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Problem formulation

Consider a nonlinear plant model of the form

ẋ = f(x, u, w, µ)

e = h(x,w, µ)

with state x ∈ R
n, control input u ∈ R

m, and error to be
regulated e ∈ R

m.
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Problem formulation

Consider a nonlinear plant model of the form

ẋ = f(x, u, w, µ)

e = h(x,w, µ)

with state x ∈ R
n, control input u ∈ R

m, and error to be
regulated e ∈ R

m. The vector µ ∈ R
p is a vector of constant

unknown parameters.

The signal w is generated by a nonlinear exosystem of the
form

ẇ = s(w)

with state w ∈ R
d.
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Standing Assumptions

The plant model is assumed to satisfy the following
assumptions:

� The functions f(x, u, w, µ) and h(x,w, µ) are smooth.

� The nominal value of the parameter µ is µ = 0.

� f(0, 0, 0, µ) = 0 and h(0, 0, µ) = 0 for all µ in an open
neighborhood P of µ = 0.

� The pair (A,B) is stabilizable and the pair (C,A) is
detectable, where

A =

[

∂f

∂x

]

0

, B =

[

∂f

∂u

]

0

, C =

[

∂h

∂x

]

0

.
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Standing Assumptions

The exosystem is assumed to be neutrally stable:
� The equilibrium w = 0 is stable in the sense of Lyapunov
� Each initial state w0 ∈ W is stable in the sense of Poisson

Note that this implies that

S =

[

∂s

∂w

]

0

has all eigenvalues on the imaginary axis.

Caveat: This excludes interesting situations in which w = s(w) generates stable limit cycles. For such a

case the theory is still incomplete, although results have started to appear (see Byrnes and Isidori, IEEE

Tr-AC 48(10), 2003.)
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Problem Formulation

The problem of local and structurally stable regulation is to find
a smooth controller of the form

ξ̇ = φ(ξ, e)

u = θ(ξ) ,

with ξ ∈ R
ν, satisfying φ(0, 0) = 0, θ(0, 0) = 0, and

F =

[

∂φ

∂ξ

]

0

, G =

[

∂φ

∂e

]

0

, H =

[

∂θ

∂ξ

]

0

,

such that
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Problem Formulation

� The origin is a locally exponentially stable equilibrium of
the unforced closed loop system

ẋ = f(x, θ(ξ), 0, µ)

ξ̇ = φ(ξ, h(x, 0, µ))

for all µ in an open neighborhood P ⊂ R
p of µ = 0.
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Problem Formulation

� The trajectories of the closed loop system

ẇ = s(w)

ẋ = f(x, θ(ξ), 0, µ)

ξ̇ = φ(ξ, h(x,w, µ))

e = h(x,w, µ)

originating within a neighborhood W ×X × Ξ ⊂ R
d+n+ν of

the origin are bounded and satisfy

lim
t→∞

h(x(t), w(t), µ) = 0

for all µ in an open neighborhood P ⊂ R
p of µ = 0.
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Solvability of the Problem

Since µ satisfies
µ̇ = 0

the role of w and that of µ need not be kept separate. As a
result, we incorporate µ within the exosystem state w.
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Solvability of the Problem

Since µ satisfies
µ̇ = 0

the role of w and that of µ need not be kept separate. As a
result, we incorporate µ within the exosystem state w.

The closed-loop system can be written as

ẋ = Ax+BHξ + Pw + ϕ(x, ξ, w)

ξ̇ = GCx+ Fξ +GQw + χ(x, ξ, w)

ẇ = Sw + ψ(w)

for all (x, ξ, w) ∈ X ×Ξ×W , where ϕ(x, ξ, w), χ(x, ξ, w), and

ψ(w) vanish at the origin with their first derivatives.
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Solvability of the Problem

Assume that {φ, θ} locally exponentially stabilizes the origin of
the unforced closed-loop system. Then

Acl =





A BH P

GC F GQ

0 0 S



 =

(

J ?

