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Outline of the Course

� Thursday, May 26
� The Linear Output Regulation Problem
� Nonlinear Local and Structurally Stable Regulation

� Friday, May 27
� Robust and Adaptive Nonlinear Regulation in the Large
� Application: Helicopter Landing
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Linear Regulation - Outline

� Problem Formulation
� Solution to the Full-Information Problem
� The Regulator Equations
� Solution to the Error-Feedback Problem
� The Internal Model Principle
� The Construction of a Robust Regulator
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Problem formulation

Consider a linear plant model of the form

ẋ(t) = Ax(t) + Bu(t) + Pw(t)

e(t) = Cx(t) + Qw(t)

with state x ∈ R
n, control input u ∈ R

m, and error to be
regulated e ∈ R

m.
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Problem formulation

Consider a linear plant model of the form

ẋ(t) = Ax(t) + Bu(t) + Pw(t)

e(t) = Cx(t) + Qw(t)

with state x ∈ R
n, control input u ∈ R

m, and error to be
regulated e ∈ R

m.

The signal w ∈ R
d is generated by a linear exosystem

ẇ(t) = Sw(t)

The exogenous signal w(t) includes references to be tracked

and disturbances to be rejected.
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Problem Formulation

The problem is to find a control law such that:

� The origin is an asymptotically stable equilibrium when the
exosystem is disconnected, that is when w(t) ≡ 0;
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Problem Formulation

The problem is to find a control law such that:

� The origin is an asymptotically stable equilibrium when the
exosystem is disconnected, that is when w(t) ≡ 0;

� The error e(t) converges to zero, for any initial condition of
the plant and the exosystem.
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Problem Formulation

The problem is to find a control law such that:

� The origin is an asymptotically stable equilibrium when the
exosystem is disconnected, that is when w(t) ≡ 0;

� The error e(t) converges to zero, for any initial condition of
the plant and the exosystem.

Note that the first requirement allows to restrict the analysis to
the case in which

spec {S} ⊂ C+.
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Problem Formulation

Typically, the error e(t) is the only variable assumed to be
available for measurement (error-feedback regulation.) In this
case, we look for a dynamic controller of the form

ẇ(t) = Sw(t)

ẋ(t) = Ax(t) + Bu(t) + Pw(t)

e(t) = Cx(t) + Qw(t)

ξ̇(t) = Fξ(t) + Ge(t)

u(t) = Hξ(t)

ξ̇(t) = Fξ(t) + Ge(t)

u(t) = Hξ(t)

with state ξ ∈ R
ν.

For the time being, we assume
that the plant and the exosystem
models are known accurately.
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Error-Feedback Regulation Problem

The EF regulation problem is stated as follows:

Given {A,B,C, P,Q, S}, find {F,G,H} such that

� The closed-loop matrix

(
A BH

GC F

)

is Hurwitz.

Output Regulation of Linear Systems. CeSOS-NTNU 2005 – p.8/34



Error-Feedback Regulation Problem

The EF regulation problem is stated as follows:

Given {A,B,C, P,Q, S}, find {F,G,H} such that

� The closed-loop matrix

(
A BH

GC F

)

is Hurwitz.

� For any initial condition, the trajectory of

ẋ = Ax + BHξ + Pw

ξ̇ = GCx + Fξ + GQw

ẇ = Sw

satisfies lim
t→∞

(Cx(t) + Qw(t)) = 0.
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Full-Information Regulation Problem

It is convenient to state the full-information problem , where it
is assumed that both x and w are available for feedback, and
the control is u(t) = Kx(t) + Lw(t).

Given {A,B,C, P,Q, S}, find {K,L} such that

� The matrix A + BK is Hurwitz.

Output Regulation of Linear Systems. CeSOS-NTNU 2005 – p.9/34



Full-Information Regulation Problem

It is convenient to state the full-information problem , where it
is assumed that both x and w are available for feedback, and
the control is u(t) = Kx(t) + Lw(t).

Given {A,B,C, P,Q, S}, find {K,L} such that

� The matrix A + BK is Hurwitz.
� For any initial condition, the trajectory of

ẋ = (A + BK)x + (BL + P )w

ẇ = Sw

satisfies lim
t→∞

(Cx(t) + Qw(t)) = 0.
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Solution of the Full-Information Problem

Assume that (A,B) is stabilizable, and apply a control of the
form

u(t) = Kx(t) + Lw(t)

where K is such that A + BK is Hurwitz.

