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Problem formulation

We consider nonlinear systems of the form

ẋ = f(x, u, w, µ)

y = h(x,w, µ)

with state x ∈ IRn, control input u ∈ IR, output y ∈ IR,
unknown plant parameters µ ∈ P ⊂ IRp.
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Problem formulation

We consider nonlinear systems of the form

ẋ = f(x, u, w, µ)

y = h(x,w, µ)

with state x ∈ IRn, control input u ∈ IR, output y ∈ IR,
unknown plant parameters µ ∈ P ⊂ IRp.

The exogenous signal w ∈ IRd is generated by a linear,
neutrally stable exosystem

ẇ = S(σ)w

with unknown parameters σ ∈ Σ ⊂ IRν.
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Problem formulation

We denote with
e1 = y − q(w, µ)

the regulated error, being q(w, µ) a smooth function.
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Problem formulation

We denote with
e1 = y − q(w, µ)

the regulated error, being q(w, µ) a smooth function.

The control input is to be provided by an error-feedback
controller of the form

ξ̇ = Λ(ξ, e1)

u = Θ(ξ) ,
(1)

with state ξ ∈ IRm, in which Λ(ξ, e1) and Θ(ξ) are smooth, and

Λ(0, 0) = 0, Θ(0) = 0
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Problem formulation

Given arbitrary compact sets Kx ⊂ IRn, Kw ⊂ IRd, find a
controller (1) and a compact set Kξ ⊂ IRm, such that
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Problem formulation

Given arbitrary compact sets Kx ⊂ IRn, Kw ⊂ IRd, find a
controller (1) and a compact set Kξ ⊂ IRm, such that

� The equilibrium (x, ξ) = (0, 0) of the unforced closed loop
system

ẋ = f(x,Θ(ξ), 0, µ)

ξ̇ = Λ(ξ, h(x, 0, µ))

is asymptotically stable for every µ ∈ P , with domain of
attraction containing the set Kx ×Kξ
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Problem formulation

Given arbitrary compact sets Kx ⊂ IRn, Kw ⊂ IRd, find a
controller (1) and a compact set Kξ ⊂ IRm, such that

� The trajectory (x(t), ξ(t), w(t)) of the closed loop system

ẇ = S(σ)w

ẋ = f(x,Θ(ξ), w, µ)

ξ̇ = Λ(ξ, h(x,w, µ)− q(w, µ))

originating from Kx ×Kξ ×Kw exists for all t ≥ 0, is
bounded for all µ ∈ P and all σ ∈ Σ, and satisfies

lim
t→∞

e1(t) = 0
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Systems in lower-triangular form

We will consider systems in lower-triangular form

ż = f0(z, x1, w, µ)

ẋ1 = a2(µ)x2 + p1(z, x1, w, µ)

ẋ2 = a3(µ)x3 + p2(z, x1, x2, w, µ)
...

ẋr = pr(z, x1, . . . , xr, w, µ) + b(µ)u

y = x1

with regulated error e1 = x1 − q(w, µ).
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Systems in lower-triangular form

To ensure stabilizability by feedback from the partial state x,
me make the following standard assumptions:

� a2(µ) 6= 0 , . . . ar(µ) 6= 0, for all µ ∈ P .

Output Regulation of Nonlinear Systems in the Large. CeSOS-NTNU 2005 – p.6/51



Systems in lower-triangular form

To ensure stabilizability by feedback from the partial state x,
me make the following standard assumptions:

� a2(µ) 6= 0 , . . . ar(µ) 6= 0, for all µ ∈ P .

� b(µ) ≥ b0 > 0, for all µ ∈ P
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Systems in lower-triangular form

To ensure stabilizability by feedback from the partial state x,
me make the following standard assumptions:

� a2(µ) 6= 0 , . . . ar(µ) 6= 0, for all µ ∈ P .