0 S

)

with
spec{J} ⊂ C

− , spec{S} ⊂ C
0 .
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Solvability of the Problem

Assume that {φ, θ} locally exponentially stabilizes the origin of
the unforced closed-loop system. Then

Acl =





A BH P

GC F GQ

0 0 S



 =

(

J ?

0 S

)

with
spec{J} ⊂ C

− , spec{S} ⊂ C
0 .

As a result, the system has a center manifold at the origin, that
is, a d-dimensional hypersurface

M =
{

(x, ξ, w) ∈ R
n+ν+d : x = π(w), ξ = σ(w) , w ∈ W

}
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Solvability of the Problem

The center manifold M has the following properties:
� It is invariant w.r.t. the flow of the closed-loop system.
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The center manifold M has the following properties:
� It is invariant w.r.t. the flow of the closed-loop system.
� The restriction of the flow of the closed-loop system to M

is diffeomorphic to that of the exosystem.
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Solvability of the Problem

The center manifold M has the following properties:
� It is invariant w.r.t. the flow of the closed-loop system.
� The restriction of the flow of the closed-loop system to M

is diffeomorphic to that of the exosystem.

� M is tangent at the origin to the center subspace V0:

π(0) = 0, σ(0) = 0 and
∂π

∂w
(0) = 0 ,

∂σ

∂w
(0) = 0 .
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Solvability of the Problem

The center manifold M has the following properties:
� It is invariant w.r.t. the flow of the closed-loop system.
� The restriction of the flow of the closed-loop system to M

is diffeomorphic to that of the exosystem.

� M is tangent at the origin to the center subspace V0:

π(0) = 0, σ(0) = 0 and
∂π

∂w
(0) = 0 ,

∂σ

∂w
(0) = 0 .

� M is locally exponentially attractive, i.e.,

lim
t→∞

‖x(t) − π(w(t))‖ = 0 , lim
t→∞

‖ξ(t) − σ(w(t))‖ = 0

for all (x(0), ξ(0), w(0)) ∈ X × Ξ,×W .
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The Center Manifold

M

π(w(t)), σ(w(t))

(x(t), ξ(t), w(t))

(x0, ξ0, w0)

w(t)
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Solvability of the Problem

The condition of invariance of M is expressed by the
homology equations

∂π

∂w
s(w) = f(π(w), θ(σ(w)), w) ,

∂σ

∂w
s(w) = φ(σ(w), h(π(w), w))

which hold for all w ∈ W .
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Solvability of the Problem

The condition of invariance of M is expressed by the
homology equations

∂π

∂w
s(w) = f(π(w), θ(σ(w)), w) ,

∂σ

∂w
s(w) = φ(σ(w), h(π(w), w))

which hold for all w ∈ W . The system dynamics reduced to
the center manifold is that of the exosystem

ẇ = s(w) , w(0) ∈ W
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homology equations

∂π

∂w
s(w) = f(π(w), θ(σ(w)), w) ,

∂σ

∂w
s(w) = φ(σ(w), h(π(w), w))

which hold for all w ∈ W . The system dynamics reduced to
the center manifold is that of the exosystem

ẇ = s(w) , w(0) ∈ W

and on M the error reads as e(t) = h(π(w(t)), w(t)).
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Solvability of the Problem

The condition of invariance of M is expressed by the
homology equations

∂π

∂w
s(w) = f(π(w), θ(σ(w)), w) ,

∂σ

∂w
s(w) = φ(σ(w), h(π(w), w))

which hold for all w ∈ W . The system dynamics reduced to
the center manifold is that of the exosystem

ẇ = s(w) , w(0) ∈ W

and on M the error reads as e(t) = h(π(w(t)), w(t)). Since
the exosystem is Poisson stable

lim
t→∞

e(t) = 0 ⇐⇒ h(π(w), w) = 0 ∀w ∈ W
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Solvability of the Problem

Theorem 1 (Isidori and Byrnes, 1990) A controller which
locally exponentially stabilizes the plant achieves regulation if
only if there exist mappings π : W → R

n and σ : W → R
ν,

with π(0) = 0 and σ(0) = 0 such that

∂π

∂w
s(w) = f(π(w), θ(σ(w)), w)