� How should one choose L so that the given control law
provides regulation?

ẇ(t) = Sw(t)

ẋ(t) = Ax(t) + Bu(t) + Pw(t)

e(t) = Cx(t) + Qw(t)

u(t) = Kx(t) + Lw(t)
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Solution of the Full-Information Problem

Assume that (A,B) is stabilizable, and apply a control of the
form

u(t) = Kx(t) + Lw(t)

where K is such that A + BK is Hurwitz.

� How should one choose L so that the given control law
provides regulation?

� Can one find such L at all? ẇ(t) = Sw(t)
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Solution of the Full-Information Problem

Assume that (A,B) is stabilizable, and apply a control of the
form

u(t) = Kx(t) + Lw(t)

where K is such that A + BK is Hurwitz.

� How should one choose L so that the given control law
provides regulation?

� Can one find such L at all? ẇ(t) = Sw(t)

ẋ(t) = Ax(t) + Bu(t) + Pw(t)

e(t) = Cx(t) + Qw(t)

u(t) = Kx(t) + Lw(t)

This depends on {A,B,C, P,Q, S}.

Note that K has already been fixed.
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Solution of the Full-Information Problem

By assumption, the closed-loop matrix

Acl =

(
A + BK P + BL

0 S

)

has n eigenvalues in C
− and d eigenvalues in C+,
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Solution of the Full-Information Problem

By assumption, the closed-loop matrix

Acl =

(
A + BK P + BL

0 S

)

has n eigenvalues in C
− and d eigenvalues in C+,

with modal subspaces V− e V+ given by

V− = Im

(
In

0

)

, V+ = Im

(
Π

Id

)

for some Π ∈ R
n×d.
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Solution of the Full-Information Problem

By assumption, the closed-loop matrix

Acl =

(
A + BK P + BL

0 S

)

has n eigenvalues in C
− and d eigenvalues in C+,

with modal subspaces V− e V+ given by

V− = Im

(
In

0

)

, V+ = Im

(
Π

Id

)

for some Π ∈ R
n×d. Note that

Acl|V− = A + BK, Acl|V+ = S.
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Solution of the Full-Information Problem

Since V+ is Acl-invariant,

AclV
+ ⊆ V+ ⇐⇒ ∀w ∈ R

d ∃ w̃ ∈ R
d such that

(
A + BK P + BL

0 S

) (
Π

Id

)

w =

(
Π

Id

)

w̃
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Solution of the Full-Information Problem

Since V+ is Acl-invariant,

AclV
+ ⊆ V+ ⇐⇒ ∀w ∈ R

d ∃ w̃ ∈ R
d such that

(
A + BK P + BL

0 S

) (
Π

Id

)

w =

(
Π

Id

)

w̃

therefore, necessarily
w̃ = Sw
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Solution of the Full-Information Problem

Since V+ is Acl-invariant,

AclV
+ ⊆ V+ ⇐⇒ ∀w ∈ R

d ∃ w̃ ∈ R
d such that

(
A + BK P + BL

0 S

) (
Π

Id

)

w =

(
Π

Id

)

w̃

therefore, necessarily
w̃ = Sw

(A + BK)Π + P + BL = ΠS.
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Solution of the Full-Information Problem

Since V+ is Acl-invariant,

AclV
+ ⊆ V+ ⇐⇒ ∀w ∈ R

d ∃ w̃ ∈ R
d such that

(
A + BK P + BL

0 S

) (
Π

Id

)

w =

(
Π

Id

)

w̃

therefore, necessarily
w̃ = Sw

(A + BK)Π + P + BL = ΠS.
︸ ︷︷ ︸

Sylvester equation: the solution Π is unique, since the spectra

of A + BK and S are disjoint.
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Solution of the Full-Information Problem

The subspace

V+ =
{
(x,w) ∈ R

n+d : x = Πw
}

defines a globally attractive steady-state of the closed-loop
system.
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Solution of the Full-Information Problem

