

A Taxonomy for Time-Varying Immersions in Periodic Internal-Model Control

Prof. Andrea Serrani Department of Electrical and Computer Engineering The Ohio State University

Analysis and Design of Nonlinear Control Systems - London, 2008

Introduction

- Outline of the Talk
- Milestones in Output Regulation Theory
- Problem Statement
- Problem Solvability
- Robust IM Design
- Adaptive IM Design
- Illustrative Example

Outline of the Talk

- 1. Statement of the Problem
 - Regulation in the Periodic Setup
- 2. Solvability of the Problem
 - Periodic Internal Model Principle
 - Periodic Immersions
- 3. Robust Internal Model Design
 - Canonical Realizations
 - Regulator Structure
- 4. Adaptive Internal Model Design
 - Canonical Parameterization
 - Adaptive Regulator Structure
 - Weak Immersions for Adaptive Design
- 5. Illustrative Example
- 6. Conclusions

Milestones in Output Regulation Theory

Introduction

Outline of the Talk
Milestones in Output Regulation Theory

Problem Statement

Problem Solvability

Robust IM Design

Adaptive IM Design

Illustrative Example

- Davison, E. J.; Goldenberg, A., "Robust control of a general servomechanism problem: The servo compensator," *Automatica*, 1975.
- 2. Francis, B. A.; Wonham, W. M., "The internal model principle of control theory," *Automatica*, 1976.
- 3. Francis, B. A., "The linear multivariable regulator problem," *SIAM Journal on Control and Optimization*, 1977.
- 4. Isidori, A.; Byrnes, C. I., "Output regulation of nonlinear systems," *IEEE Transactions on Automatic Control*, 1990.
- 5. Byrnes, C. I.; Isidori, A., "Limit sets, zero dynamics, and internal models in the problem of nonlinear output regulation", *IEEE Transactions on Automatic Control*, 2003.
- 6. Marconi, L.; Praly, L.; Isidori, A., "Output Stabilization via Nonlinear Luenberger Observers", *SIAM Journal on Control and Optimization*, 2007.

Milestones in Output Regulation Theory

Introduction

Outline of the Talk
Milestones in Output Regulation Theory

Problem Statement

Problem Solvability

Robust IM Design

Adaptive IM Design

Illustrative Example

- Davison, E. J.; Goldenberg, A., "Robust control of a general servomechanism problem: The servo compensator," *Automatica*, 1975.
- 2. Francis, B. A.; Wonham, W. M., "The internal model principle of control theory," *Automatica*, 1976.
- 3. Francis, B. A., "The linear multivariable regulator problem," *SIAM Journal on Control and Optimization*, 1977.
- 4. Isidori, A.; Byrnes, C. I., "Output regulation of nonlinear systems," *IEEE Transactions on Automatic Control*, 1990.
- 5. Byrnes, C. I.; Isidori, A., "Limit sets, zero dynamics, and internal models in the problem of nonlinear output regulation", *IEEE Transactions on Automatic Control*, 2003.
- 6. Marconi, L.; Praly, L.; Isidori, A., "Output Stabilization via Nonlinear Luenberger Observers", *SIAM Journal on Control and Optimization*, 2007.

Milestones in Output Regulation Theory

Introduction

Outline of the Talk
Milestones in Output Regulation Theory

Problem Statement

Problem Solvability

Robust IM Design

Adaptive IM Design

Illustrative Example

- Davison, E. J.; Goldenberg, A., "Robust control of a general servomechanism problem: The servo compensator," *Automatica*, 1975.
- 2. Francis, B. A.; Wonham, W. M., "The internal model principle of control theory," *Automatica*, 1976.
- 3. Francis, B. A., "The linear multivariable regulator problem," *SIAM Journal on Control and Optimization*, 1977.
- 4. Isidori, A.; Byrnes, C. I., "Output regulation of nonlinear systems," *IEEE Transactions on Automatic Control*, 1990.
- 5. Byrnes, C. I.; Isidori, A., "Limit sets, zero dynamics, and internal models in the problem of nonlinear output regulation", *IEEE Transactions on Automatic Control*, 2003.
- 6. Marconi, L.; Praly, L.; Isidori, A., "Output Stabilization via Nonlinear Luenberger Observers", *SIAM Journal on Control and Optimization*, 2007.

Regulation in the Periodic Setup

Introduction

- Problem Statement

 Regulation in the
 Periodic Setup
- Certainty Equivalence
 Control
- Adaptive Regulation

Problem Solvability

- Robust IM Design
- Adaptive IM Design
- Illustrative Example

• Regulation of parametrized families of linear T-periodic systems:

$$\dot{w} = S(t,\sigma)w$$

$$\dot{x} = A(t,\mu)x + B(t,\mu)u + P(t,\mu)w$$

$$e = C(t,\mu)x + Q(t,\mu)w,$$
(1)

- \circ exosystem state $w \in \mathbb{R}^{n_w}$, plant state $x \in \mathbb{R}^n$
- $\circ \quad \text{control input } u \in \mathbb{R} \text{, and regulated error } e \in \mathbb{R}$
- parameter vectors $(\sigma, \mu) \in \mathcal{K}_{\sigma} \times \mathcal{K}_{\mu} \subset \mathbb{R}^{s} \times \mathbb{R}^{p}$

Regulation in the Periodic Setup

Introduction

- Problem Statement
 Regulation in the
- Periodic Setup
- Certainty Equivalence
 Control
- Adaptive Regulation

