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Low-Complexity Equalization of OFDM in
Doubly Selective Channels

Philip Schniter, Member, IEEE

Abstract—Orthogonal frequency division multiplexing (OFDM)
systems may experience significant inter-carrier interference (ICI)
when used in time- and frequency-selective, or doubly selective,
channels. In such cases, the classical symbol estimation schemes,
e.g., minimum mean-squared error (MMSE) and zero-forcing
(ZF) estimation, require matrix inversion that is prohibitively
complex for large symbol lengths. An analysis of the ICI gener-
ation mechanism leads us to propose a novel two-stage equalizer
whose complexity (apart from the FFT) is linear in the OFDM
symbol length. The first stage applies optimal linear preprocessing
to restrict ICI support, and the second stage uses iterative MMSE
estimation to estimate finite-alphabet frequency-domain symbols.
Simulation results indicate that our equalizer has significant
performance and complexity advantages over the classical linear
MMSE estimator in doubly selective channels.

Index Terms—Doubly dispersive channel, doubly selective
channel, equalization, intercarrier interference, OFDM.

I. INTRODUCTION

ORTHOGONAL frequency division multiplexing (OFDM)
[1], [2] has emerged as one of the most practical tech-

niques for data communication over frequency-selective fading
channels. In OFDM, the computationally-efficient fast Fourier
transform (FFT) is used to transmit data in parallel over a large
number of orthogonal subcarriers. When an adequate number of
subcarriers are used in conjunction with a cyclic prefix of ade-
quate length, subcarrier orthogonality is maintained, even in the
presence of frequency-selective fading. Orthogonality implies a
lack of subcarrier interference and permits simple, high-perfor-
mance data detection.

In time- and frequency-selective—or doubly selective—
fading, however, the orthogonality of OFDM is lost, leading
to subcarrier interference that greatly complicates optimal data
detection [3]–[8]. Historically, OFDM has been applied to
scenarios in which time selectivity can be effectively ignored,
but future wireless applications are expected to operate at high
transmit-frequencies, at high levels of mobility, and at high
capacities, resulting in fading that is doubly selective. Thus,
the primary advantage of classical OFDM—interference-free
operation—will not carry over to important future applications.

The following arguments more clearly explain the potential
for doubly selective channels in future OFDM applications.
First, as communication systems are implemented in higher
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frequency bands, they employ smaller wavelengths, implying
that the their sensitivity to physical movement grows propor-
tionally [9]. In other words, effective rates of channel variation
for a fixed mobile-speed increase. Second, increasing either the
efficiency or the bandwidth of OFDM systems will increase
their sensitivity to channel variation. This latter claim can
be understood from the desire to use a large OFDM symbol
length that allows, in turn, significant channel variation within
a symbol. Large symbol lengths are motivated by the desire
to i) reduce capacity loss due to insertion of redundant guard
intervals and ii) maintain narrow subcarrier spacing (to ensure
flat subcarrier fading) as system bandwidth increases. In fact,
symbol lengths of 4096 [10] and 8192 [11] are now common.

While the vast majority of OFDM literature ignores in-
trasymbol channel variation, several OFDM modifications
have been proposed to cope with the resulting inter-carrier
interference (ICI). Armstrong et al. [12] suggested the use of
polynomial cancellation coding (PCC) [13], which is typically
used to suppress ICI from carrier frequency offset. Because
channel-variation yields a different ICI structure than does
frequency offset, however, the applicability of PCC is quite
limited.

Jeon et al. [14] ignored “small” ICI coefficients to re-
duce the complexity of linear minimum mean-squared error
(MMSE) symbol estimation, and Choi et al. [15] presented
matched-filter, least-square, and MMSE estimators that incor-
porate decision feedback. In [16], Cai and Giannakis combined
[14] and [15] and derived recursive algorithms for calculation
of the estimator coefficients. Linnartz and Gorokhov [17] used
a two-term Taylor series expansion to linearly approximate
time-domain channel variations and, from this, designed a
linear MMSE estimator. Stamoulis et al. [18] examined the
multiple-antenna case and derived a bank of LTV filters that
maximize ratio of signal energy to ICI-plus-noise energy. The
symbol estimators [15]–[18] require complexity,
where denotes the OFDM symbol length, making them
impractical for large .

In this paper, we propose -complexity symbol estima-
tion strategies for OFDM systems in the presence of doubly
selective fading. Rather than simply ignoring small-valued ICI
coefficients, as in [14] and [16], we use signal-to-interference-
plus-noise ratio (SINR)-optimal low-complexity linear prepro-
cessing to squeeze ICI into a few coefficients. Then, we pro-
pose low-complexity iterative symbol estimation schemes that
leverage the ICI-shortened channel representation. Full channel
knowledge is assumed throughout; doubly selective channel es-
timation is treated elsewhere (see, e.g., [14], [15], [18], and
[19]).
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Fig. 1. OFDM system model.

