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® Milestones in Output servomechanism problem: The servo compensator,”
Regulation Theory ]
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Problem Statement

Problem Solvability

Robust IM Design control theory,” Automatica, 1976.
Adaptive IM Design 3. Francis, B. A., “The linear multivariable regulator problem,’
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Introduction

Regulation in the Periodic Setup

Problem Statement

® Regulation in the

Regulation of parametrized families of linear I'-periodic systems:

Periodic Setup w = S(t’ a)w
e Certainty Equivalence
(:o:;::;tive Regulation T = A(t’ ,u):z: T B(t’ ,LL)U + P(t’ 'u)w
Problem Solvability e = C(t, ,lL)ZE + Q(t, ,u)w : (1)
Robust IM Design
Adaptive IM Design o exosystem state w € R"v, plant state x € R"
llustrative Example o control input © € R, and regulated error e € R
o parameter vectors (o, i) € Ko x )y C R® X RP
4 |
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Introduction

Regulation in the Periodic Setup

Problem Statement

® Regulation in the
Periodic Setup

e Certainty Equivalence
Control

® Adaptive Regulation

Problem Solvability

Robust IM Design

Adaptive IM Design

lllustrative Example

Regulation of parametrized families of linear I'-periodic systems:

w = S(t,o)w
z = A, pz+ B, p)u+ Pt pw
e = C(tpz+Qtpw, (1)

o exosystem state w € R"v, plant state x € R"
o control input © € R, and regulated error e € R
o parameter vectors (o, i) € Ko x )y C R® X RP

Look for a parameterized family of I'-periodic controllers

¢ = F(t,0)¢ +G(t,0)e
H(t,0)¢ + K(t,0)e, (2)

u

with state £ € RY and tunable parameter vector 6§ € Cy C R”.
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Introduction

Certainty Equivalence Control

Problem Statement

® Regulation in the
Periodic Setup

e Certainty Equivalence
Control

o Adaptive Regulation

Problem Solvability

Robust IM Design

Adaptive IM Design

lllustrative Example

The controller (2) is a certainty equivalence controller if V i1 € ICM:

1.

The unforced closed-loop system

& = [A(t, ) + B(t, ) K (t,0)C(t, p))x + B(t, p)H(t,0)¢
/

¢ = F(t,0)¢+G(t,0)C(t, pe

is uniformly asymptotically stable for all 6 € /Cy
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e Certainty Equivalence
Control

® Adaptive Regulation

Problem Solvability

Robust IM Design

Adaptive IM Design

lllustrative Example

The controller (2) is a certainty equivalence controller if V i1 € ICM:

1.

The unforced closed-loop system

& = [A(t, ) + B(t, ) K (t,0)C(t, p))x + B(t, p)H(t,0)¢
/

¢ = F(t,0)¢+G(t,0)C(t, pe

is uniformly asymptotically stable for all 6 € /Cy

There exists a continuous assignment o — 6, such that for any

given o € C,, the fixed controller

§ = F(t,0,)¢ + G(t,0,)e
— H(t, ‘90)5 + K(t, ‘90)6

solves the robust output regulation problem for (1), i.e.,

boundedness of all trajectories, and lim;_, . e(t) = 0.
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w=S(t,o)w
Introduction Once a certainty-equivalence has -
Problem Stat t
Problom Statemon been found, look for an update law B S
Periodic Setup _ C(t, ILL)[II + Q(t, ,u)w ’
e Certainty Equivalence . ’ ’
Control S
o Adaptive Regulation 6 90 (57 6) / e
Problem Solvability . - F(t 0)¢ + Gt 9)6
to tune the family of controllers to ’ 5
Robust IM Design o y _ = H{O)E + K(t,0)e
| | the one achieving regulation.