Problem Solvability

Robust IM Design

Adaptive IM Design

Illustrative Example

Regulation of parametrized families of linear T-periodic systems:

$$\dot{w} = S(t,\sigma)w$$

$$\dot{x} = A(t,\mu)x + B(t,\mu)u + P(t,\mu)w$$

$$e = C(t,\mu)x + Q(t,\mu)w,$$
(1)

- \circ exosystem state $w \in \mathbb{R}^{n_w}$, plant state $x \in \mathbb{R}^n$
- $\circ \quad \text{control input } u \in \mathbb{R} \text{, and regulated error } e \in \mathbb{R}$
- parameter vectors $(\sigma, \mu) \in \mathcal{K}_{\sigma} \times \mathcal{K}_{\mu} \subset \mathbb{R}^{s} \times \mathbb{R}^{p}$
- Look for a parameterized family of T-periodic controllers

$$\dot{\xi} = F(t,\theta)\xi + G(t,\theta)e$$

$$u = H(t,\theta)\xi + K(t,\theta)e,$$
(2)

with state $\xi \in \mathbb{R}^{\nu}$ and tunable parameter vector $\theta \in \mathcal{K}_{\theta} \subset \mathbb{R}^{\rho}$.

Certainty Equivalence Control

Introduction

Problem Statement

• Regulation in the Periodic Setup

• Certainty Equivalence Control

Adaptive Regulation

Problem Solvability

Robust IM Design

Adaptive IM Design

Illustrative Example

The controller (2) is a *certainty equivalence controller* if $\forall \mu \in \mathcal{K}_{\mu}$:

1. The unforced closed-loop system

 $\dot{x} = \left[A(t,\mu) + B(t,\mu)K(t,\theta)C(t,\mu)\right]x + B(t,\mu)H(t,\theta)\xi$ $\dot{\xi} = F(t,\theta)\xi + G(t,\theta)C(t,\mu)x$

is uniformly asymptotically stable for all $heta \in \mathcal{K}_{ heta}$

Certainty Equivalence Control

Introduction

Problem StatementRegulation in the

Periodic Setup

• Certainty Equivalence Control

Adaptive Regulation

Problem Solvability

Robust IM Design

Adaptive IM Design

Illustrative Example

The controller (2) is a *certainty equivalence controller* if $\forall \mu \in \mathcal{K}_{\mu}$:

1. The unforced closed-loop system

 $\dot{x} = \left[A(t,\mu) + B(t,\mu)K(t,\theta)C(t,\mu)\right]x + B(t,\mu)H(t,\theta)\xi$ $\dot{\xi} = F(t,\theta)\xi + G(t,\theta)C(t,\mu)x$

is uniformly asymptotically stable for all $\theta \in \mathcal{K}_{ heta}$

2. There exists a continuous assignment $\sigma \mapsto \theta_{\sigma}$ such that for any given $\sigma \in \mathcal{K}_{\sigma}$, the fixed controller

$$\dot{\xi} = F(t,\theta_{\sigma})\xi + G(t,\theta_{\sigma})e$$
$$u = H(t,\theta_{\sigma})\xi + K(t,\theta_{\sigma})e$$

solves the robust output regulation problem for (1), i.e., boundedness of all trajectories, and $\lim_{t\to\infty} e(t) = 0$.

Adaptive Regulation

Introduction

Problem Statement

• Regulation in the Periodic Setup

• Certainty Equivalence Control

Adaptive Regulation

Problem Solvability

Robust IM Design

Adaptive IM Design

Illustrative Example

Once a certainty-equivalence has been found, look for an update law

 $\dot{\hat{\theta}} = \varphi(\xi, e)$

to tune the family of controllers to the one achieving regulation.

Note that adaptation is not used for stabilization.

Adaptive Regulation

Introduction

Problem Statement

• Regulation in the Periodic Setup

• Certainty Equivalence Control

Adaptive Regulation

Problem Solvability

Robust IM Design

Adaptive IM Design

Illustrative Example

Once a certainty-equivalence has been found, look for an update law

 $\dot{\hat{\theta}} = \varphi(\xi, e)$

to tune the family of controllers to the one achieving regulation.

Note that adaptation is not used for stabilization.

<u>Issues</u>

• Find a characterization of all certainty-equivalence regulators (canonical realization)

Adaptive Regulation

Introduction

Problem Statement

• Regulation in the Periodic Setup

Certainty Equivalence
Control

Adaptive Regulation

Problem Solvability

Robust IM Design

Adaptive IM Design

Illustrative Example

Once a certainty-equivalence has been found, look for an update law

 $\dot{\hat{\theta}} = \varphi(\xi, e)$

to tune the family of controllers to the one achieving regulation.

Note that adaptation is not used for stabilization.

lssues

- Find a characterization of all certainty-equivalence regulators (canonical realization)
- Find a parameterization that is amenable to adaptive control (canonical parameterization)

Periodic Internal Model Principle

Introduction

Problem Statement

Problem Solvability

• Periodic Internal Model Principle

• Periodic Immersion

• Examples

Robust IM Design

Adaptive IM Design

Illustrative Example

Assume σ fixed (look at robust regulation first).

Periodic Internal Model Principle

Introduction

Problem Statement

Problem Solvability

 Periodic Internal Model Principle

• Periodic Immersion

• Examples

Robust IM Design

Adaptive IM Design

Illustrative Example

Assume σ fixed (look at robust regulation first).

