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• Regulation of parametrized families of linear T -periodic systems:

ẇ = S(t, σ)w
ẋ = A(t, µ)x + B(t, µ)u + P (t, µ)w
e = C(t, µ)x + Q(t, µ)w , (1)

◦ exosystem state w ∈ R
nw , plant state x ∈ R

n

◦ control input u ∈ R, and regulated error e ∈ R

◦ parameter vectors (σ, µ) ∈ Kσ ×Kµ ⊂ R
s × R

p
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• Regulation of parametrized families of linear T -periodic systems:

ẇ = S(t, σ)w
ẋ = A(t, µ)x + B(t, µ)u + P (t, µ)w
e = C(t, µ)x + Q(t, µ)w , (1)

◦ exosystem state w ∈ R
nw , plant state x ∈ R

n

◦ control input u ∈ R, and regulated error e ∈ R

◦ parameter vectors (σ, µ) ∈ Kσ ×Kµ ⊂ R
s × R

p

• Look for a parameterized family of T -periodic controllers

ξ̇ = F (t, θ)ξ + G(t, θ)e
u = H(t, θ)ξ + K(t, θ)e , (2)

with state ξ ∈ R
ν and tunable parameter vector θ ∈ Kθ ⊂ R

ρ.
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The controller (2) is a certainty equivalence controller if ∀µ ∈ Kµ:

1. The unforced closed-loop system

ẋ =
[
A(t, µ) + B(t, µ)K(t, θ)C(t, µ)

]
x + B(t, µ)H(t, θ)ξ

ξ̇ = F (t, θ)ξ + G(t, θ)C(t, µ)x

is uniformly asymptotically stable for all θ ∈ Kθ
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The controller (2) is a certainty equivalence controller if ∀µ ∈ Kµ:

1. The unforced closed-loop system

ẋ =
[
A(t, µ) + B(t, µ)K(t, θ)C(t, µ)

]
x + B(t, µ)H(t, θ)ξ

ξ̇ = F (t, θ)ξ + G(t, θ)C(t, µ)x

is uniformly asymptotically stable for all θ ∈ Kθ

2. There exists a continuous assignment σ �→ θσ such that for any

given σ ∈ Kσ, the fixed controller

ξ̇ = F (t, θσ)ξ + G(t, θσ)e
u = H(t, θσ)ξ + K(t, θσ)e

solves the robust output regulation problem for (1), i.e.,

boundedness of all trajectories, and limt→∞ e(t) = 0. �
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Once a certainty-equivalence has

been found, look for an update law

˙̂
θ = ϕ(ξ, e)

to tune the family of controllers to

the one achieving regulation.

Note that adaptation is not used

for stabilization.

ξ̇ = F (t, θ̂)ξ + G(t, θ̂)e

u = H(t, θ̂)ξ + K(t, θ̂)e

ẇ = S(t, σ)w

ẋ = A(t, µ)x + B(t, µ)u + P (t, µ)w
e = C(t, µ)x + Q(t, µ)w

˙̂
θ = ϕ(ξ, e)

ξ

u

w

e

θ̂
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Once a certainty-equivalence has

been found, look for an update law

˙̂
θ = ϕ(ξ, e)

to tune the family of controllers to

the one achieving regulation.

Note that adaptation is not used

for stabilization.

ξ̇ = F (t, θ̂)ξ + G(t, θ̂)e

u = H(t, θ̂)ξ + K(t, θ̂)e

ẇ = S(t, σ)w

ẋ = A(t, µ)x + B(t, µ)u + P (t, µ)w
e = C(t, µ)x + Q(t, µ)w

˙̂
θ = ϕ(ξ, e)

ξ

u

w

e

θ̂

Issues

• Find a characterization of all certainty-equivalence regulators

(canonical realization)
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Once a certainty-equivalence has

been found, look for an update law

˙̂
θ = ϕ(ξ, e)

to tune the family of controllers to

the one achieving regulation.

Note that adaptation is not used

for stabilization.