The subspace

V+ =
{
(x,w) ∈ R

n+d : x = Πw
}

defines a globally attractive steady-state of the closed-loop
system. Letting

x̃ = x − Πw

we write
˙̃x = (A + BK)x̃

ẇ = Sw

e = Cx̃ + (CΠ + Q)w
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Solution of the Full-Information Problem

The subspace

V+ =
{
(x,w) ∈ R

n+d : x = Πw
}

defines a globally attractive steady-state of the closed-loop
system. Letting

x̃ = x − Πw

we write
˙̃x = (A + BK)x̃

ẇ = Sw

e = Cx̃ + (CΠ + Q)w

and
e(t) = Ce(A+BK)tx̃0 + (CΠ + Q)eStw0.
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Solution of the Full-Information Problem

Since
lim
t→∞

e(t) = lim
t→∞

(CΠ + Q)eStw0

necessarily

lim
t→∞

e(t) = 0 ∀w0 ∈ R
d ⇔ CΠ + Q = 0.
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Solution of the Full-Information Problem

Since
lim
t→∞

e(t) = lim
t→∞

(CΠ + Q)eStw0

necessarily

lim
t→∞

e(t) = 0 ∀w0 ∈ R
d ⇔ CΠ + Q = 0.

︸ ︷︷ ︸

The subspace V+ must be contained in Ker
(
C Q

)
.
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Solution of the Full-Information Problem

Since
lim
t→∞

e(t) = lim
t→∞

(CΠ + Q)eStw0

necessarily

lim
t→∞

e(t) = 0 ∀w0 ∈ R
d ⇔ CΠ + Q = 0.

︸ ︷︷ ︸

The subspace V+ must be contained in Ker
(
C Q

)
.

� The term Kx is selected to create a globally attractive
steady state

� The term Lw must be selected to shape the steady state
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The Regulator Equations

Theorem 1 (Francis, 1977) Let (A,B) be stabilizable. The FI
problem is solvable if and only if there exist Π ∈ R

n×d and
R ∈ R

m×d solution of the regulator equations

ΠS = AΠ + BR + P

0 = CΠ + Q ,
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The Regulator Equations

Theorem 1 (Francis, 1977) Let (A,B) be stabilizable. The FI
problem is solvable if and only if there exist Π ∈ R

n×d and
R ∈ R

m×d solution of the regulator equations

ΠS = AΠ + BR + P

0 = CΠ + Q ,

or, equivalently, if and only if the system

ẋ = Ax + Pw + Bu

ẇ = Sw

e = Cx + Qw

admits a controlled-invariant subspace V ⊂ Ker
(
C Q

)
.
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Feedback and Feedforward

Note that the existence of the solution is independent of K,
which has the only role of stabilizing the system. Fix K, and
choose

L = R − KΠ

to obtain

u = K(x − Πw) + Rw = Kx̃ + Rw
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Feedback and Feedforward

Note that the existence of the solution is independent of K,
which has the only role of stabilizing the system. Fix K, and
choose

L = R − KΠ

to obtain

u = K(x − Πw) + Rw = Kx̃︸︷︷︸ + Rw

Feedback control: steers x(t) to V

and vanishes when x = Πw.
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Feedback and Feedforward

Note that the existence of the solution is independent of K,
which has the only role of stabilizing the system. Fix K, and
choose

L = R − KΠ

to obtain

u = K(x − Πw) + Rw = Kx̃ + Rw︸︷︷︸

Feedback control: steers x(t) to V
and vanishes when x = Πw.

Feedforward control: renders V invariant.
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The Geometric Picture

� Rendering an appropriate subspace V ⊂ Ker
(
C Q

)

invariant and attractive ⇐⇒ limt→∞ e(t) = 0
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The Error-Feedback Case

Consider now the case of an error-feedback controller

ξ̇(t) = Fξ(t) + Ge(t)

u(t) = Hξ(t)

such that Aa =

(
A BH

GC F

)

is Hurwitz.

� Under which conditions does a stabilizing controller
controller provide asymptotic regulation?
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The Error-Feedback Case

Consider now the case of an error-feedback controller

ξ̇(t) = Fξ(t) + Ge(t)

u(t) = Hξ(t)

such that Aa =

(
A BH

GC F

)

is Hurwitz.