A periodic stabilizing controller (F, G, H, K) is a robust regulator iff there exist T-periodic mappings Π , Ξ and R solving the DAEs

 $\dot{\Pi}(t,\mu) + \Pi(t,\mu)S(t) = A(t,\mu)\Pi(t,\mu) + B(t,\mu)R(t,\mu) + P(t,\mu)$ $0 = C(t,\mu)\Pi(t,\mu) + Q(t,\mu)$

$$\dot{\Xi}(t,\mu) + \Xi(t,\mu)S(t) = F(t)\Xi(t,\mu)$$
$$\frac{R(t,\mu)}{R(t,\mu)} = H(t)\Xi(t,\mu)$$

for all $t \in [0, T)$ and all $\mu \in \mathcal{K}_{\mu}$.

Periodic Internal Model Principle

Introduction

Problem Statement

Problem Solvability

 Periodic Internal Model Principle

Periodic Immersion

• Examples

Robust IM Design

Adaptive IM Design

Illustrative Example

Assume σ fixed (look at robust regulation first).

A periodic stabilizing controller (F,G,H,K) is a robust regulator iff there exist T-periodic mappings $\Pi,\,\varXi$ and R solving the DAEs

 $\dot{\Pi}(t,\mu) + \Pi(t,\mu)S(t) = A(t,\mu)\Pi(t,\mu) + B(t,\mu)R(t,\mu) + P(t,\mu)$ $0 = C(t,\mu)\Pi(t,\mu) + Q(t,\mu)$

$$\dot{\Xi}(t,\mu) + \Xi(t,\mu)S(t) = F(t)\Xi(t,\mu)$$
$$\frac{R(t,\mu)}{R(t,\mu)} = H(t)\Xi(t,\mu)$$

for all $t \in [0, T)$ and all $\mu \in \mathcal{K}_{\mu}$.

The periodic feed-forward control

$$\dot{w} = S(t)w$$

$$v = R(t,\mu)w$$

must be embedded in the controller

Introduction

Problem Statement

Problem Solvability

• Periodic Internal Model Principle

• Periodic Immersion

• Examples

Robust IM Design

Adaptive IM Design

Illustrative Example

The parameterized family of periodic systems $(S(t),R(t,\mu))$ is **immersed** into $(\varPhi(t),\Gamma(t))$ if there exists a periodic map \varUpsilon such that:

$$\begin{split} \dot{\Upsilon}(t,\mu) + \Upsilon(t,\mu)S(t) &= \Phi(t)\Upsilon(t,\mu) & \underset{R(t,\mu)}{\leftarrow} \begin{cases} \dot{w} &= S(t)w \\ v &= R(t,\mu)w \end{cases} \end{split}$$

Introduction

Problem Statement

Problem Solvability

• Periodic Internal Model Principle

• Periodic Immersion

• Examples

Robust IM Design

Adaptive IM Design

Illustrative Example

The parameterized family of periodic systems $(S(t),R(t,\mu))$ is **immersed** into $(\varPhi(t),\Gamma(t))$ if there exists a periodic map \varUpsilon such that:

$$\begin{split} \dot{\Upsilon}(t,\mu) + \Upsilon(t,\mu)S(t) &= \Phi(t)\Upsilon(t,\mu) & \underset{R(t,\mu)}{\leftarrow} \begin{cases} \dot{w} &= S(t)w \\ v &= R(t,\mu)w \end{cases} \end{split}$$

Different observability properties characterize the immersion map

1. regular immersion, if $(\Phi(\cdot), \Gamma(\cdot))$ is uniformly completely observable;

Introduction

Problem Statement

Problem Solvability

 Periodic Internal Model Principle

• Periodic Immersion

• Examples

Robust IM Design

Adaptive IM Design

Illustrative Example

The parameterized family of periodic systems $(S(t),R(t,\mu))$ is **immersed** into $(\varPhi(t),\Gamma(t))$ if there exists a periodic map \varUpsilon such that:

$$\begin{aligned} \dot{\Upsilon}(t,\mu) + \Upsilon(t,\mu)S(t) &= \Phi(t)\Upsilon(t,\mu) & \underset{R(t,\mu)}{\leftarrow} \begin{cases} \dot{w} &= S(t)w \\ v &= R(t,\mu)w \end{aligned}$$

Different **observability properties** characterize the immersion map

- 1. regular immersion, if $(\Phi(\cdot), \Gamma(\cdot))$ is uniformly completely observable;
- 2. strong immersion, if $(\Phi(\cdot), \Gamma(\cdot))$ is uniformly observable;

Introduction

Problem Statement

Problem Solvability

 Periodic Internal Model Principle

- Periodic Immersion
- Examples

Robust IM Design

Adaptive IM Design

Illustrative Example

The parameterized family of periodic systems $(S(t),R(t,\mu))$ is **immersed** into $(\varPhi(t),\Gamma(t))$ if there exists a periodic map \varUpsilon such that:

$$\begin{aligned} \dot{\Upsilon}(t,\mu) + \Upsilon(t,\mu)S(t) &= \Phi(t)\Upsilon(t,\mu) & \underset{R(t,\mu)}{\leftarrow} \begin{cases} \dot{w} &= S(t)w \\ v &= R(t,\mu)w \end{aligned}$$

Different **observability properties** characterize the immersion map

- 1. regular immersion, if $(\Phi(\cdot), \Gamma(\cdot))$ is uniformly completely observable;
- 2. strong immersion, if $(\Phi(\cdot), \Gamma(\cdot))$ is uniformly observable;
- 3. weak immersion, if $(\Phi(\cdot), \Gamma(\cdot))$ is detectable and not completely observable.