Adaptive IM Design
fusiaticlExampls Note that adaptation is not used 0 | Sz it )

- . = p(§,e

for stabilization.
- I
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Introduction

Problem Statement

® Regulation in the

Adaptive Regulation

Once a certainty-equivalence has
been found, look for an update law

o = A(t,p)x + B(t,p)u+ P(t, p)w
Periodic Setup _
e Certainty Equivalence 3 = ClhperQpe
Control —
o Adaptive Regulation (9 90 (57 6) / e
Problem Solvability . _ F(t,é + G(t, é)e
bt 11 Desin to tune the .farTuIy of conjcrollers to _ H%)é K(t.0)
| | the one achieving regulation.
Adaptive IM Design
fusiaticlExampls Note that adaptation is not used 0 | Sz it )
e = (e
for stabilization.
Issues
e Find a characterization of all certainty-equivalence regulators
(canonical realization)
- I
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Introduction

Problem Statement

® Regulation in the
Periodic Setup

e Certainty Equivalence
Control

o Adaptive Regulation

Problem Solvability

Robust IM Design

Adaptive IM Design

lllustrative Example

Adaptive Regulation

Once a certainty-equivalence has
been found, look for an update law

ézs&(&e)

to tune the family of controllers to
the one achieving regulation.

Note that adaptation is not used
for stabilization.

Issues

e Find a characterization of all certainty-equivalence regulators

(canonical realization)

e Find a parameterization that is amenable to adaptive control

(canonical parameterization)

F(t,0)€+ G(t,0)e
H(tH0)¢ + K(t,0)e

5=90(€,e)
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Assume o fixed (look at robust regulation first).

Introduction

Problem Statement
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@ Periodic Internal
Model Principle

@ Periodic Immersion

® Examples

Robust IM Design
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Periodic Internal Model Principle

Assume o fixed (look at robust regulation first).

Introduction

Problem Statement

A periodic stabilizing controller (F, G, H, K) is a robust regulator
Problem Solvability iff there exist I'-periodic mappings 1/, = and R solving the DAEs

@ Periodic Internal
Model Principle

speodeinmeson [ (t, 1) + IL(t, 1)S(t) = A(t, W) II(¢, p) + B(t, ) R(t, ) + P(t, )
0 =C@E I p)+ Q1
Adaptive IM Design o

E(t,pu) + EEp)SE) = F(E) 2, p)
R(t,p) = H(t) =@, p)

N——"

Robust IM Design

lllustrative Example

forallt € [0,T) and all u € IC,,.

J |
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Problem Statement

Problem Solvability

@ Periodic Internal
Model Principle

@ Periodic Immersion

® Examples

Robust IM Design

Adaptive IM Design

lllustrative Example

J

Assume o fixed (look at robust regulation first).

A periodic stabilizing controller (F, G, H, K) is a robust regulator
iff there exist I'-periodic mappings I/, = and R solving the DAEs

II(t, ) + II(¢, p)S(t) = A, w) (L, 1) + B(E, w)R(E, p) + P, )

0= C(t,u

N——"

I(t, ) + Q(t, )

E(t,pu) + EEp)SE) = F(E) 2, p)
R(t,p) = H(t) =@, p)

forallt € [0,T) and all u € IC,,.

The periodic feed-forward control
w = S(tw
vo= R, pw

must be embedded in the controller

Stabilizer
Internal Model
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—i T -H: E |
OHIO L .
UMSDVAE;S[IE Periodic Immersion

The parameterized family of periodic systems (S(t), R(t, 1))
oroblom Statemont isimmersed into (@(t), I'(t)) if there exists a periodic map 1
Problem Solvability such that:

@ Periodic Internal

T R B I
e Examples R(t,u) = F(t)T(t,ILL)

Robust IM Design

Introduction

||
N

B
S

c
I
=
=
=
S

Adaptive IM Design

lllustrative Example
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The parameterized family of periodic systems (S(t), R(t, 1))
oroblom Statemont isimmersed into (@(t), I'(t)) if there exists a periodic map 1
Problem Solvability such that:

Introduction

@ Periodic Internal

'\o/lolz’deerliolj:lriicnclzri::ersion T(t7 /’L) _|_ T(t7 /’L)S(t) — @(t)T(ta /’L) L w — S(t)w
R(t,u) = T(HT(t,p) v = R(t,pw
Robust IM Design

Adaptive IM Design Different observability properties characterize the immersion map

lllustrative Example

1. regular immersion, if (®(-), I'(+)) is uniformly completely
observable;
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The parameterized family of periodic systems (S(t), R(t, 1))
oroblom Statemont isimmersed into (@(t), I'(t)) if there exists a periodic map 1
Problem Solvability such that:

Introduction

@ Periodic Internal

':A()I:je(ar:ozzicr]cl::::ersion T(t7 /’L) _|_ T(t7 /’L)S(t) — é(t)T(t7 /’L) L w — S(t)w
R(t,u) = T(HT(t,p) v = R(t,pw
Robust IM Design