� Under which conditions does a stabilizing controller
controller provide asymptotic regulation?

� Closed-loop matrix:

Acl =





A BH P

GC F GQ

0 0 S
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The Error-Feedback Case

Consider now the case of an error-feedback controller

ξ̇(t) = Fξ(t) + Ge(t)

u(t) = Hξ(t)

such that Aa =

(
A BH

GC F

)

is Hurwitz.

� Under which conditions does a stabilizing controller
controller provide asymptotic regulation?

� Closed-loop matrix:

Acl =





A BH P

GC F GQ

0 0 S



 V− = Im





In

Iν

0



, V+ = Im





Π

Σ

Id
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The Error-Feedback Case

The corresponding Sylvester equation
(

A BH

GC F

) (
Π

Σ

)

+

(
P

GQ

)

=

(
Π

Σ

)

S

has a unique solution (Π, Σ).
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The Error-Feedback Case

The corresponding Sylvester equation
(

A BH

GC F

) (
Π

Σ

)

+

(
P

GQ

)

=

(
Π

Σ

)

S

has a unique solution (Π, Σ). Equivalently,

AΠ + BHΣ + P = ΠS

GCΠ + FΣ + GQ = ΣS.
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The Error-Feedback Case

The corresponding Sylvester equation
(

A BH

GC F

) (
Π

Σ

)

+

(
P

GQ

)

=

(
Π

Σ

)

S

has a unique solution (Π, Σ). Equivalently,

AΠ + BHΣ + P = ΠS

CΠ + Q = 0

FΣ = ΣS.
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The Error-Feedback Case

The corresponding Sylvester equation
(

A BH

GC F

) (
Π

Σ

)

+

(
P

GQ

)

=

(
Π

Σ

)

S

has a unique solution (Π, Σ). Equivalently,

AΠ + BR + P = ΠS

CΠ + Q = 0

FΣ = ΣS

HΣ = R
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The Error-Feedback Case

The corresponding Sylvester equation
(

A BH

GC F

) (
Π

Σ

)

+

(
P

GQ

)

=

(
Π

Σ

)

S

has a unique solution (Π, Σ). Equivalently,

AΠ + BR + P = ΠS

CΠ + Q = 0

FΣ = ΣS

HΣ = R

The first 2 equations are exactly the regulator equations.
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The Internal Model Principle

Theorem 2 (Francis, 1977) Let (A,B) be stabilizable and
(A,C) detectable. The given controller solves the EF problem
if and only if there exist Π ∈ R

n×d, R ∈ R
m×d and Σ ∈ R

ν×d

such that
ΠS = AΠ + BR + P

0 = CΠ + Q

ΣS = FΣ

R = HΣ
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The Internal Model Principle

Theorem 2 (Francis, 1977) Let (A,B) be stabilizable and
(A,C) detectable. The given controller solves the EF problem
if and only if there exist Π ∈ R

n×d, R ∈ R
m×d and Σ ∈ R

ν×d

such that
ΠS = AΠ + BR + P

0 = CΠ + Q

ΣS = FΣ

R = HΣ

The last 2 equations constitute the internal model principle.

The controller must generate internally the feedforward control

required to render the error-zeroing subspace invariant.
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Regulator Synthesis

Indeed, the solvability of the FI problem alone is necessary
and sufficient for the solution of the EF problem. Assume that:

(a) The pair (A,B) is stabilizable
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Regulator Synthesis

Indeed, the solvability of the FI problem alone is necessary
and sufficient for the solution of the EF problem. Assume that:

(a) The pair (A,B) is stabilizable

(b) The pair

(
A P

0 S

)

, (C Q) is detectable
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Regulator Synthesis

Indeed, the solvability of the FI problem alone is necessary
and sufficient for the solution of the EF problem. Assume that:

(a) The pair (A,B) is stabilizable

(b) The pair

(
A P

0 S

)

, (C Q) is detectable

(c) There exist Π and R solution of the regulator equations.
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Regulator Synthesis

Indeed, the solvability of the FI problem alone is necessary
and sufficient for the solution of the EF problem. Assume that:

(a) The pair (A,B) is stabilizable

(b) The pair

(
A P

0 S

)

, (C Q) is detectable

(c) There exist Π and R solution of the regulator equations.