∂σ

∂w
s(w) = φ(σ(w), 0)

0 = h(π(w), w)

for all w ∈ W .
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The Regulator Equations

The previous equations can be split into two sets of equations
as follows:

∂π

∂w
s(w) = f(π(w), c(w), w)

0 = h(π(w), w)

∂σ

∂w
s(w) = φ(σ(w), 0, w)

c(w) = θ(σ(w))

where the mapping c : W → R
m satisfies c(0) = 0.
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The Regulator Equations

∂π

∂w
s(w) = f(π(w), c(w), w)

0 = h(π(w), w)

∂σ

∂w
s(w) = φ(σ(w), 0)

c(w) = θ(σ(w))

� Regulator Equations: analogous to

ΠS = AΠ +BR + P

0 = CΠ +Q ,

Output Regulation of Nonlinear Systems. CeSOS-NTNU 2005 – p.15/28



The Regulator Equations

∂π

∂w
s(w) = f(π(w), c(w), w)

0 = h(π(w), w)

∂σ

∂w
s(w) = φ(σ(w), 0)

c(w) = θ(σ(w))

� Internal Model Principle: analogous to

ΣS = FΣ

R = HΣ
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Necessary Condition

The first equation yields a necessary condition for regulation

Theorem 2 (Isidori and Byrnes, 1990) The local ouptut
regulation problem is solvable only if there exist mappings
π : W → R

n and c : W → R
m, with π(0) = 0 and c(0) = 0

such that
∂π

∂w
s(w) = f(π(w), c(w), w)

0 = h(π(w), w)

for all w ∈ W ,
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Necessary Condition

The first equation yields a necessary condition for regulation

Theorem 2 (Isidori and Byrnes, 1990) The local ouptut
regulation problem is solvable only if there exist mappings
π : W → R

n and c : W → R
m, with π(0) = 0 and c(0) = 0

such that
∂π

∂w
s(w) = f(π(w), c(w), w)

0 = h(π(w), w)

for all w ∈ W , that is, only if there exists a controlled-invariant
submanifold M0 ⊂ R

n+d satisfying

M0 ⊂ {(x,w) : h(x,w) = 0} .
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Geometric Picture

(x0, w0)

M0

u = 0

(x(t), w(t))

t

e(t)

0
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Geometric Picture

(x0, w0)

M0

u(t) = c(w(t))

(x(t), w(t))

t

e(t)

0
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Geometric Picture

M0

(x(t), w(t))

(x0, w0)

u(t) = c(w(t)) + ust(t)

t

e(t)

0

Any controller must render M0 invariant and attractive.
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Sufficient Conditions

How far is the condition of Theorem 2 from being sufficient?
� Attractivity of M0 is guaranteed by the properties of the

center manifold (by local exponential stability of the origin)
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Sufficient Conditions

How far is the condition of Theorem 2 from being sufficient?
� Attractivity of M0 is guaranteed by the properties of the

center manifold (by local exponential stability of the origin)

� The capability of the controller to “reconstruct” c(w) is the
real issue.
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Sufficient Conditions

How far is the condition of Theorem 2 from being sufficient?
� Attractivity of M0 is guaranteed by the properties of the

center manifold (by local exponential stability of the origin)

� The capability of the controller to “reconstruct” c(w) is the
real issue.

� Constructing a controller that satisfies the internal model
property is not easy. Further conditions are needed.
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Sufficient Conditions

How far is the condition of Theorem 2 from being sufficient?
� Attractivity of M0 is guaranteed by the properties of the

center manifold (by local exponential stability of the origin)

� The capability of the controller to “reconstruct” c(w) is the
real issue.

� Constructing a controller that satisfies the internal model
property is not easy. Further conditions are needed.