ξ̇ = F (t, θ̂)ξ + G(t, θ̂)e

u = H(t, θ̂)ξ + K(t, θ̂)e

ẇ = S(t, σ)w

ẋ = A(t, µ)x + B(t, µ)u + P (t, µ)w
e = C(t, µ)x + Q(t, µ)w

˙̂
θ = ϕ(ξ, e)

ξ

u

w

e

θ̂

Issues

• Find a characterization of all certainty-equivalence regulators

(canonical realization)

• Find a parameterization that is amenable to adaptive control

(canonical parameterization)
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Assume σ fixed (look at robust regulation first).
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Assume σ fixed (look at robust regulation first).

A periodic stabilizing controller (F, G, H, K) is a robust regulator
iff there exist T -periodic mappings Π , Ξ and R solving the DAEs

Π̇(t, µ) + Π(t, µ)S(t) = A(t, µ)Π(t, µ) + B(t, µ)R(t, µ) + P (t, µ)
0 = C(t, µ)Π(t, µ) + Q(t, µ)

Ξ̇(t, µ) + Ξ(t, µ)S(t) = F (t) Ξ(t, µ)
R(t, µ) = H(t) Ξ(t, µ)

for all t ∈ [0, T ) and all µ ∈ Kµ.
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Assume σ fixed (look at robust regulation first).

A periodic stabilizing controller (F, G, H, K) is a robust regulator
iff there exist T -periodic mappings Π , Ξ and R solving the DAEs

Π̇(t, µ) + Π(t, µ)S(t) = A(t, µ)Π(t, µ) + B(t, µ)R(t, µ) + P (t, µ)
0 = C(t, µ)Π(t, µ) + Q(t, µ)

Ξ̇(t, µ) + Ξ(t, µ)S(t) = F (t) Ξ(t, µ)
R(t, µ) = H(t) Ξ(t, µ)

for all t ∈ [0, T ) and all µ ∈ Kµ.

The periodic feed-forward control

ẇ = S(t)w
v = R(t, µ)w

must be embedded in the controller

+

Stabilizer

Internal Model

e u
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The parameterized family of periodic systems (S(t), R(t, µ))
is immersed into (Φ(t), Γ (t)) if there exists a periodic map Υ
such that:

Υ̇ (t, µ) + Υ (t, µ)S(t) = Φ(t)Υ (t, µ)
R(t, µ) = Γ (t)Υ (t, µ)

Υ←−
{

ẇ = S(t)w
v = R(t, µ)w
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The parameterized family of periodic systems (S(t), R(t, µ))
is immersed into (Φ(t), Γ (t)) if there exists a periodic map Υ
such that:

Υ̇ (t, µ) + Υ (t, µ)S(t) = Φ(t)Υ (t, µ)
R(t, µ) = Γ (t)Υ (t, µ)

Υ←−
{

ẇ = S(t)w
v = R(t, µ)w

Different observability properties characterize the immersion map

1. regular immersion, if (Φ(·), Γ (·)) is uniformly completely

observable;
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The parameterized family of periodic systems (S(t), R(t, µ))
is immersed into (Φ(t), Γ (t)) if there exists a periodic map Υ
such that:

Υ̇ (t, µ) + Υ (t, µ)S(t) = Φ(t)Υ (t, µ)
R(t, µ) = Γ (t)Υ (t, µ)

Υ←−
{

ẇ = S(t)w
v = R(t, µ)w

Different observability properties characterize the immersion map

1. regular immersion, if (Φ(·), Γ (·)) is uniformly completely

observable;

2. strong immersion, if (Φ(·), Γ (·)) is uniformly observable;
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The parameterized family of periodic systems (S(t), R(t, µ))
is immersed into (Φ(t), Γ (t)) if there exists a periodic map Υ
such that:

Υ̇ (t, µ) + Υ (t, µ)S(t) = Φ(t)Υ (t, µ)
R(t, µ) = Γ (t)Υ (t, µ)

Υ←−
{

ẇ = S(t)w
v = R(t, µ)w

Different observability properties characterize the immersion map

1. regular immersion, if (Φ(·), Γ (·)) is uniformly completely

observable;

2. strong immersion, if (Φ(·), Γ (·)) is uniformly observable;

3. weak immersion, if (Φ(·), Γ (·)) is detectable and

not completely observable.
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The parameterized family of periodic systems (S(t), R(t, µ))
is immersed into (Φ(t), Γ (t)) if there exists a periodic map Υ
such that:

Υ̇ (t, µ) + Υ (t, µ)S(t) = Φ(t)Υ (t, µ)
R(t, µ) = Γ (t)Υ (t, µ)

Υ←−
{

ẇ = S(t)w
v = R(t, µ)w

Different observability properties characterize the immersion map

1. regular immersion, if (Φ(·), Γ (·)) is uniformly completely

observable;

2. strong immersion, if (Φ(·), Γ (·)) is uniformly observable;

3. weak immersion, if (Φ(·), Γ (·)) is detectable and

not completely observable.