� b(µ) ≥ b0 > 0, for all µ ∈ P

� The equilibrium z = 0 of the unforced zero dynamics

ż = f0(z, 0, 0, µ)

is globally asymptotically stable, uniformly in µ.
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Outline of the talk

� Conditions for the solvability of the regulator equations
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Outline of the talk

� Conditions for the solvability of the regulator equations
� The error system
� Conditions for the existence of an internal model
� The canonical internal model
� Solution for known exosystems
� Solution for uncertain exosystems: the self-tuning internal

model
� Intermediate case: partially known exosystem
� Illustrative example
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Regulator equations

The existence of a globally-defined solution πσ(w, µ), cσ(w, µ)
of the regulator equations

∂πσ(w, µ)

∂w
S(σ)w = f (πσ(w, µ), cσ(w, µ), w, µ)

0 = h (πσ(w, µ), w, µ)− q(w, µ)

for the considered class reposes of the following:
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Regulator equations

The existence of a globally-defined solution πσ(w, µ), cσ(w, µ)
of the regulator equations

∂πσ(w, µ)

∂w
S(σ)w = f (πσ(w, µ), cσ(w, µ), w, µ)

0 = h (πσ(w, µ), w, µ)− q(w, µ)

for the considered class reposes of the following:

Assumption 1 For every σ ∈ Σ, there exists a globally
defined solution ζσ(w, µ) to the equation

∂ζσ(w, µ)

∂w
S(σ)w = f0(ζσ(w, µ), q(w, µ), w, µ).
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Regulator equations

The triangular structure allows the solution of the regulator
equations to be computed recursively as

ϑσ1(w, µ) = q(w, µ)

ϑσ2(w, µ) = 1
a2(µ)

[LS(σ)wq − p1(ζσ, ϑσ1, w, µ)]

· · ·

ϑσr(w, µ) = 1
ar(µ)

[Lr−1
S(σ)wq − pr−1(ζσ, ϑσ1, . . . , ϑσr−2, w, µ)]
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Regulator equations

The triangular structure allows the solution of the regulator
equations to be computed recursively as

ϑσ1(w, µ) = q(w, µ)

ϑσ2(w, µ) = 1
a2(µ)

[LS(σ)wq − p1(ζσ, ϑσ1, w, µ)]

· · ·

ϑσr(w, µ) = 1
ar(µ)

[Lr−1
S(σ)wq − pr−1(ζσ, ϑσ1, . . . , ϑσr−2, w, µ)]

πσ(w, µ) = col (ζσ(w, µ), ϑσ(w, µ))

cσ(w, µ) =
1

b(µ)
[Lr

S(σ)wq − pr(ζσ, ϑσ1, . . . , ϑσr, w, µ)]
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The error system

The global change of coordinates

z̃ = z − ζσ(w, µ), e = x− ϑσ(w, µ)
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The error system

The global change of coordinates

z̃ = z − ζσ(w, µ), e = x− ϑσ(w, µ)

puts the system in the error system form

˙̃z = f̃0(z̃, e1, w, ρ)

ė1 = e2

...

ėr−1 = er

ėr = p̃r(z̃, e1, . . . , er, w, ρ) + b(µ)[u− cσ(w, µ)]

where ρ = col(µ, σ) ∈ R.
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The error system

Setting u = v + cσ(w, µ)

˙̃z = f̃0(z̃, e1, w, ρ)

ė1 = e2

...

ėr−1 = er

ėr = p̃r(z̃, e1, . . . , er, w, ρ) + b(µ)[u− cσ(w, µ)]
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The error system

Setting u = v + cσ(w, µ)

˙̃z = f̃0(z̃, e1, w, ρ)

ė1 = e2

...