Notation: We use to denote transpose, conjugate,
and conjugate transpose. denotes the circulant ma-
trix with first column , the diagonal matrix created from
vector , diag the diagonal matrix with the same diagonal
terms as matrix , and the identity matrix. We use to
denote the element in the th row and th column of , where
row/column indices begin with zero. denotes the Frobe-
nius norm, the Moore–Penrose pseudo-inverse, and el-
ement-wise multiplication. Expectation is denoted by and
covariance by Cov . Finally,

denotes the Kronecker delta, the modulo- operation,
convolution, the field of reals, and the set of integers.

II. SYSTEM MODEL

Here, we review the OFDM system model, which is illus-
trated in Fig. 1. At each index , a set of -coded QAM
“frequency-domain” symbols is collected to form an
OFDM symbol . The OFDM symbol is

converted into the time-domain samples according the
(norm-preserving) -point inverse DFT operation

(1)

which are then serially transmitted over a noisy multipath
channel. Note that incorporates a cyclic prefix of length

. The multipath channel is modeled by the time-variant
discrete impulse response , defined as the time-
response to an impulse applied at time . A justification for
this discrete model can be found in [18]. The channel response
during the th OFDM symbol interval is defined by

Assuming a causal channel with maximum delay spread
, the received samples collected during the th OFDM

symbol interval are

(2)

where are samples of white Gaussian noise (AWGN) with
variance . Note that contains contributions from only
the th transmitted symbol; this is a consequence of assuming
that the multipath-corrupted cyclic prefix is discarded by the re-
ceiver. The receiver then computes an -point DFT of
[usually via the computationally-efficient fast Fourier transform
(FFT) algorithm]:

(3)

Using to denote the -point unitary DFT matrix,
to denote a (time-variant, circular) convolution ma-

trix such that , and defining
, , and

, (2) can be written in vector form as follows:

(4)

Defining the subcarrier coupling matrix

(5)

and , (3) can be written

(6)

(7)

where . Using for , it is
straightforward to show that , where

(8)

Note that appears on the main diagonal of ,
on the first sub-diagonal, on the first

super-diagonal, and so on. This fact and (7) imply that
can be interpreted as the frequency-domain response, at subcar-
rier , to a frequency-domain impulse centered at subcarrier

. In , can be interpreted as “Doppler” index and
as the “frequency” index. In , can be interpreted as
the “time” index and as the “lag” index.

We assume the typical wide-sense stationary uncorrelated
scattering (WSSUS) model [9] such that

(9)

In (9), denotes the normalized tap autocorrelation (where
), and denotes the variance of the th tap.

III. ICI-GENERATING MECHANISM

A nondiagonal subcarrier coupling matrix introduces ICI,
complicating the symbol estimation task. To understand prop-
erties of the ICI, we examine the variance of the subcarrier
coupling coefficients . Using (8) and (9), dropping
the symbol index for brevity, and defining the -point
rectangular window

else
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we find (using doubly infinite sums unless otherwise noted)

Note that is not a function of . With the defi-
nition of the -point triangular window

else

we can write

(10)

(11)

In (11), denotes the Doppler spectrum

and the DTFT of :

commonly known as a Dirichlet sinc.
Equation (11) gives an interpretation of the ICI-gener-

ating mechanism that has been depicted in Fig. 2. Essen-
tially, the Doppler spectrum is convolved with the
Dirichlet sinc and then sampled on the regular grid

. With a linear time-invariant (LTI)
channel,1 i.e., zero Doppler spread, the nulls of
fall on the grid, implying

With a linear time-variant (LTV) channel, i.e., nonzero Doppler
spread, the nulls of no longer fall on the grid, im-
plying ICI.

In the case of Rayleigh fading [9], we have

1The LTI case can also be understood by evaluating (10) with r (q) = 1.

Fig. 2. Illustration of ICI generation mechanism (11). The spectra are
convolved and then sampled on the regular grid f� = (2�=N)d; d 2 g.
Without doppler spread, the samples fall on the sinc nulls, indicating zero ICI.