1. and 2. are not equivalent (2.⇒1.) even for periodic systems
2.⇒ existence of observer and observability canonical forms
3. is useful only for adaptive regulation
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The periodic exosystem

S(t) =
(

0 sin(t)
− sin(t) 0

)
, R(µ) =

(
µ1 µ2

)
, ‖µ‖2 = 1

• Is UCO, but not UO, since detO = sin(t)
• Is immersed into a 3-dim UO system in observability form

Φ(t) =


 0 1 0

0 0 1
−3 sin(t) cos(t) −1− sin2(t) 0


 , Γ =

(
1 0 0

)
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The periodic exosystem

S(t) =
(

0 sin(t)
− sin(t) 0

)
, R(µ) =

(
µ1 µ2

)
, ‖µ‖2 = 1

• Is UCO, but not UO, since detO = sin(t)
• Is immersed into a 3-dim UO system in observability form

Φ(t) =


 0 1 0

0 0 1
−3 sin(t) cos(t) −1− sin2(t) 0


 , Γ =

(
1 0 0

)

The same system, with R(t, µ) =
(
µ1 + µ2 cos(t) 0

)
• Is UCO, but not UO

• Admits an 8-dim regular immersion, but not a strong immersion
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The periodic exosystem

S(t) =
(

0 sin(t)
− sin(t) 0

)
, R(µ) =

(
µ1 µ2

)
, ‖µ‖2 = 1

• Is UCO, but not UO, since detO = sin(t)
• Is immersed into a 3-dim UO system in observability form

Φ(t) =


 0 1 0

0 0 1
−3 sin(t) cos(t) −1− sin2(t) 0


 , Γ =

(
1 0 0

)

The same system, with R(t, µ) =
(
µ1 + µ2 cos(t) 0

)
• Is UCO, but not UO

• Admits an 8-dim regular immersion, but not a strong immersion

Assuming that a regular immersion exists, how does one construct

and internal model?
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The regular internal-model pair (Φ(·), Γ (·)) is said to admit

a canonical realization if there exist a periodic map M(·) and

a periodic system (Fim(·), Gim(·), Him(·)) such that:

1. Fim(t) ∈ R
m×m has all characteristic multipliers in |λ| < 1

2. M(t) has constant rank, and satisfies for all t ∈ [0, T )

Ṁ(t) + M(t)Φ(t) = (Fim(t) + Gim(t)Him(t))M(t)
Γ (t) = Him(t)M(t)
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The regular internal-model pair (Φ(·), Γ (·)) is said to admit

a canonical realization if there exist a periodic map M(·) and

a periodic system (Fim(·), Gim(·), Him(·)) such that:

1. Fim(t) ∈ R
m×m has all characteristic multipliers in |λ| < 1

2. M(t) has constant rank, and satisfies for all t ∈ [0, T )

Ṁ(t) + M(t)Φ(t) = (Fim(t) + Gim(t)Him(t))M(t)
Γ (t) = Him(t)M(t)

Internal model unit

ξ̇ = Fim(t)ξ + Gim(t)u
u = Him(t)ξ + ust ←− stabilizer
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The regular internal-model pair (Φ(·), Γ (·)) is said to admit

a canonical realization if there exist a periodic map M(·) and

a periodic system (Fim(·), Gim(·), Him(·)) such that:

1. Fim(t) ∈ R
m×m has all characteristic multipliers in |λ| < 1

2. M(t) has constant rank, and satisfies for all t ∈ [0, T )

Ṁ(t) + M(t)Φ(t) = (Fim(t) + Gim(t)Him(t))M(t)
Γ (t) = Him(t)M(t)

Internal model unit

ξ̇ = Fim(t)ξ + Gim(t)u
u = Him(t)ξ + ust ←− stabilizer

In a nutshell, the canonical realization yields for the IMU:

“zeros” in |λ| = 1 (characteristic multipliers of Fim + GimHim)

“poles” in |λ| < 1 (characteristic multipliers of Fim).