Adaptive IM Design Different observability properties characterize the immersion map

lllustrative Example

1. regular immersion, if (®(-), I'(+)) is uniformly completely
observable;
2. strong immersion, if (@(-), I'(+)) is uniformly observable;

J |
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The parameterized family of periodic systems (S(t), R(t, 1))
oroblom Statemont isimmersed into (@(t), I'(t)) if there exists a periodic map 1
Problem Solvability such that:

Introduction

@ Periodic Internal

':A()I:je(ar:ozzicr]cl::::ersion T(t7 /’L) _|_ T(t7 /’L)S(t) — é(t)T(t7 /’L) L w — S(t)w
R(t,u) = T(HT(t,p) v = R(t,pw
Robust IM Design

Adaptive IM Design Different observability properties characterize the immersion map

lllustrative Example

1. regular immersion, if (®(-), I'(+)) is uniformly completely
observable;
2. strong immersion, if (@(-), I'(+)) is uniformly observable;
3. weak immersion, if (@(-), ['(+)) is detectable and
not completely observable.
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The parameterized family of periodic systems (S(t), R(t, 1))
oroblom Statemont isimmersed into (@(t), I'(t)) if there exists a periodic map 1
Problem Solvability such that:

@ Periodic Internal

Introduction

'\oﬂfe(ar:ozzicr]cl::::ersion T(t7 /’L) _|_ T(t7 /’L)S(t) — é(t)T(t7 /’L) L w — S(t)w
R(t,u) = T(HT(t,p) v = R(t,pw
Robust IM Design

Adaptive IM Design Different observability properties characterize the immersion map

lllustrative Example

1. regular immersion, if (®(-), I'(+)) is uniformly completely
observable;
2. strong immersion, if (@(-), I'(+)) is uniformly observable;
3. weak immersion, if (@(-), ['(+)) is detectable and
not completely observable.

1. and 2. are not equivalent (2.=1.) even for periodic systems
2. = existence of observer and observability canonical forms
3. is useful only for adaptive regulation

J |
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The periodic exosystem

Introduction
Problem Statement .

- B 0 sin(t) B 9
comcnnr . 5(t) = <—sin(t) 0 ) Blp)=(m p2), [ul”=1

Model Principle

® Periodic Immersion ° IS UCO’ but not UO, Since det O p— Sln(t)

® Examples . . . . .
| e Is immersed into a 3-dim UO system in observability form
Robust IM Design

Adaptive IM Design 0 1 0
lllustrative Example @(t) -~ 0 0 1 : [ = (1 0 O)
—3sin(t) cos(t) —1 —sin?(t) 0

J |
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The periodic exosystem

Introduction

oo soy=( O  SOY oy (o), lul?=1
@ Periodic Interna?/ — Sln(t) O ’ ’

Model Principle

® Periodic Immersion ° IS UCO’ but not UO, Since det O p— Sln(t)

® Examples . . . . .
| e Is immersed into a 3-dim UO system in observability form
Robust IM Design

Adaptive IM Design 0 1 0
lllustrative Example @(t) -~ 0 0 1 : [ = (1 0 O)
—3sin(t) cos(t) —1 —sin?(t) 0

The same system, with R(¢, 1) = (p1 + pa cos(t) 0)

e Is UCO, but not UO
e Admits an 8-dim regular immersion, but not a strong immersion

J |
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The periodic exosystem

Introduction

e SO = 0 O Ry = (e m), =1
e Periodic Interna?l — Sln(t) 0 . 1 2)
Model Principle

e e e Is UCO, but not UO, since det O = sin(t)
e Is immersed into a 3-dim UO system in observability form

Robust IM Design

Adaptive IM Design 0 1 0
lllustrative Example @(t) -~ 0 0 1 : [ = (1 0 O)
—3sin(t) cos(t) —1 —sin?(t) 0

The same system, with R(¢, 1) = (p1 + pa cos(t) 0)

e Is UCO, but not UO
e Admits an 8-dim regular immersion, but not a strong immersion

Assuming that a regular immersion exists, how does one construct
and internal model?