ėr−1 = er

ėr = p̃r(z̃, e1, . . . , er, w, ρ) + b(µ)v

the resulting system has an equilibrium at (z̃, e) = (0, 0), v = 0,

which corresponds to the invariant error-zeroing manifold.
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The error system

From the error system it is evident that the problem of robust
nonlinear output regulation is solved if:

� The feed-forward control cσ(w, µ) can be reconstructed, at
least asymptotically, by means of an internal model.
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The error system

From the error system it is evident that the problem of robust
nonlinear output regulation is solved if:

� The feed-forward control cσ(w, µ) can be reconstructed, at
least asymptotically, by means of an internal model.

� The interconnection of the internal model and the error
system can be robustly asymptotically stabilized by error
feedback from the input v.
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Issues in robust regulation

What makes the problem complicated?
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Issues in robust regulation

What makes the problem complicated?
� The internal model adds zeros on the imaginary axis. The

resulting system is critically minimum phase, and must be
stabilized using output feedback.

� The exosystem and, consequently, the internal model
depend on the unknown parameters σ.
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Issues in robust regulation

What makes the problem complicated?
� The internal model adds zeros on the imaginary axis. The

resulting system is critically minimum phase, and must be
stabilized using output feedback.

� The exosystem and, consequently, the internal model
depend on the unknown parameters σ.

What are the available tools?
� Tools for semiglobal stabilization
� Nonlinear separation principle
� Passivity theory
� Adaptive control
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Existence of an internal model

If the function cσ(w, µ) satisfies the following

Assumption 2 There exist q ∈ IN and a set of real numbers
α0(σ), α1(σ), . . . , αq−1(σ) such that the identity

Lq

S(σ)wcσ(w, µ) =

q−1
∑

i=0

αi(σ)Li
S(σ)wcσ(w, µ)

holds for all (w, µ) ∈ IRd × P all σ ∈ Σ

then there exists a linear observable internal model for cσ(w, µ)
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Existence of an internal model

If assumption 2 holds, the mapping τσ(w, µ) given by

τσ(w, µ) =









cσ(w, µ)

LS(σ)wcσ(w, µ)

· · ·

L
q−1
S(σ)wcσ(w, µ)









defines an immersion between the systems






ẇ = S(σ)w

µ̇ = 0

u = cσ(w, µ)

→

{

τ̇ = Φ(σ)τ

u = Γτ
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If assumption 2 holds, the mapping τσ(w, µ) given by

τσ(w, µ) =









cσ(w, µ)

LS(σ)wcσ(w, µ)
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L
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




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
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Existence of an internal model

where the pair (Φ(σ),Γ) is observable for any σ, as

Φ(σ) =










0 1 0 · · · 0

0 0 1 · · · 0
...

...
... . . . ...

0 0 0 · · · 1

α0(σ) α1(σ) α2(σ) · · · αq−1(σ)










,

Γ =
(
1 0 0 · · · 0

)
.

The pair (Φ(σ),Γ) constitutes the candidate internal model.
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The canonical internal model

In order to circumvent the obstruction given by σ, we look for a
more manageable realization of (Φ(σ),Γ).

Lemma 1 (Nikiforov, 1998) Given any Hurwitz matrix
F ∈ IRq×q and any vector G ∈ IRq such that the pair (F,G) is
controllable, the Sylvester equation

MσΦ(σ)− FMσ = GΓ

has a unique solution Mσ, which is non singular.
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The canonical internal model

Then, the change of coordinates τ̄ = Mστ yields

(Φ(σ),Γ)
Mσ−→ (F + GΨσ,Ψσ)

where
Ψσ := ΓM−1

σ .

Note that
cσ(w, µ) = Γτσ(w, µ)

= Ψστ̄σ(w, µ) .

The pair (F + GΨσ,Ψσ) is referred to as the canonical para-

meterization of the internal model.
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System augmentation

We augment the system with the q-dimensional internal model

ξ̇ = Fξ + Gu

which yields

ξ̇ = Fξ + Gu

˙̃z = f̃0(z̃, e1, w, ρ)

ė1 = e2

...