Introduction

Problem Statement

Problem Solvability

 Periodic Internal Model Principle

- Periodic Immersion
- Examples

Robust IM Design

Adaptive IM Design

Illustrative Example

The parameterized family of periodic systems $(S(t),R(t,\mu))$ is **immersed** into $(\varPhi(t),\Gamma(t))$ if there exists a periodic map \varUpsilon such that:

$$\begin{aligned} \dot{\Upsilon}(t,\mu) + \Upsilon(t,\mu)S(t) &= \Phi(t)\Upsilon(t,\mu) & \underset{R(t,\mu)}{\leftarrow} \begin{cases} \dot{w} &= S(t)w \\ v &= R(t,\mu)w \end{aligned}$$

Different **observability properties** characterize the immersion map

- 1. regular immersion, if $(\Phi(\cdot), \Gamma(\cdot))$ is uniformly completely observable;
- 2. strong immersion, if $(\Phi(\cdot), \Gamma(\cdot))$ is uniformly observable;
- 3. weak immersion, if $(\Phi(\cdot), \Gamma(\cdot))$ is detectable and not completely observable.
 - 1. and 2. are not equivalent (2. \Rightarrow 1.) even for periodic systems
 - 2. \Rightarrow existence of observer and observability canonical forms
 - 3. is useful only for adaptive regulation

Examples

The periodic exosystem

Introduction

Problem Statement

Problem Solvability

 Periodic Internal Model Principle

Periodic Immersion

• Examples

Robust IM Design

Adaptive IM Design

Illustrative Example

 $S(t) = \begin{pmatrix} 0 & \sin(t) \\ -\sin(t) & 0 \end{pmatrix}, \quad R(\mu) = (\mu_1 \quad \mu_2), \quad \|\mu\|^2 = 1$

Is UCO, but not UO, since det O = sin(t)
Is immersed into a 3-dim UO system in observability form

$$\Phi(t) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -3\sin(t)\cos(t) & -1 - \sin^2(t) & 0 \end{pmatrix}, \quad \Gamma = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix}$$

Examples

Introduction

Problem Statement

Problem Solvability

 Periodic Internal Model Principle

Periodic Immersion

• Examples

Robust IM Design

Adaptive IM Design

Illustrative Example

$$S(t) = \begin{pmatrix} 0 & \sin(t) \\ -\sin(t) & 0 \end{pmatrix}, \quad R(\mu) = (\mu_1 \quad \mu_2), \quad \|\mu\|^2 = 1$$

Is UCO, but not UO, since det O = sin(t)
Is immersed into a 3-dim UO system in observability form

$$\Phi(t) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -3\sin(t)\cos(t) & -1 - \sin^2(t) & 0 \end{pmatrix}, \quad \Gamma = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix}$$

The same system, with $R(t, \mu) = \begin{pmatrix} \mu_1 + \mu_2 \cos(t) & 0 \end{pmatrix}$

• Is UCO, but not UO

The periodic exosystem

• Admits an 8-dim **regular** immersion, but **not** a **strong** immersion

Examples

Introduction

Problem Statement

Problem Solvability

 Periodic Internal Model Principle

Periodic Immersion

• Examples

Robust IM Design

Adaptive IM Design

Illustrative Example

 $S(t) = \begin{pmatrix} 0 & \sin(t) \\ -\sin(t) & 0 \end{pmatrix}, \quad R(\mu) = (\mu_1 \quad \mu_2), \quad \|\mu\|^2 = 1$

Is UCO, but not UO, since det O = sin(t)
 Is immersed into a 3-dim UO system in observability form

$$\Phi(t) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -3\sin(t)\cos(t) & -1 - \sin^2(t) & 0 \end{pmatrix}, \quad \Gamma = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix}$$

The same system, with $R(t, \mu) = \begin{pmatrix} \mu_1 + \mu_2 \cos(t) & 0 \end{pmatrix}$

• Is UCO, but not UO

The periodic exosystem

• Admits an 8-dim **regular** immersion, but **not** a **strong** immersion

Assuming that a **regular immersion** exists, how does one construct and *internal model*?

Canonical Realization of the Internal Model

Introduction

Problem Statement

Problem Solvability

Robust IM Design

• Canonical Realization of the Internal Model

• Structure of the Robust Regulator

Adaptive IM Design

Illustrative Example

The **regular** internal-model pair $(\Phi(\cdot), \Gamma(\cdot))$ is said to admit a *canonical realization* if there exist a periodic map $M(\cdot)$ and a periodic system $(F_{im}(\cdot), G_{im}(\cdot), H_{im}(\cdot))$ such that:

1. $F_{im}(t) \in \mathbb{R}^{m \times m}$ has all characteristic multipliers in $|\lambda| < 1$ 2. M(t) has constant rank, and satisfies for all $t \in [0, T)$

 $\dot{M}(t) + M(t)\Phi(t) = (F_{\rm im}(t) + G_{\rm im}(t)H_{\rm im}(t))M(t)$ $\Gamma(t) = H_{\rm im}(t)M(t)$

Canonical Realization of the Internal Model

Introduction

Problem Statement

Problem Solvability

Robust IM Design

• Canonical Realization of the Internal Model

• Structure of the Robust Regulator

Adaptive IM Design

Illustrative Example

The **regular** internal-model pair $(\Phi(\cdot), \Gamma(\cdot))$ is said to admit a *canonical realization* if there exist a periodic map $M(\cdot)$ and a periodic system $(F_{im}(\cdot), G_{im}(\cdot), H_{im}(\cdot))$ such that:

1. $F_{im}(t) \in \mathbb{R}^{m \times m}$ has all characteristic multipliers in $|\lambda| < 1$ 2. M(t) has constant rank, and satisfies for all $t \in [0, T)$

$$\dot{M}(t) + M(t)\Phi(t) = (F_{\rm im}(t) + G_{\rm im}(t)H_{\rm im}(t))M(t)$$

$$\Gamma(t) = H_{\rm im}(t)M(t)$$

Internal model unit

$$\dot{\xi} = F_{im}(t)\xi + G_{im}(t)u$$

 $u = H_{im}(t)\xi + u_{st} \leftarrow stabilizer$

Canonical Realization of the Internal Model

Introduction

Problem Statement

Problem Solvability

Robust IM Design

• Canonical Realization of the Internal Model

• Structure of the Robust Regulator

Adaptive IM Design

Illustrative Example

The **regular** internal-model pair $(\Phi(\cdot), \Gamma(\cdot))$ is said to admit a *canonical realization* if there exist a periodic map $M(\cdot)$ and a periodic system $(F_{im}(\cdot), G_{im}(\cdot), H_{im}(\cdot))$ such that:

1. $F_{im}(t) \in \mathbb{R}^{m \times m}$ has all characteristic multipliers in $|\lambda| < 1$ 2. M(t) has constant rank, and satisfies for all $t \in [0, T)$

$$\dot{M}(t) + M(t)\Phi(t) = (F_{\rm im}(t) + G_{\rm im}(t)H_{\rm im}(t))M(t)$$

$$\Gamma(t) = H_{\rm im}(t)M(t)$$

Internal model unit

$$\dot{\xi} = F_{im}(t)\xi + G_{im}(t)u$$

 $u = H_{im}(t)\xi + u_{st} \leftarrow stabilizer$

In a nutshell, the canonical realization yields for the IMU:

"zeros" in $|\lambda| = 1$ (characteristic multipliers of $F_{\rm im} + G_{\rm im}H_{\rm im}$) "poles" in $|\lambda| < 1$ (characteristic multipliers of $F_{\rm im}$).

Structure of the Robust Regulator

e

Introduction

Problem Statement

Problem Solvability

Robust IM Design

• Canonical Realization of the Internal Model

• Structure of the Robust Regulator

Adaptive IM Design

Illustrative Example

$$\dot{\zeta} = F_{\rm st}(t)\zeta + G_{\rm st}(t)e$$

$$u_{\rm st} = H_{\rm st}(t)\zeta + K_{\rm st}(t)e$$

$$\dot{\xi} = F_{\rm im}(t)\xi + G_{\rm im}(t)u$$

$$u_{\rm im} = H_{\rm im}(t)\xi$$

Regular IM pair $(\Phi(\cdot), \Gamma(\cdot))$ Strong IM pair $(\Phi_o(\cdot), \Gamma_o)$ $F_{im}(t) = -\alpha I - \Phi'(t), \ \alpha > 0$ $F_{im}(t) = F_{im}$ Hurwitz $G_{im}(t) = \Gamma'(t)$ $G_{im}(t) = Q^{-1}[\phi_1(t) + b]$ $H_{im}(t) = \Gamma(t)M^{-1}(t)$ $H_{im}(t) = H_{im}$ observable pair

- For regular IM pairs, it is a passivity-based design
 - closed-loop eigenvalues not free
 - \circ requires the computation of $M^{-1}(t)$
- For strong IM pairs, eigenvalues are assigned via output injection

Canonical Parameterization of the Internal Model

Introduction

Problem Statement

Problem Solvability

Robust IM Design

Adaptive IM Design

Canonical Parameterization of the Internal Model

- Structure of the Adaptive Regulator
- How to Construct a

Canonical

Parameterization?

Non-minimal Internal

Model Unit

Usefulness of Weak
 Immersions

Illustrative Example

The family of internal-model pairs $(\Phi(\cdot, \sigma), \Gamma(\cdot, \sigma))$ is said to admit a *canonical parametrization in feedback form* if there exist a family of periodic maps $M(\cdot, \theta)$ and a family of periodic systems $(F_{im}(\cdot), G_{im}(\cdot), H_{im}(\cdot, \theta))$ such that:

- 1. $F_{\rm im}(t)$ has all characteristic multipliers in $|\lambda|<1$
- 2. $H_{\rm im}(t,\theta)$ is affine in θ
- 3. there exists a continuous map $\sigma \mapsto \theta_{\sigma}$ such that the matrix $M(t, \theta_{\sigma})$ has constant rank $\forall t \in [0, T)$ and $\forall \sigma \in \mathcal{K}_{\sigma}$, and

 $\dot{M}(t,\theta_{\sigma}) + M(t,\theta_{\sigma})\Phi(t,\sigma) = (F_{\rm im}(t) + G_{\rm im}(t)H_{\rm im}(t,\theta_{\sigma}))M(t,\theta_{\sigma})$ $\Gamma(t,\sigma) = H_{\rm im}(t,\theta_{\sigma})M(t,\theta_{\sigma}).$

Canonical Parameterization of the Internal Model

Introduction

Problem Statement

Problem Solvability

Robust IM Design

Adaptive IM Design

Canonical
 Parameterization of the
 Internal Model

• Structure of the Adaptive Regulator

How to Construct a

Canonical

Parameterization?