Then, there exists an error-feedback regulator.
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Regulator Synthesis

Indeed, the solvability of the FI problem alone is necessary
and sufficient for the solution of the EF problem. Assume that:

(a) The pair (A,B) is stabilizable

(b) The pair

(
A P

0 S

)

, (C Q) is detectable

(c) There exist Π and R solution of the regulator equations.

Then, there exists an error-feedback regulator.

Note. It can be shown that assuming (b) in place of detectability of

(A,C) does not involve any loss of generality.
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Regulator Synthesis

Assumption (b) implies the existence of an observer for (x, w).

The FI control
uFI = Kx + (R − KΠ)w
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Regulator Synthesis

Assumption (b) implies the existence of an observer for (x, w).

The FI control
uFI = Kx + (R − KΠ)w

is replaced by the certainty equivalence controller
(

ξ̇0

ξ̇1

)

=

[(
A P

0 S

)

−

(
G0

G1

)
(
C Q

)
](

ξ0

ξ1

)

+

(
G0

G1

)

e +

(
B

0

)

u

uEF = Kξ0 + (R − KΠ)ξ1,
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Regulator Synthesis

Assumption (b) implies the existence of an observer for (x, w).

The FI control
uFI = Kx + (R − KΠ)w

is replaced by the certainty equivalence controller
(

ξ̇0

ξ̇1

)

=

[(
A P

0 S

)

−

(
G0

G1

)
(
C Q

)
](

ξ0

ξ1

)

+

(
G0

G1

)

e +

(
B

0

)

u

uEF = Kξ0 + (R − KΠ)ξ1,

where G0 and G1 are such that

spec

{(
A P

0 S

)

−

(
G0

G1

)

(C Q)

}

⊂ C
−
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Regulator Synthesis

The regulator {F,G,H} is given by

F =

(
A − G0C + BK P − G0Q + B(R − BΠ)

−G1C S − G1Q

)

G =

(
G0

G1

)

, H =
(

K R − KΠ
)
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Regulator Synthesis

The regulator {F,G,H} is given by

F =

(
A − G0C + BK P − G0Q + B(R − BΠ)

−G1C S − G1Q

)

G =

(
G0

G1

)

, H =
(

K R − KΠ
)

� Stabilization:

Acl similar to





A + BK BK B(R − KΠ)

0 A − G0C P − G0Q

0 −G1C S − G1Q
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Regulator Synthesis

The regulator {F,G,H} is given by

F =

(
A − G0C + BK P − G0Q + B(R − BΠ)

−G1C S − G1Q

)

G =

(
G0

G1

)

, H =
(

K R − KΠ
)

� Regulation:

AΠ + BR + P = ΠS

CΠ + Q = 0

hold by assumption.
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Regulator Synthesis

The regulator {F,G,H} is given by

F =

(
A − G0C + BK P − G0Q + B(R − BΠ)

−G1C S − G1Q

)

G =

(
G0

G1

)

, H =
(

K R − KΠ
)

� Regulation: Letting Σ =
(
ΠT Id

)T
we obtain

FΣ =

(
A − G0C + BK P − G0Q + B(R − BΠ)

−G1C S − G1Q

) (
Π

Id

)

= ΣS.
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Regulator Synthesis

The regulator {F,G,H} is given by

F =

(
A − G0C + BK P − G0Q + B(R − BΠ)

−G1C S − G1Q

)

G =

(
G0

G1

)

, H =
(

K R − KΠ
)

� Regulation: Letting Σ =
(
ΠT Id

)T
we obtain

HΣ = KΠ + R − KΠ

= R
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The Issue of Robustness

Consider an uncertain plant model of the form

ẋ = A(µ)x + B(µ)u + P (µ)w

e = C(µ)x + Q(µ)w

where µ ∈ P ⊂ R
p, and P is compact.
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The Issue of Robustness

Consider an uncertain plant model of the form

ẋ = A(µ)x + B(µ)u + P (µ)w

e = C(µ)x + Q(µ)w

where µ ∈ P ⊂ R
p, and P is compact.