ėr−1 = er

ėr = p̃r(z̃, e1, . . . , er, w, ρ) + b(µ)[u−Ψστ̄σ(w, µ)]
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Augmented error system

For the augmented system, we make the following

Assumption 3 There exists a smooth, positive definite
function V0(z̃) such that

α0(‖z̃‖) ≤ V0(z̃) ≤ α0(‖z̃‖)

∂V0(z̃)

∂z̃
f̃0(z̃, 0, w, ρ) ≤ −α0(‖z̃‖) ,

for all z̃ ∈ IRn−r, all w(0) ∈ Kw and all ρ ∈ R, where α0(·),
α0(·) and α0(·) are class-K∞ functions, locally quadratic near
the origin.
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Augmented error system

Assumption 3 states that the zero dynamics of the error
system is GAS and LES, uniformly in (w, ρ).

Consider first the subsystem with virtual input er

ξ̇ = Fξ + Gu

˙̃z = f̃0(z̃, e1, w, ρ)

ė1 = e2

...

ėr−1 = er

ėr = p̃r(z̃, e1, . . . , er, w, ρ) + b(µ)[u−Ψστ̄σ(w, µ)]
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Augmented error system

The system ˙̃z = f̃0(z̃, e1, w, ρ)

ė1 = e2

...

ėr−1 = v

is robustly semi-globally stabilizable using

v = −kr−1b0e1 − kr−2b1e2 − · · · − kbr−2er−1

where k > 0 and b0 , b1 , . . . , br−1 are the coefficients of a Hur-

witz polynomial.
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Augmented error system

Changing coordinates as

θ = er + kr−1b0e1 + kr−2b1e2 + · · ·+ kbr−2er−1

and defining

ζ := col (z̃, e1, e2, . . . , er−1) ∈ IRn−1

we write the augmented system as

ξ̇ = Fξ + Gu

ζ̇ = fk(ζ, w, ρ) + Gaθ

θ̇ = φk(ζ, θ, w, ρ) + b(µ)[u−Ψστ̄σ(w, µ)]
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Augmented error system

where

fk(ζ, w, ρ) =









f̃0(z̃, e1, w, ρ)

e2

...

−kr−1b0e1 − kr−2b1e2 − · · · − kbr−2er−1









GT
a =

(
0 0 · · · 1

)T

φk(ζ, θ, w, ρ) = p̃r(z̃, e1, . . . , θ−kr−1b0e1−· · ·−kbr−2er−1, w, ρ)
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Solution for known σ

Assume first that σ is known, and choose the control as

u = ust + uim

where ust is a stabilizing control (yet to be defined) and

uim = Ψσξ .

The last equation of the augmented systems reads as

θ̇ = φk(ζ, θ, w, ρ) + b(µ)Ψσ[ξ − τ̄σ(w, µ)] + b(µ)ust
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Solution for known σ

To quantify the error between the state of the internal model ξ
and the immersion mapping τ̄σ(w, µ) define

χ := ξ − τ̄σ(w, µ)−
1

b(µ)
Gθ.

The system in the (χ, ζ, θ)-coordinates reads as

χ̇ = Fχ + 1
b(µ)

[FGθ −Gφk(ζ, θ, w, ρ)]

ζ̇ = fk(ζ, w, ρ) + Gaθ

θ̇ = φk(ζ, θ, w, ρ) + ΨσGθ + b(µ)Ψσχ + b(µ)ust .
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Solution for known σ

The zero dynamics with respect to the output θ

χ̇ = Fχ− 1
b(µ)

[Gφk(ζ, 0, w, ρ)]

ζ̇ = fk(ζ, w, ρ)
(2)

is LES and S-GAS in the parameter k.