Non-minimal Internal

Model Unit

Usefulness of Weak
 Immersions

Illustrative Example

The family of internal-model pairs $(\Phi(\cdot, \sigma), \Gamma(\cdot, \sigma))$ is said to admit a *canonical parametrization in feedback form* if there exist a family of periodic maps $M(\cdot, \theta)$ and a family of periodic systems $(F_{im}(\cdot), G_{im}(\cdot), H_{im}(\cdot, \theta))$ such that:

- 1. $F_{\rm im}(t)$ has all characteristic multipliers in $|\lambda| < 1$
- 2. $H_{\rm im}(t,\theta)$ is affine in θ
- 3. there exists a continuous map $\sigma \mapsto \theta_{\sigma}$ such that the matrix $M(t, \theta_{\sigma})$ has constant rank $\forall t \in [0, T)$ and $\forall \sigma \in \mathcal{K}_{\sigma}$, and

 $\dot{M}(t,\theta_{\sigma}) + M(t,\theta_{\sigma})\Phi(t,\sigma) = (F_{\rm im}(t) + G_{\rm im}(t)H_{\rm im}(t,\theta_{\sigma}))M(t,\theta_{\sigma})$ $\Gamma(t,\sigma) = H_{\rm im}(t,\theta_{\sigma})M(t,\theta_{\sigma}).$

Note that:

- $F_{\rm im}(t)$ and $G_{\rm im}(t)$ are both independent of heta
- $H_{\text{im}}(t,\theta) = H_{\text{im},0}(t) + \theta^{\mathrm{T}} H_{\text{im},1}(t)$

Structure of the Adaptive Regulator

Introduction

Problem Statement

Problem Solvability

Robust IM Design

- Adaptive IM Design
- Canonical

Parameterization of the Internal Model

• Structure of the

Adaptive Regulator

How to Construct a

Canonical

Parameterization?

Non-minimal Internal

Model Unit

Usefulness of Weak
 Immersions

Illustrative Example

Adaptive internal model unit (for relative-degree 1 minimum-phase plants)

$$\begin{aligned} \xi &= F_{\rm im}(t)\xi + G_{\rm im}(t)u\\ \dot{\hat{\theta}} &= -\gamma H_{\rm im,1}(t)\xi e, \quad \gamma > 0\\ u &= H_{\rm im}(t,\hat{\theta})\xi + u_{\rm st} \longleftarrow {\rm stabilized} \end{aligned}$$

Introduction

Problem Statement

Problem Solvability

Robust IM Design

Adaptive IM Design

Canonical

Parameterization of the Internal Model

• Structure of the Adaptive Regulator

How to Construct a

Canonical

Parameterization?

 Non-minimal Internal Model Unit

 Usefulness of Weak Immersions

Illustrative Example

Start from a strong immersion $\Rightarrow (\Phi_o(\cdot, \sigma), \Gamma_o)$ in observer form Find a linear parameterization of the first column of $\Phi_{\alpha}(\cdot, \sigma)$

$$\Phi_{\rm o}(t,\sigma) = \Phi_{\rm b} - \Theta\beta(t)\Gamma_{\rm o}$$

Choose L_0 such that $F = \Phi_{\rm b} - L_0 \Gamma_0$ is Hurwitz Let $G(t, \theta) = L_0 - \Theta \beta(t), H = \Gamma_0$

- The triplet $(F, G(\cdot, \theta), H)$ is not yet in *feedback form*.
- We need to "shift" the parameter heta from G to H
- Impossible to do with a change of coordinates!

Introduction

Problem Statement

Problem Solvability

Robust IM Design

Adaptive IM Design

• Canonical

Parameterization of the Internal Model

• Structure of the Adaptive Regulator

How to Construct a

Canonical

Parameterization?

 Non-minimal Internal Model Unit

Usefulness of Weak
 Immersions

Illustrative Example

Start from a strong immersion ⇒ (Φ_o(·, σ), Γ_o) in observer form
Find a linear parameterization of the first column of Φ_o(·, σ)

$$\Phi_{\rm o}(t,\sigma) = \Phi_{\rm b} - \Theta\beta(t)\Gamma_{\rm o}$$

• Choose L_0 such that $F = \Phi_{\rm b} - L_0 \Gamma_{\rm o}$ is Hurwitz • Let $G(t, \theta) = L_0 - \Theta \beta(t)$, $H = \Gamma_{\rm o}$

• The triplet $(F, G(\cdot, \theta), H)$ is not yet in *feedback form*.

 \circ $\,$ We need to "shift" the parameter θ from G to H

• Impossible to do with a change of coordinates!

Introduction

Problem Statement

Problem Solvability

Robust IM Design

Adaptive IM Design

Canonical

Parameterization of the Internal Model

• Structure of the Adaptive Regulator

How to Construct a

Canonical

Parameterization?

Non-minimal Internal

Model Unit

 Usefulness of Weak Immersions

Illustrative Example

Start from a strong immersion $\Rightarrow (\Phi_o(\cdot, \sigma), \Gamma_o)$ in observer form Find a linear parameterization of the first column of $\Phi_{\alpha}(\cdot, \sigma)$

$$\Phi_{\rm o}(t,\sigma) = \Phi_{\rm b} - \Theta\beta(t)\Gamma_{\rm o}$$

$$\Phi_{\mathrm{b}} = \begin{pmatrix} 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \\ 0 & 0 & \cdots & 0 \end{pmatrix}, \qquad \Theta = \begin{pmatrix} \theta_{q-1}^{\mathrm{T}} \\ \vdots \\ \theta_{1}^{\mathrm{T}} \\ \theta_{0}^{\mathrm{T}} \end{pmatrix}$$

Choose L_0 such that $F = \Phi_{\rm b} - L_0 \Gamma_0$ is Hurwitz Let $G(t, \theta) = L_0 - \Theta \beta(t), H = \Gamma_0$

The triplet $(F, G(\cdot, \theta), H)$ is not yet in *feedback form*.