J |
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Introduction

The regular internal-model pair (@(-), I'(+)) is said to admit
a canonical realization if there exist a periodic map M (-) and
a periodic system (Fiy (+), Gim(+), Him(+)) such that:

Problem Statement

Problem Solvability

Robust IM Design

e 1. Fin(t) € R™*™ has all characteristic multipliers in || < 1
bt Pt 2. M(t) has constant rank, and satisfies for all ¢t € [0,T)

Adaptive IM Design .

lllustrative Example M(t) + M(t)@(t) — (Em (t) + Gim (t)Hi (t))M(t)
[(t) = Hum(®M()

J |
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Introduction

The regular internal-model pair (@(-), I'(+)) is said to admit
a canonical realization if there exist a periodic map M (-) and
o a periodic system (Fiy (+), Gim(+), Him(+)) such that:

obus esign

@ Canonical Realization 1
of the Internal Model

Fim(t) € R™*™ has all characteristic multipliers in [A\| < 1
bt Pt 2. M(t) has constant rank, and satisfies for all ¢t € [0,T)

Problem Statement

Problem Solvability

Adaptive IM Design .

lllustrative Example M(t) + M(t)@(t) — (Em (t) + Gim (t)Hi (t))M(t)
[(t) = Hum(®M()

Internal model unit

é = Fim ()¢ + Gim()u
u = Hin(t)€ + ust «— stabilizer

J |
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Introduction

The regular internal-model pair (@(-), I'(+)) is said to admit
a canonical realization if there exist a periodic map M (-) and
o a periodic system (Fiy (+), Gim(+), Him(+)) such that:

obus esign

@ Canonical Realization 1
of the Internal Model

Fim(t) € R™*™ has all characteristic multipliers in [A\| < 1
bt Pt 2. M(t) has constant rank, and satisfies for all ¢t € [0,T)

Problem Statement

Problem Solvability

Adaptive IM Design .

lllustrative Example M(t) + M(t)@(t) — (Em (t) + Gim (t)Him(t))M(t)
[(t) = Hum(®M()

Internal model unit

é = Fim ()¢ + Gim()u
u = Hin(t)€ + ust «— stabilizer

In a nutshell, the canonical realization yields for the IMU:

“zeros” in |A| = 1 (characteristic multipliers of Fip, + Gim Him)

“poles” in |\| < 1 (characteristic multipliers of Fiy,).
| |
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Introduction

Structure of the Robust Regulator

Problem Statement

Problem Solvability

Robust IM Design

o Canonical Realization
of the Internal Model

e Structure of the
Robust Regulator

Adaptive IM Design

lllustrative Example

J

e ( = Fyu(t)¢ + Gx(t)e o u
Ugt — Hst(t)C+Kst(t)e
| € = En®)f+ Gt
uim = Him(t)¢

Regular IM pair (D(-), I'(+))

Fn(t) = —al — ®'(t), a >0
Gim(t) — F/(t)
lsil

=
VS
~
N——
I
™~
VN
N~
N—"
|
—
VS
~
N——

Strong IM pair (D,(+), I,)

Fim(t) = Fi Hurwitz
Gim(®) = @ [61(8) + 1]

H;n(t) = H;y, observable pair

For regular IM pairs, it is a passivity-based design

o closed-loop eigenvalues not free

o requires the computation of M 1 (t)

For strong IM pairs, eigenvalues are assigned via output injection

' Analysis and Design of Nonlinear Control Systems — London, 2008

11/19



. TR |
OHIO _ o
Canonical Parameterization of the Internal Model

Introduction

The family of internal-model pairs (®(-, ), I'(-,0)) is said to admit
a canonical parametrization in feedback form if there exist a family of
periodic maps M (-, #) and a family of periodic systems

(Fim(¢), Gim(+), Him(+, ) ) such that:

Problem Statement

Problem Solvability

Robust IM Design

Adaptive IM Design
e Canonical

Parameterization of the 1. Fin(t) has all characteristic multipliers in |A| < 1

e Stcturs of e 2. Hin(t,0) is affine in 0

« How 1o Comttrnt 3. there exists a continuous map o +— 6, such that the matrix
g:;or;]:;:Ligation? M(t,0,) has constantrank Vt € [0,T) and Vo € K, and
o

mesons - M(t,0,) + M(t,0,)8(t,0) = (Fin(t) + Gim () Him (£, 0,)) M (t, 6,)
lllustrative Example [’(t’ 0) = H;, (t’ QU)M(t’ 90) )

J |
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Introduction

Canonical Parameterization of the Internal Model

Problem Statement

Problem Solvability

Robust IM Design

Adaptive IM Design

e Canonical
Parameterization of the
Internal Model

e Structure of the
Adaptive Regulator

e How to Construct a
Canonical
Parameterization?