The problem is to find a fixed controller {F,G,H} such that

� The matrix

(
A(µ) B(µ)H

GC(µ) F

)

is Hurwitz for all µ ∈ P .

� For any initial condition and for all µ ∈ P , the trajectory of
the closed-loop system satisfies

lim
t→∞

(C(µ)x(t) + Q(µ)w(t)) = 0.
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The Issue of Robustness

A necessary condition is that the plant is robustly stabilizable.
� Is it possible to design a robustly stabilizing controller that

achieves regulation ∀µ ∈ P?

The question is not trivial: (exponential) stabilization is an
“open" property, regulation need not be.
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The Issue of Robustness

A necessary condition is that the plant is robustly stabilizable.
� Is it possible to design a robustly stabilizing controller that

achieves regulation ∀µ ∈ P?

The question is not trivial: (exponential) stabilization is an
“open" property, regulation need not be.

Recall the two ingredients of output regulation:
� Feedback control (intrinsically robust: does not require

accurate knowledge of the parameters)
� Feedforward control (intrinsically fragile: depends on the

actual value of the plant parameters)
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The Robust Regulator

Theorem 3 Assume {F,G,H} is a robust stabilizer. The
given controller is a robust regulator if and only if there exist
Π(µ) ∈ Rn×d, R(µ) ∈ Rm×d and Σ(µ) ∈ Rν×d such that

(FI)

{
Π(µ)S = A(µ)Π + B(µ)R(µ) + P (µ)

0 = C(µ)Π(µ) + Q(µ)

(IM)

{
Σ(µ)S = FΣ(µ)

R(µ) = HΣ(µ)

hold for all µ ∈ P .
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The Robust Regulator

Theorem 3 Assume {F,G,H} is a robust stabilizer. The
given controller is a robust regulator if and only if there exist
Π(µ) ∈ Rn×d, R(µ) ∈ Rm×d and Σ(µ) ∈ Rν×d such that

(FI)

{
Π(µ)S = A(µ)Π + B(µ)R(µ) + P (µ)

0 = C(µ)Π(µ) + Q(µ)

(IM)

{
Σ(µ)S = FΣ(µ)

R(µ) = HΣ(µ)

hold for all µ ∈ P .

� We need conditions that guarantee (FI)
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The Robust Regulator

Theorem 3 Assume {F,G,H} is a robust stabilizer. The
given controller is a robust regulator if and only if there exist
Π(µ) ∈ Rn×d, R(µ) ∈ Rm×d and Σ(µ) ∈ Rν×d such that

(FI)

{
Π(µ)S = A(µ)Π + B(µ)R(µ) + P (µ)

0 = C(µ)Π(µ) + Q(µ)

(IM)

{
Σ(µ)S = FΣ(µ)

R(µ) = HΣ(µ)

hold for all µ ∈ P .

� We need conditions that guarantee (FI)

� We need to design an internal model that enforces (IM)
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The Robust Regulator

The (FI) condition is satisfied if

det

(
A(µ) − λI B(µ)

C(µ) 0

)

6= 0

for all λ ∈ spec{S} and all µ ∈ P .

This amounts in requiring that the set of transmission zeros of
the plant is disjoint from the set of eigenvalues of the
exosystem (non-resonance condition).

Henceforth, we assume that this is the case.
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The Construction of a Robust Regulator

Consider the minimal polynomial of S

m(λ) = λq + aq−1λ
q−1 + · · · + a1λ + a0.
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The Construction of a Robust Regulator

Consider the minimal polynomial of S

m(λ) = λq + aq−1λ
q−1 + · · · + a1λ + a0.

It is well-known that, by the Cayley-Hamilton Theorem

Sq + aq−1S
q−1 + · · · + a1S + a0I = 0
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The Construction of a Robust Regulator

Consider the minimal polynomial of S

m(λ) = λq + aq−1λ
q−1 + · · · + a1λ + a0.