In particular, there exists a Lyapunov function V (χ, ζ) with the

following properties:
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Solution for known σ

� V (χ, ζ) is positive definite and locally quadratic around the
origin
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Solution for known σ

� V (χ, ζ) is positive definite and locally quadratic around the
origin

� For any r > 0 there exists c > 0 such that the level set
{V (χ, ζ) ≤ c} is compact and

Br ⊂ {V (χ, ζ) < c}
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Solution for known σ

� V (χ, ζ) is positive definite and locally quadratic around the
origin

� For any r > 0 there exists c > 0 such that the level set
{V (χ, ζ) ≤ c} is compact and

Br ⊂ {V (χ, ζ) < c}

� For any c > 0 there exists k? > 0 such that, for any k > k?

V̇ (χ, ζ)(2) < 0

for all (χ, ζ) ∈ {V (χ, ζ) ≤ c}, and for all w ∈ Kw, ρ ∈ R.
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Solution for known σ

As a result, the augmented system is semiglobally
asymptotically stabilized by the high-gain feedback

ust = −Kθ , K > 0

with associated control-Lyapunov function

W (χ, ζ, θ) = V (χ, ζ) +
1

2
θ2

for χ̇ = Fχ + 1
b(µ)

[FGθ −Gφk(ζ, θ, w, ρ)]

ζ̇ = fk(ζ, w, ρ) + Gaθ (3)

θ̇ = φk(ζ, θ, w, ρ) + [ΨσG−K]θ + b(µ)Ψσχ .
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Solution for known σ

In particular, for any compact set K ⊂ IRn+q there exist d > 0,
k? > 0, K?(k) > 0 and a positive definite function α(·) such
that:

� {W (χ, ζ, θ) ≤ d} is compact
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Solution for known σ

In particular, for any compact set K ⊂ IRn+q there exist d > 0,
k? > 0, K?(k) > 0 and a positive definite function α(·) such
that:

� {W (χ, ζ, θ) ≤ d} is compact

� K ⊂ {W (χ, ζ, θ) < d}
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Solution for known σ

In particular, for any compact set K ⊂ IRn+q there exist d > 0,
k? > 0, K?(k) > 0 and a positive definite function α(·) such
that:

� {W (χ, ζ, θ) ≤ d} is compact

� K ⊂ {W (χ, ζ, θ) < d}

� Any choice k > k?, K > K?(k) yields

Ẇ (χ, ζ, θ)(3) ≤ −α(χ, ζ, θ)

for all (χ, ζ, θ) ∈ {W (χ, ζ, θ) ≤ d} and all w ∈ Kw, ρ ∈ R.
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Solution for known σ

The dynamic controller

ξ̇ = (F + GΨσ)ξ −KGθ

u = Ψσξ −Kθ

θ = e(r−1) + kr−1b0e + kr−2b1e
(1) + · · ·+ kbr−2e

(r−2)

solves the problem of robust semiglobal output regulation in
case:

� The exosystem is known
� The partial state e is available for measurement
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Solution for unknown σ

The σ-dependent term of the feedback law, uim = Ψσξ is
replaced by an estimate

uim = Ψ̂ξ

where Ψ̂(t) is generated by an adaptation law of the form

d
dt

Ψ̂ = ϕ(ξ, θ) .

The update law is derived from the Lyapunov equation.
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Solution for unknown σ

Change coordinate as Ψ̃ = Ψ̂−Ψσ, and define

W̄ (χ, ζ, θ, Ψ̃) = W (χ, ζ, θ) + b(µ)Ψ̃Ψ̃T .

Letting uim = Ψ̂ξ, we obtain

θ̇ = φk(ζ, θ, w, ρ) + [ΨσG−K]θ + b(µ)Ψσχ + b(µ)Ψ̃ξ .

Then, the obvious choice

ϕ(ξ, θ) = −θξT

yields ˙̄W (χ, ζ, θ, Ψ̃)(3) ≤ −α(χ, ζ, θ) .
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Solution for unknown σ

The adaptive dynamic controller

ξ̇ = (F + GΨ̂)ξ −KGθ

˙̂
Ψ = −θξT

u = Ψ̂ξ −Kθ

θ = e(r−1) + kr−1b0e + kr−2b1e
(1) + · · ·+ kbr−2e

(r−2)

yields
� Boundedness of all trajectories.