Structure of the Robust Regulator

Introduction

Problem Statement

Problem Solvability

Robust IM Design

• Canonical Realization
of the Internal Model
• Structure of the
Robust Regulator

Adaptive IM Design

Illustrative Example

Analysis and Design of Nonlinear Control Systems – London, 2008 11 / 19

ζ̇ = Fst(t)ζ + Gst(t)e

ust = Hst(t)ζ + Kst(t)e

ξ̇ = Fim(t)ξ + Gim(t)u

uim = Him(t)ξ

e u
+

Regular IM pair (Φ(·), Γ (·))

Fim(t) = −αI − Φ′(t), α > 0
Gim(t) = Γ ′(t)

Him(t) = Γ (t)M−1(t)

Strong IM pair (Φo(·), Γo)

Fim(t) = Fim Hurwitz

Gim(t) = Q−1
[
φ1(t) + b

]
Him(t) = Him observable pair

• For regular IM pairs, it is a passivity-based design
◦ closed-loop eigenvalues not free
◦ requires the computation of M−1(t)

• For strong IM pairs, eigenvalues are assigned via output injection
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The family of internal-model pairs
(
Φ(·, σ), Γ (·, σ)

)
is said to admit

a canonical parametrization in feedback form if there exist a family of

periodic maps M(·, θ) and a family of periodic systems

(Fim(·), Gim(·), Him(·, θ)) such that:

1. Fim(t) has all characteristic multipliers in |λ| < 1
2. Him(t, θ) is affine in θ
3. there exists a continuous map σ �→ θσ such that the matrix

M(t, θσ) has constant rank ∀ t ∈ [0, T ) and ∀σ ∈ Kσ, and

Ṁ(t, θσ) + M(t, θσ)Φ(t, σ) = (Fim(t) + Gim(t)Him(t, θσ))M(t, θσ)
Γ (t, σ) = Him(t, θσ)M(t, θσ) .
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The family of internal-model pairs
(
Φ(·, σ), Γ (·, σ)

)
is said to admit

a canonical parametrization in feedback form if there exist a family of

periodic maps M(·, θ) and a family of periodic systems

(Fim(·), Gim(·), Him(·, θ)) such that:

1. Fim(t) has all characteristic multipliers in |λ| < 1
2. Him(t, θ) is affine in θ
3. there exists a continuous map σ �→ θσ such that the matrix

M(t, θσ) has constant rank ∀ t ∈ [0, T ) and ∀σ ∈ Kσ, and

Ṁ(t, θσ) + M(t, θσ)Φ(t, σ) = (Fim(t) + Gim(t)Him(t, θσ))M(t, θσ)
Γ (t, σ) = Him(t, θσ)M(t, θσ) .

Note that:

• Fim(t) and Gim(t) are both independent of θ
• Him(t, θ) = Him, 0(t) + θT Him, 1(t)



Structure of the Adaptive Regulator

Introduction

Problem Statement

Problem Solvability

Robust IM Design

Adaptive IM Design

• Canonical
Parameterization of the
Internal Model
• Structure of the
Adaptive Regulator

• How to Construct a
Canonical
Parameterization?
• Non-minimal Internal
Model Unit
• Usefulness of Weak
Immersions

Illustrative Example

Analysis and Design of Nonlinear Control Systems – London, 2008 13 / 19

Adaptive internal model unit (for relative-degree 1 minimum-phase

plants)
ξ̇ = Fim(t)ξ + Gim(t)u
˙̂
θ = −γ Him,1(t)ξ e, γ > 0

u = Him(t, θ̂)ξ + ust ←− stabilizer

ust = −ke

ξ̇ = Fim(t)ξ + Gim(t)u

uim = Him(t, θ̂)ξ

e u
+

˙̂
θ = −γ Him,1(t)ξ e

ξ

θ̂
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• Start from a strong immersion⇒ (Φo(·, σ), Γo) in observer form

• Find a linear parameterization of the first column of Φo(·, σ)

Φo(t, σ) = Φb −Θβ(t)Γo

Φb =




0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
0 0 · · · 0


 , Θ =




θT
q−1
...