� A crucial role is played by the notion of system immersion.
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System Immersion

Definition 1 Given two systems with same output space
{

ẋ = f(x), x ∈ X

y = h(x), y ∈ R
m

{

Ẋ = F (X), X ∈ X

Y = H(X), Y ∈ R
m

we say that {X , f, h} is immersed into {X, F,H} if there
exists a smooth mapping τ : X → X satisfying τ(0) = 0 and

∂τ

∂x
f(x) = F (τ(x))

h(x) = H(τ(x))

for all x ∈ X .
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System Immersion

Definition 1 Given two systems with same output space
{

ẋ = f(x), x ∈ X

y = h(x), y ∈ R
m

{

Ẋ = F (X), X ∈ X

Y = H(X), Y ∈ R
m

we say that {X , f, h} is immersed into {X, F,H} if there
exists a smooth mapping τ : X → X satisfying τ(0) = 0 and

∂τ

∂x
f(x) = F (τ(x))

h(x) = H(τ(x))

for all x ∈ X .

NOTE: τ need not be a diffeomorphism, as dimX ≤ dimX.
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System Immersion

This means that the flows of the systems are τ -related and

h ◦ Φf
t (x) = H ◦ τ ◦ Φf

t (x) = H ◦ ΦF
t (τ(x)) .

Any output trajectory of {X , f, h} is an output trajectory of
{X, F,H}.

x0

τ

h
H

τ (x0)

X

X

t

y(t)
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System Immersion

Consider the exosystem with output map y ∈ R

ẇ = s(w)

y = c(w) .
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System Immersion

Consider the exosystem with output map y ∈ R

ẇ = s(w)

y = c(w) .

If there exists q ∈ N and a smooth function α : R
q → R s.t.

Lq
sc(w) = α

(

c(w), Lsc(w), . . . , Lq−1

s c(w)
)

for all w ∈ W , then the exosystem is immersed into {ϕ, γ}

ξ̇1 = ξ2

ξ̇2 = ξ3

...
ξ̇q = α (ξ1, ξ2, . . . , ξq−1) , y = ξ1 .
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System Immersion

Consider the exosystem with output map y ∈ R

ẇ = s(w)

y = c(w) .

If there exists q ∈ N and ai ∈ R, i = 0, . . . , q − 1 such that

Lq
sc(w) + aq−1L

q−1

s c(w) + · · · + a1Lsc(w) + a0c(w) = 0

for all w ∈ W , then the exosystem is immersed into {Φ,Γ}

Φ =











0 1 · · · 0
...

... . . . ...
0 0 · · · 1

−a0 −a1 · · · −aq−1











, Γ =
(

1 0 · · · 0
)
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Example

An observable LTI immersion always exists if
� The exosystem is linear, ẇ = Sw.
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Example

An observable LTI immersion always exists if
� The exosystem is linear, ẇ = Sw.

� The mapping c(w) is a polynomial in the components of w.
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Example

An observable LTI immersion always exists if
� The exosystem is linear, ẇ = Sw.

� The mapping c(w) is a polynomial in the components of w.

Since the set P of polynomials is a linear vector space over R,
and the mapping Ds : P → P given by

c(w) → Lsc(w) =
∂c

∂w
s(w)

is linear, there exist an integer q and real numbers ai ∈ R,
i = 0, . . . , q − 1 such that

Dq
s + aq−1D

q−1

s + · · · + a1Ds + a0I = 0
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Necessary and Sufficient Condition for Regulation

Theorem 3 The Error Feedback Output Regulation Problem is
solvable if and only if

� There exist mappings x = π(w) and u = c(w), with
τ(0) = 0 and c(0) = 0, satisfying

∂π

∂w
s(w) = f(π(w), c(w), w)

0 = h(π(w), w)

for all w ∈ W .
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Necessary and Sufficient Condition for Regulation

Theorem 3 The Error Feedback Output Regulation Problem is
solvable if and only if

� The autonomous system {W, s, c} is immersed into a
system

ξ̇ = ϕ(ξ) , ξ ∈ Ξ ⊂ R
ν

u = γ(ξ)

in which ϕ(0) = 0 and γ(0) = 0, such that the linear
approximation

Φ =

[

∂ϕ

∂ξ

]