� Convergence of (χ(t), ζ(t), θ(t)) to (0, 0, 0), which implies
limt→∞ e1(t) = 0.
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Error-feedback controller

In order to realize a device that uses information from the error
signal e1 only, the partial state e2, . . . , er must be estimated.

� We use the high-gain observer of Khalil to generate “dirty
derivatives” of the error.

� To prevent the occurrence of finite escape times, the
estimates are saturated outside a compact set.

� If appropriate local conditions hold, the performance of the
original partial-state feedback controller can be
asymptotically recovered.
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Error-feedback controller

The high-gain observer is given by

˙̂x = Mgx̂ + Lge

Mg =










−gcr−1 1 0 · · · 0

−g2cr−2 0 1 · · · 0

· · · · · · ·

−gr−1c1 0 0 · · · 1

−grc0 0 0 · · · 0










, Lg =










gcr−1

g2cr−2

·

gr−1c1

grc0










where g > 0 and cr−1, . . . , c0 are the coefficients of a Hurwitz

polynomial.

Output Regulation of Nonlinear Systems in the Large. CeSOS-NTNU 2005 – p.36/51



Error-feedback controller

The resulting error-feedback controller is

˙̂x = Mgx̂ + Lge1

ξ̇ = (F + GΨ̂)ξ −KGsat(l, θ̂)
˙̂
Ψ = sat(l, θ̂)ξT

θ̂ = x̂r + kr−1b0x̂1 + · · ·+ kbr−2x̂r−1

u = Ψ̂ξ −Ksat(l, θ̂)

where

sat(l, s) =

{
s , if |s| ≤ l
s

|s|
, if |s| > l.
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Avoiding overparameterization

In several cases, some eigenvalues of the exosystem may be
known in advance (for instance, λ = 0)

To avoid overparameterization, we devise a method to
incorporate the a priori knowledge of the exosystem on the
canonical internal model.
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Avoiding overparameterization

In several cases, some eigenvalues of the exosystem may be
known in advance (for instance, λ = 0)

To avoid overparameterization, we devise a method to
incorporate the a priori knowledge of the exosystem on the
canonical internal model.

Let
spec (Φ(σ)) = {λ01

, . . . , λ0k
}

︸ ︷︷ ︸
known

∪{λσ1
, . . . , λσh

}
︸ ︷︷ ︸

unknown

with corresponding modal decomposition

IRq = V0 ⊕ Vσ
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Avoiding overparameterization

Let
Φ0 = Φ(σ)|V0

, F1 + G1Ψσ1
= Φ(σ)|Vσ

and choose the internal model







ξ̇0 = Φ0ξ0 + Hξ1

ξ̇1 = F1ξ1 + G1u

uim = Γ0ξ0 + Ψσ1
ξ1 ,

←→

{

ξ̇ = Fξ + Gu

uim = Ψσξ
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Avoiding overparameterization

The internal model has the canonical parameterization
(F,G,Ψσ), where

F =

(

Φ0 H

−G1Γ0 F1

)

, G =

(

0

G1

)

, Ψσ =
(

Γ0 Ψσ1

)
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Avoiding overparameterization

The internal model has the canonical parameterization
(F,G,Ψσ), where

F =

(

Φ0 H

−G1Γ0 F1

)

, G =

(

0

G1

)

, Ψσ =
(

Γ0 Ψσ1

)

Only the estimate Ψ̂1 is needed, with update law

d
dt

Ψ̂1 = −θξT
1 .
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Avoiding overparameterization

We are only left to show that it is possible to choose H in such
a way that the matrix F is Hurwitz.