We need to "shift" the parameter heta from G to H

Impossible to do with a change of coordinates!

Introduction

Problem Statement

Problem Solvability

Robust IM Design

Adaptive IM Design

Canonical

Parameterization of the Internal Model

• Structure of the Adaptive Regulator

How to Construct a

Canonical

Parameterization?

Non-minimal Internal

Model Unit

Usefulness of Weak
 Immersions

Illustrative Example

Start from a strong immersion ⇒ (Φ_o(·, σ), Γ_o) in observer form
 Find a linear parameterization of the first column of Φ_o(·, σ)

$$\Phi_{\rm o}(t,\sigma) = \Phi_{\rm b} - \Theta\beta(t)\Gamma_{\rm o}$$

$$\Phi_{\rm b} = \begin{pmatrix} 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \\ 0 & 0 & \cdots & 0 \end{pmatrix}, \qquad \Theta = \begin{pmatrix} \theta_{q-1}^{\rm T} \\ \vdots \\ \theta_{1}^{\rm T} \\ \theta_{0}^{\rm T} \end{pmatrix}$$

• Choose L_0 such that $F = \Phi_b - L_0 \Gamma_o$ is Hurwitz • Let $G(t, \theta) = L_0 - \Theta \beta(t)$, $H = \Gamma_o$

• The triplet $ig(F,G(\cdot, heta),Hig)$ is not yet in feedback form.

 \circ $\,$ We need to "shift" the parameter heta from G to H

• Impossible to do with a change of coordinates!

Introduction

Problem Statement

Problem Solvability

Robust IM Design

Adaptive IM Design

Canonical

Parameterization of the Internal Model

• Structure of the Adaptive Regulator

How to Construct a

Canonical

Parameterization?

Non-minimal Internal

Model Unit

Usefulness of Weak
 Immersions

Illustrative Example

Start from a strong immersion ⇒ (Φ_o(·, σ), Γ_o) in observer form
Find a linear parameterization of the first column of Φ_o(·, σ)

$$\Phi_{\rm o}(t,\sigma) = \Phi_{\rm b} - \Theta\beta(t)\Gamma_{\rm o}$$

$$\Phi_{\rm b} = \begin{pmatrix} 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \\ 0 & 0 & \cdots & 0 \end{pmatrix}, \qquad \Theta = \begin{pmatrix} \theta_{q-1}^{\rm T} \\ \vdots \\ \theta_{1}^{\rm T} \\ \theta_{0}^{\rm T} \end{pmatrix}$$

- Choose L_0 such that $F = \Phi_{\rm b} L_0 \Gamma_{\rm o}$ is Hurwitz • Let $G(t, \theta) = L_0 - \Theta \beta(t), H = \Gamma_0$
 - The triplet $(F, G(\cdot, \theta), H)$ is not yet in *feedback form*.
 - \circ $\$ We need to "shift" the parameter θ from G to H
 - Impossible to do with a change of coordinates!

Non-minimal Internal Model Unit

Introduction

Problem Statement

Problem Solvability

Robust IM Design

Adaptive IM Design

Canonical

Parameterization of the Internal Model

• Structure of the

Adaptive Regulator

• How to Construct a

Canonical

Parameterization?

 Non-minimal Internal Model Unit

Usefulness of Weak
 Immersions

Illustrative Example

The key is to look for a non-minimal periodic realization of the I/O response of the IM unit

$$h(t, \tau, \theta) = H e^{F(t-\tau)} G(\tau, \theta)$$

Non-minimal Internal Model Unit

Introduction

Problem Statement

Problem Solvability

Robust IM Design

Adaptive IM Design

Canonical

Parameterization of the Internal Model

- Structure of the
- Adaptive Regulator

How to Construct a

Canonical

Parameterization?

 Non-minimal Internal Model Unit

Usefulness of Weak
 Immersions

Illustrative Example

The key is to look for a non-minimal periodic realization of the I/O response of the IM unit

$$h(t,\tau,\theta) = He^{F(t-\tau)}G(\tau,\theta)$$

=
$$\underbrace{He^{F(t-\tau)}L_0}_{\text{LTI}} - \underbrace{He^{F(t-\tau)}\Theta\beta(\tau)}_{\text{periodic}}$$

Non-minimal Internal Model Unit

Introduction

Problem Statement

Problem Solvability

Robust IM Design

Adaptive IM Design

Canonical

Parameterization of the Internal Model

• Structure of the Adaptive Regulator

How to Construct a

Canonical

Parameterization?