It is well-known that, by the Cayley-Hamilton Theorem

Sq + aq−1S
q−1 + · · · + a1S + a0I = 0

and thus, for any µ ∈ P

R(µ)Sq = −(a1R(µ)Sq−1 + · · · + a1R(µ)S + a0R(µ)) .
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The Construction of a Robust Regulator

Define the pair (Φ, Γ) as

Φ =








0 I · · · 0
...

... . . . ...
0 0 · · · I

−a0I −a1I · · · −aq−1I








, Γ =
(
I 0 · · · 0

)

Output Regulation of Linear Systems. CeSOS-NTNU 2005 – p.29/34



The Construction of a Robust Regulator

Define the pair (Φ, Γ) as

Φ =








0 I · · · 0
...

... . . . ...
0 0 · · · I

−a0I −a1I · · · −aq−1I








, Γ =
(
I 0 · · · 0

)

and note that the matrix T (R) ∈ R
mq×d defined as

T (R) =







R

RS

· · ·

RSq−1
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The Construction of a Robust Regulator

Define the pair (Φ, Γ) as

Φ =








0 I · · · 0
...

... . . . ...
0 0 · · · I

−a0I −a1I · · · −aq−1I








, Γ =
(
I 0 · · · 0

)

and note that the matrix T (R) ∈ R
mq×d defined as

T (R) =







R

RS

· · ·

RSq−1







satisfies
T (R(µ))S = ΦT (R(µ))

R(µ) = ΓT (R(µ))

for all µ ∈ P .
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The Construction of a Robust Regulator

The (d + p)-dim system

µ̇ = 0

ẇ = Sw (1)
uff = R(µ)w

generating the (unknown) feedforward input
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The Construction of a Robust Regulator

The (d + p)-dim system

µ̇ = 0

ẇ = Sw (1)
uff = R(µ)w

generating the (unknown) feedforward input is immersed into

η̇ = Φη

v = Γη (2)
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The Construction of a Robust Regulator

The (d + p)-dim system

µ̇ = 0

ẇ = Sw (1)
uff = R(µ)w

generating the (unknown) feedforward input is immersed into

η̇ = Φη

v = Γη (2)

in the sense that every output trajectory of (1) is an output
trajectory of (2):

η(0) = T (R(µ))w(0) =⇒ Γη(t) = R(µ)w(t) ∀ t ≥ 0
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The Construction of a Robust Regulator

The candidate controller is selected as

F =

(
Φ 0

0 L

)

, G =

(
Θ

M

)

, H =
(
Γ N

)

� (Φ,Γ) have been already defined
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The Construction of a Robust Regulator

The candidate controller is selected as

F =

(
Φ 0

0 L

)

, G =

(
Θ

M

)

, H =
(
Γ N

)

� (Φ,Γ) have been already defined

� Θ is any matrix such that (Φ,Θ) is controllable

Output Regulation of Linear Systems. CeSOS-NTNU 2005 – p.31/34



The Construction of a Robust Regulator

The candidate controller is selected as

F =

(
Φ 0

0 L

)

, G =

(
Θ

M

)

, H =
(
Γ N

)

� (Φ,Γ) have been already defined

� Θ is any matrix such that (Φ,Θ) is controllable

� {L,M,N} are left to be chosen.
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The Construction of a Robust Regulator

The candidate controller is selected as

F =

(
Φ 0

0 L

)

, G =

(
Θ

M

)

, H =
(
Γ N

)

� (Φ,Γ) have been already defined

� Θ is any matrix such that (Φ,Θ) is controllable

� {L,M,N} are left to be chosen.

ξ̇0 = Φξ0 + Θe

uim = Γξ0

ξ̇1 = Lξ1 + Me

ust = Nξ1

e u
+ξ̇0 = Φξ0 + Θe

ξ̇1 = Lξ1 + Me

u = Γξ0 + Nξ1
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The Error System

Look at the closed-loop system

ẇ = Sw

ξ̇0 = Φξ0 + Θe

ξ̇1 = Lξ1 + Me

ẋ = A(µ)x + P (µ)w + B(µ)[Γξ0 + Nξ1]

e = C(µ)x + Q(µ)w
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The Error System

Look at the closed-loop system

ẇ = Sw

ξ̇0 = Φξ0 + ΘC(µ)x̃

ξ̇1 = Lξ1 + MC(µ)x̃
˙̃x = A(µ)x̃ + B(µ)[Γξ0 − R(µ)w + Nξ1]

e = C(µ)x̃

change coordinates as

x̃ = x − Π(µ)w
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The Error System