θT
1

θT
0


 .

• Choose L0 such that F = Φb − L0Γo is Hurwitz

• Let G(t, θ) = L0 −Θβ(t), H = Γo

◦ The triplet
(
F, G(·, θ), H)

is not yet in feedback form.

◦ We need to “shift” the parameter θ from G to H
◦ Impossible to do with a change of coordinates!
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The key is to look for a non-minimal periodic realization of the I/O

response of the IM unit

h(t, τ, θ) = HeF (t−τ)G(τ, θ)
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The key is to look for a non-minimal periodic realization of the I/O

response of the IM unit

h(t, τ, θ) = HeF (t−τ)G(τ, θ)
= HeF (t−τ)L0︸ ︷︷ ︸

LTI

−HeF (t−τ)Θβ(τ)︸ ︷︷ ︸
periodic
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The key is to look for a non-minimal periodic realization of the I/O

response of the IM unit

h(t, τ, θ) = HeF (t−τ)G(τ, θ)
= HeF (t−τ)L0︸ ︷︷ ︸

LTI

−HeF (t−τ)Θβ(τ)︸ ︷︷ ︸
periodic

F0 =



−lq−1 · · · −l1 −l0

1 · · · 0 0
...

. . .
...

...
0 · · · 1 0


 G0 =




1
0
...
0


 H0 = L′

0

F1 =



−lq−1Iρ · · · −l1Iρ −l0Iρ

Iρ · · · 0 0
...

. . .
...

...
0 · · · Iρ 0


 G1(t) =




β(t)
0
...
0


 H1(θ) = θ′
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The triplet

Fim =
(

F0 0
0 F1

)
, Gim(t) =

(
G0

G1(t)

)

Him(θ) =
(
H0 −H1(θ)

)
is a canonical parameterization in feedback form of the original

internal-model pair (Φo(t), Γo).
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The triplet

Fim =
(

F0 0
0 F1

)
, Gim(t) =

(
G0

G1(t)

)

Him(θ) =
(
H0 −H1(θ)

)
is a canonical parameterization in feedback form of the original

internal-model pair (Φo(t), Γo).

The canonical parameterization has been obtained via a weak

immersion of the original exosystem.

(
S(t, σ), R(t, µ)

) strong−→ (
Φo(t, θ), Γo

) weak−→ (
Fim, Gim(t), Him(θ)

)
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Controlled pendulum:

δ̈ = −aδ + bu

Vertically-oscillating pendulum:

δ̈1 = (−a− 2d cos(2t))δ1 m

δ1 l

d1
2 cos(2t)

δ
l

m

u
O

Exosystem

S(t, σ) =
(

0 1
−a− 2d cos(2t) 0

)
, Rσ(t, µ) =

(
2
bd cos(2t) 0

)

strongly immersed in a 4-dim IM pair (Φo(t, θ), Γo) in observer

canonical form with new parameter vector θ = (a, d, a2, ad)′.
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• We have proposed a classification of the property of system

immersion for periodic systems to underly the connections

between various non-equivalent definitions of systems

observability and the existence of robust internal model-based

controllers.
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• We have proposed a classification of the property of system

immersion for periodic systems to underly the connections

between various non-equivalent definitions of systems

observability and the existence of robust internal model-based

controllers.
• Weaker detectability properties are related to the possibility of

obtaining canonical realizations of periodic internal models to be

used in certainty-equivalence design to deal with parameter

uncertainty on the exosystem model.
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• We have proposed a classification of the property of system

immersion for periodic systems to underly the connections

between various non-equivalent definitions of systems

observability and the existence of robust internal model-based

controllers.
• Weaker detectability properties are related to the possibility of

obtaining canonical realizations of periodic internal models to be

used in certainty-equivalence design to deal with parameter

uncertainty on the exosystem model.

• Open problem: It is not clear whether coordinate-free conditions

can be found to check a priori the existence of a regular

immersion.