0

, Γ =

[

∂γ

∂ξ

]

0

,

satisfies the following property:
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Necessary and Sufficient Condition for Regulation

Theorem 3 The Error Feedback Output Regulation Problem is
solvable if and only if

� The pair
(

A 0

ΘC Φ

)

,

(

B

0

)

is stabilizable for some choice of the matrix Θ ∈ R
ν×m, and

the pair
(

C 0
)

,

(

A BΓ

0 Φ

)

is detectable.
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Proof

Necessity. Given a regulator {φ, θ}, there exist mappings
x = π(w) and ξ = σ(w) solving the regulator equations.
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Proof

Necessity. Given a regulator {φ, θ}, there exist mappings
x = π(w) and ξ = σ(w) solving the regulator equations.

Set

c(w) = θ(σ(w)) , γ(ξ) = θ(ξ) , ϕ(ξ) = φ(ξ, 0)

and note that the system {W, s, c} is immersed into {Ξ, ϕ, γ},
with immersion mapping τ(w) = σ(w).
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Proof

Necessity. Given a regulator {φ, θ}, there exist mappings
x = π(w) and ξ = σ(w) solving the regulator equations.

Set

c(w) = θ(σ(w)) , γ(ξ) = θ(ξ) , ϕ(ξ) = φ(ξ, 0)

and note that the system {W, s, c} is immersed into {Ξ, ϕ, γ},
with immersion mapping τ(w) = σ(w).

Since
(

A BH

GC F

)

=

(

A BΓ

ΘC Φ

)

, Θ = G

is Hurwitz, the given pairs are stabilizable and detectable.
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Proof

Sufficiency. Since
(

A BΓ

ΘC Φ

)

,

(

B

0

)

,
(

C 0
)

is stabilizable and detectable, there exist L,M,N such that




A BΓ BN

ΘC Φ 0

MC 0 L



 is Hurwitz.
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Proof

Sufficiency. Since
(

A BΓ

ΘC Φ

)

,

(

B

0

)

,
(

C 0
)

is stabilizable and detectable, there exist L,M,N such that




A BΓ BN

ΘC Φ 0

MC 0 L



 is Hurwitz.

Define the controller







ξ̇0 = ϕ(ξ0) + Θe

ξ̇1 = Lξ1 +Me

u = γ(ξ0) +Nξ1
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Proof

The controller solves the local output regulation problem:
� The Jacobian matrix of the unforced closed-loop system

fcl(x, ξ, 0) =





f(x, γ(ξ0) +Nξ1, 0)

ϕ(ξ0) + Θh(x, 0)

Lξ1 +Mh(x, 0)





is precisely





A BΓ BN

ΘC Φ 0

MC 0 L



.
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Proof

The controller solves the local output regulation problem:
� The mappings

x = π(w) , u = c(w) (given)

and
(

ξ0

ξ1

)

= σ(w) =

(

τ(x)

0

)

solve the regulator equations.
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Regulator Structure

ξ̇0 = ϕ(ξ0) + Θe

uim = γ(ξ0)

ξ̇1 = Lξ1 + Me

ust = Nξ1

e u
+

The regulator is given as the parallel interconnection of an
internal model and a stabilizer.

� The internal model provides u = c(w) on the set M0.

� The stabilizer locally exponentially stabilizes the origin of
the closed-loop system, and induces local exponential
attractivity of M0.
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Conclusions

� The solvability of the local output regulation problem is
given in terms of the existence of a controlled-invariant
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given in terms of the existence of a controlled-invariant
submanifold contained in the kernel of the error map.

� Any controller must necessarily render the submanifold
invariant and attractive.

� The regulator equation is a set of PDEs.
� The concept of system immersion is fundamental in

obtaining the internal model property.
� Local regulation is then a byproduct of local exponential

stabilization (the error-zeroing submanifold is a center
manifold)

� What is required to extend these results beyond local
validity?
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