Let P0 and P1 denote the positive definite solutions of the
Lyapunov equations

P0Φ0 + ΦT
0 P0 ≤ 0 , P1F1 + FT

1 P1 = −I

and choose
H = P−1

0 ΓT
0 GT

1 P1

Output Regulation of Nonlinear Systems in the Large. CeSOS-NTNU 2005 – p.41/51



Avoiding overparameterization

The system

ξ̇ = Fξ

is GAS, being the negative loop interconnection of a strictly
passive system and a passive observable system

ξ̇1 = F1ξ1 + G1u1

y1 = GT
1 P1ξ1 ,

ξ̇0 = Φ0ξ0 + P−1
0 ΓT

0 u0

y0 = Γ0ξ0 ,
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Illustrative example

Consider the controlled Van der Pol equation

ẋ1 = x2

ẋ2 = −x1 + µ1x2 − x3
2 + δ(x1, x2, µ) + u

e = x1 − w1

� Model perturbation: δ(x1, x2, µ) = −µ2 x1x
2
2

� Unknown parameters: µ ∈ {|µ1| ≤ 3 , 0 ≤ µ2 ≤ 5}

� Initial conditions: K = {x : |xi| ≤ 1 , i = 1, 2}
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Illustrative example

Exosystem
ẇ1 = σ w2

ẇ2 = −σ w1 ,

� Uncertain frequency (rad/s): 1 ≤ σ ≤ 4

� Initial conditions: Kw = {w2
1 + w2

2 ≤ 4}
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Illustrative example

Solution of the regulator equations:

πσ1
(w, µ) = w1

πσ2
(w, µ) = σ w2

cσ(w, µ) = (1− σ2)w1 − σµ1w2 + σ2µ2w1w
2
2 + σ3w3

2 .

Internal model (Φ(σ),Γ):

Φ(σ) =







0 1 0 0

0 0 1 0

0 0 0 1

−9σ4 0 −10σ2 0







, Γ =
(
1 0 0 0

)
.
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Illustrative example

Canonical internal model

ξ̇ = Fξ + Gu

uim = Ψσξ

� spec(F ) = {−12,−10,−9,−8}

� spec (F + GΨσnom) = {j,−j, 3j,−3j}

� (F,G,Ψσ) in balanced realization.

k = 0.5 K = 75 γ = 1 g = 100

l = 30 b0 = 1 c0 = 2 c1 = 3
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Simulation 1

� Exosystem frequency: σ = 3.5 rad/s.
� Internal model frequency: σ0 = 1 rad/s.
� Adaptation turned on at time t = 20 s.
� Adaptation disconnected at time t = 40 s.
� Exosystem frequency changed to σ = 2.5 rad/s at time

t = 50.
� Adaptation turned on again at time t = 70 s.
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Results of simulation 1

Regulation error e(t)
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Results of simulation 1

Parameter estimates Ψ̂(t)
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Simulation 2

� Same experiment, with the adaptation always active.
� Exosystem frequency at t = 0: σ = 3.5 rad/s.
� Exosystem frequency changed to σ = 2.5 rad/s at time

t = 50.
� Parameter variation: µ2 set to zero at t = 70 s.

Output Regulation of Nonlinear Systems in the Large. CeSOS-NTNU 2005 – p.49/51



Results of simulation 2

Regulation error e(t)
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Results of simulation 2

Internal model output uim(t) vs. cσ(w, µ)
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Conclusions

� For systems in strict-feedback form, the solution of the
regulator equations is readily found once the solution for
the zero dynamics is available.
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Conclusions

� For systems in strict-feedback form, the solution of the
regulator equations is readily found once the solution for
the zero dynamics is available.

� The robust regulation problem is solvable is an immersion
into an observable linear system is found.

� A sufficient condition for robust stabilization in the large is
GAS + LES of the zero dynamics of the error system.

� An error feedback regulator can be constructed using
Khalil’s observer.

� Parameter uncertainties on the exosystem model can be
dealt with using a self-tuning internal model.

� Once again, robust stabilizability in the large is a major
issues.
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