation error $z(t) - z^*(t)$

Simulation results - attitude

Simulation results - attitude

Steady-state behavior of the attitude

Simulation results - lateral/ long.