Look at the closed-loop system

ẇ = Sw

˙̃
ξ0 = Φξ̃0 + ΘC(µ)x̃

ξ̇1 = Lξ1 + MC(µ)x̃

˙̃x = A(µ)x̃ + B(µ)[Γξ̃0 + Nξ1]

e = C(µ)x̃

change coordinates as

x̃ = x − Π(µ)w, ξ̃0 = ξ0 − T (µ)w
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The Error System

Look at the closed-loop system

ẇ = Sw

˙̃
ξ0 = Φξ̃0 + ΘC(µ)x̃

˙̃x = A(µ)x̃ + B(µ)Γξ̃0 + B(µ)Nξ1

ξ̇1 = Lξ1 + MC(µ)x̃

e = C(µ)x̃

change coordinates as

x̃ = x − Π(µ)w, ξ̃0 = ξ0 − T (µ)w

and rearrange the equations to obtain the error system
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The Error System

Look at the closed-loop system as the interconnection of the
error system and a robust stabilizer

˙̃
ξ0 = Φξ̃0 + ΘC(µ)x̃
˙̃x = A(µ)x̃ + B(µ)Γξ̃0 + B(µ)v
e = C(µ)x̃

ξ̇1 = Lξ1 + Me

v = Nξ1

robust stabilization implies robust regulation.
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The Error System

Lemma 1 Suppose the pair (A(µ), B(µ)) is stabilizable and
the pair (C(µ), A(µ)) is detectable. Suppose

det

(
A(µ) − λI B(µ)

C(µ) 0

)

6= 0 , ∀λ ∈ spec{S} , ∀µ ∈ P .

Let Φ and Γ be as defined, and Θ such that the pair (Φ,Θ) is
controllable. Then, the triplet

(
Φ ΘC(µ)

B(µ)Γ A(µ)

)

,

(
0

B(µ)

)

,
(
0 C(µ)

)

is stabilizable and detectable for all µ ∈ P .
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Conclusions

� The solution of the output regulation problem reposes
upon a simple geometric interpretation.
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Conclusions
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� The solvability is given in terms of the existence of a
controlled-invariant subspace contained in the kernel of
the error map.
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Conclusions

� The solution of the output regulation problem reposes
upon a simple geometric interpretation.

� The solvability is given in terms of the existence of a
controlled-invariant subspace contained in the kernel of
the error map.

� Any controller must necessarily (a) render the subspace
invariant (b) render the subspace attractive.
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Conclusions

� The solution of the output regulation problem reposes
upon a simple geometric interpretation.

� The solvability is given in terms of the existence of a
controlled-invariant subspace contained in the kernel of
the error map.

� Any controller must necessarily (a) render the subspace
invariant (b) render the subspace attractive.

� The concept of system immersion is instrumental in
achieving robust regulation.
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Conclusions

� The solution of the output regulation problem reposes
upon a simple geometric interpretation.

� The solvability is given in terms of the existence of a
controlled-invariant subspace contained in the kernel of
the error map.

� Any controller must necessarily (a) render the subspace
invariant (b) render the subspace attractive.

� The concept of system immersion is instrumental in
achieving robust regulation.

� The internal model is not just an observer of the
exosystem.
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Conclusions

� The solution of the output regulation problem reposes
upon a simple geometric interpretation.

� The solvability is given in terms of the existence of a
controlled-invariant subspace contained in the kernel of
the error map.

� Any controller must necessarily (a) render the subspace
invariant (b) render the subspace attractive.

� The concept of system immersion is instrumental in
achieving robust regulation.

� The internal model is not just an observer of the
exosystem.

� Robust regulation is a byproduct of robust stabilization.
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Conclusions

� The solution of the output regulation problem reposes
upon a simple geometric interpretation.

� The solvability is given in terms of the existence of a
controlled-invariant subspace contained in the kernel of
the error map.

� Any controller must necessarily (a) render the subspace
invariant (b) render the subspace attractive.

� The concept of system immersion is instrumental in
achieving robust regulation.

� The internal model is not just an observer of the
exosystem.

� Robust regulation is a byproduct of robust stabilization.
� What can we carry over to nonlinear systems?
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