• Non-minimal Internal Model Unit

 F_0

 F_1

Usefulness of Weak
Immersions

Illustrative Example

The key is to look for a non-minimal periodic realization of the I/O response of the IM unit

$$h(t,\tau,\theta) = He^{F(t-\tau)}G(\tau,\theta)$$

$$= \underbrace{He^{F(t-\tau)}L_{0}}_{\text{LTI}} - \underbrace{He^{F(t-\tau)}\Theta\beta(\tau)}_{\text{periodic}}$$

$$= \begin{pmatrix} -l_{q-1} & \cdots & -l_{1} & -l_{0} \\ 1 & \cdots & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & 1 & 0 \end{pmatrix} \quad G_{0} = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \quad H_{0} = L'_{0}$$

$$= \begin{pmatrix} -l_{q-1}I_{\rho} & \cdots & -l_{1}I_{\rho} & -l_{0}I_{\rho} \\ I_{\rho} & \cdots & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & I_{\rho} & 0 \end{pmatrix} \quad G_{1}(t) = \begin{pmatrix} \beta(t) \\ 0 \\ \vdots \\ 0 \end{pmatrix} \quad H_{1}(\theta) = \theta'$$

Analysis and Design of Nonlinear Control Systems – London, 2008

Usefulness of Weak Immersions

Introduction

Problem Statement

Problem Solvability

Robust IM Design

Adaptive IM Design

• Canonical

Parameterization of the Internal Model

• Structure of the

Adaptive Regulator

How to Construct a

Canonical

Parameterization?

 Non-minimal Internal Model Unit

Usefulness of Weak

Immersions

Illustrative Example

 $F_{\rm im} = \begin{pmatrix} F_0 & 0\\ 0 & F_1 \end{pmatrix}, \quad G_{\rm im}(t) = \begin{pmatrix} G_0\\ G_1(t) \end{pmatrix}$

$$H_{\rm im}(\theta) = \begin{pmatrix} H_0 & -H_1(\theta) \end{pmatrix}$$

is a canonical parameterization in feedback form of the original internal-model pair ($\Phi_{\rm o}(t), \Gamma_{\rm o}$).

The triplet

Usefulness of Weak Immersions

Introduction

Problem Statement

Problem Solvability

Robust IM Design

Adaptive IM Design

• Canonical

Parameterization of the Internal Model

- Structure of the
- Adaptive Regulator

How to Construct a

Canonical

Parameterization?

 Non-minimal Internal Model Unit

Usefulness of Weak

Immersions

Illustrative Example

$$F_{\rm im} = \begin{pmatrix} F_0 & 0\\ 0 & F_1 \end{pmatrix}, \quad G_{\rm im}(t) = \begin{pmatrix} G_0\\ G_1(t) \end{pmatrix}$$

$$H_{\rm im}(\theta) = \begin{pmatrix} H_0 & -H_1(\theta) \end{pmatrix}$$

is a canonical parameterization in feedback form of the original internal-model pair ($\Phi_{\rm o}(t), \Gamma_{\rm o}$).

The canonical parameterization has been obtained via a weak immersion of the original exosystem.

$$\left(S(t,\sigma), R(t,\mu)\right) \stackrel{\text{strong}}{\longrightarrow} \left(\varPhi_o(t,\theta), \Gamma_o\right) \stackrel{\text{weak}}{\longrightarrow} \left(F_{\text{im}}, G_{\text{im}}(t), H_{\text{im}}(\theta)\right)$$

The triplet

Synchronization of a Pendulum with a Mathieu System

Introduction

Problem Statement

Problem Solvability

Robust IM Design

Adaptive IM Design

Illustrative Example

• Synchronization of a Pendulum with a Mathieu System

• Simulation Results

Conclusions

Controlled pendulum:

 $\ddot{\delta} = -a\delta + bu$

Vertically-oscillating pendulum:

Exosystem

$$S(t,\sigma) = \begin{pmatrix} 0 & 1\\ -a - 2d\cos(2t) & 0 \end{pmatrix}, R_{\sigma}(t,\mu) = \begin{pmatrix} \frac{2}{b}d\cos(2t) & 0 \end{pmatrix}$$

strongly immersed in a 4-dim IM pair $(\Phi_o(t,\theta), \Gamma_o)$ in observer canonical form with new parameter vector $\theta = (a, d, a^2, ad)'$.

Simulation Results

Conclusions

Introduction

Problem Statement

Problem Solvability

Robust IM Design

Adaptive IM Design

Illustrative Example

• Synchronization of a Pendulum with a Mathieu System

- Simulation Results
- Conclusions

We have proposed a classification of the property of system
immersion for periodic systems to underly the connections
between various non-equivalent definitions of systems
observability and the existence of robust internal model-based
controllers.

Conclusions

Introduction

Problem Statement

Problem Solvability

Robust IM Design

Adaptive IM Design

Illustrative Example

• Synchronization of a Pendulum with a Mathieu System

- Simulation Results
- Conclusions

- We have proposed a classification of the property of system immersion for periodic systems to underly the connections between various non-equivalent definitions of systems observability and the existence of robust internal model-based controllers.
- Weaker detectability properties are related to the possibility of obtaining canonical realizations of periodic internal models to be used in certainty-equivalence design to deal with parameter uncertainty on the exosystem model.

Conclusions

Introduction

Problem Statement

Problem Solvability

Robust IM Design

Adaptive IM Design

Illustrative Example

• Synchronization of a Pendulum with a Mathieu System

- Simulation Results
- Conclusions

- We have proposed a classification of the property of system immersion for periodic systems to underly the connections between various non-equivalent definitions of systems observability and the existence of robust internal model-based controllers.
- Weaker detectability properties are related to the possibility of obtaining canonical realizations of periodic internal models to be used in certainty-equivalence design to deal with parameter uncertainty on the exosystem model.
- **Open problem:** It is not clear whether coordinate-free conditions can be found to check a priori the existence of a regular immersion.