® Non-minimal Internal
Model Unit

o Usefulness of Weak

Immersions

lllustrative Example

The family of internal-model pairs (®(-, ), I'(-,0)) is said to admit
a canonical parametrization in feedback form if there exist a family of

periodic maps M (-, #) and a family of periodic systems

(Fin(-), Gim (+), Him (-, 0)) such that:

Fim () has all characteristic multipliers in |A| < 1

1.
2. Hin(t,0)is affine in 6
3

there exists a continuous map ¢ +— 6, such that the matrix

M(t,0,) has constantrank Vt € [0,T) and Vo € K, and

M(t,0,) + M(t,0,)(t,0) = (Fun(t) + Gim () Him(t, 0,)) M (t,6,)

Note that:

I(t,0) = Him(t,0,)M(t,6,).

e I, (t) and Gin, (%) are both independent of ¢

® Him (t7 9) —

Him, O(t) + QT Him, 1 (t)

' Analysis and Design of Nonlinear Control Systems — London, 2008
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Introduction Adaptive internal model unit (for relative-degree 1 minimum-phase
P
Problem Statement plan’[S)
Problem Solvability S F_ ()€ + G (Hu
Robust IM Design é- lm( )€ lm( )
Adaptive IM Design 0 = —7Y Him,l(t)f e, v> 0
e Canonical -
P terization of th _ , 1T
vl u = Hin(t,0)¢ + ug «— stabilizer
e Structure of the
Adaptive Regulator
e How to Construct a
Canonical € o U — —]{6 T 11/
Parameterization? st —
® Non-minimal Internal
Model Unit \
o Usefulness of Weak :
Immersions f = E f“i‘ Glm(t)u
— A
lllustrative Example uim = Him(t7 5 5
0 = - Him,l(t)fe g 0

J |
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Introduction

How to Construct a Canonical Parameterization?

Problem Statement

Problem Solvability

Robust IM Design

Adaptive IM Design

e Canonical
Parameterization of the
Internal Model

e Structure of the
Adaptive Regulator

e How to Construct a
Canonical
Parameterization?

® Non-minimal Internal
Model Unit

o Usefulness of Weak

Immersions

lllustrative Example

e Start from a strong immersion = (@, (-, 0), I',,) in observer form
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Introduction

How to Construct a Canonical Parameterization?

Problem Statement

Problem Solvability

Robust IM Design

Adaptive IM Design

e Canonical
Parameterization of the
Internal Model

e Structure of the
Adaptive Regulator

e How to Construct a
Canonical
Parameterization?

® Non-minimal Internal
Model Unit

o Usefulness of Weak

Immersions

lllustrative Example

e Start from a strong immersion = (@, (-, 0), I',,) in observer form

e Find a linear parameterization of the first column of @,(-, o)

Bo(t, o) = D, — OB(t) T

Ea

oT
\ oF /
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Introduction

How to Construct a Canonical Parameterization?

Problem Statement

Problem Solvability

Robust IM Design

Adaptive IM Design

e Canonical
Parameterization of the
Internal Model

e Structure of the
Adaptive Regulator

e How to Construct a
Canonical
Parameterization?

® Non-minimal Internal
Model Unit

o Usefulness of Weak
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e Choose Lg suchthat F' = &, — Lyl is Hurwitz
o Let G(t, (9) = Lo — @5(75), H=1,

o The triplet (F, G(-,0), H) is not yet in feedback form.
o We need to “shift” the parameter 6 from GG to H
o Impossible to do with a change of coordinates!
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I 4 cos(2t)

Controlled pendulum: o

6 = —ad + bu

Vertically-oscillating pendulum:

01 = (—a — 2d cos(2t))d;
Exosystem

S(t o) = (_a_ 22608(%) (1)) Ro(t, 1) = (2dcos(2t) 0)

strongly immersed in a 4-dim IM pair (®,(t, ), I,) in observer
canonical form with new parameter vector § = (a, d, a?, ad)’.
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@ Simulation Results
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@ Conclusions

e Open problem: It is not clear whether coordinate-free conditions
can be found to check a priori the existence of a regular
immersion.
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