Fig. 3. ICI varianceEfjh (d; �)j g versus d forN = 128, WSSUS Rayleigh
fading, and various f . Subplot (b) provides a zoomed view.

where denotes the zeroth-order Bessel function of the first
kind, and denotes the maximum Doppler frequency normal-
ized to the signaling rate (rather than the OFDM symbol rate).
Fig. 3 plots as a function of , assuming

, Rayleigh fading, and various . Here, we see that even a
Doppler frequency equal to approximately one DFT bin width
(i.e., ) induces widespread ICI. This finding
contradicts the claim (e.g., [14], [16], [20]) that the approxima-
tion for results in an accurate channel
model. In fact, Section V demonstrates the significant perfor-
mance degradations that result from equalizer design based on
this approximation. We stress that finite-duration observation
effects (manifested as the sinc in Fig. 2) play a critical role in
ICI generation and cannot be ignored; the time-frequency un-
certainty principle [21] strikes again.

IV. SYMBOL ESTIMATION

From the observation in (7), the receiver attempts to
detect the true symbol . We assume a detection procedure
which consists of an estimation (i.e., equalization) stage fol-
lowing by a decoding stage. As the decoding procedure depends
on the specific coding scheme employed by the transmitter, it
is outside the scope of this paper. Instead, we focus on symbol
estimation. Since the decoding performance is expected to be
proportional to the subcarrier-averaged SINR [22], we employ
this criterion in the design of our estimators.
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A. Classical Methods

The linear MMSE and zero-forcing (ZF) estimates [15]
are given in (12) and (13), respectively, assuming

, , ,
, and knowledge of the channel.

(12)

(13)

With an LTI channel, is diagonal, and both (12) and
(13) can be implemented in operations; this simple
“frequency-domain equalization” is the classical motivation
for the use of OFDM. With an LTV channel, the MMSE and
ZF estimators (12) and (13) require nontrivial matrix inversion.
Inversion algorithms that make use of the Hermitian Toeplitz
structure in (12) still require at least operations [23],
making them impractical for large .

B. Linear Preprocessing

In place of matrix multiplication, we propose low-
complexity linear preprocessing that renders the ICI re-
sponse sparse, thereby simplifying subsequent symbol estima-
tion. The ICI-generating mechanism described in Section III
suggests preprocessing that “squeezes” the significant coeffi-
cients of into the central diagonals, a
lower triangular matrix in the bottom-left corner, and a
upper triangular matrix in the top-right corner, illustrated by the
shaded regions in Fig. 4. The parameter

controls the target ICI-response length: larger corresponds
to a longer ICI span and, thus, increased estimation complexity.
In Section V, we find that is an appropriate
choice for Rayleigh fading. In general, should be chosen pro-
portional to the width of the Doppler spectrum .

ICI-response shortening can be regarded as the frequency-
domain dual of inter-symbol interference (ISI)-response short-
ening, which is a well-known means of reducing the complexity
of maximum likelihood sequence detection (MLSD) in single-
carrier systems [24].

1) Time-Domain Windowing: While single-carrier systems
typically achieve ISI-shortening via convolutive linear filtering,
we leverage the receiver’s FFT operation to achieve ICI-short-
ening via fast convolution [25], thereby saving computations
when is large. In matrix notation, the fast convolution prop-
erty can be written [26]

(14)

Using to denote the shortening filter’s impulse response,
the ICI-shortened observation takes the form

(15)

where we desire that has the structure illustrated in
Fig. 4. Since the operation applies the same filtering to
each column of , ICI-shortening will not be accomplished
perfectly. Still, Section V shows that good results can be ob-
tained. While perfect ICI shortening is possible [consider, e.g.,
the ZF estimator (13)], it generally requires operations.

Fig. 4. Desired structure of windowed subcarrier coupling matrix �H =
C(B)H .

Defining the time-domain vector

(14) implies that so that

(16)

which indicates that the linear preprocessing operation
can be implemented by an -point windowing of the time-do-
main observation . While other low-complexity linear pre-
processing methods are possible (e.g., replacing with a
tridiagonal matrix), we restrict our attention to (16).

2) Max-SINR Window Design: The window coefficients
are designed to maximize the subcarrier-averaged SINR. To aid
in the definition of “signal” and “interference,” we partition the
subcarrier coupling matrix into desired-ICI and undesired-ICI
components

where denotes a mask operator that passes the shaded
region and zeros the nonshaded region in Fig. 4, and
denotes its complement. It follows that can be written

Using the assumptions on and from Section IV-A,
signal energy and noise-plus-interference energy be-
come

(17)

(18)

The window coefficients that maximize SINR
are derived in the Appendix, where it is found that

SINR

diag (19)
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where denotes the principle generalized eigenvalue
[23] of the matrix pair ( , ), and

(20)

(21)

(22)

Since is a function of the channel realization , its cal-
culation is impractical. We provide an alternative below.

3) Max Average-SINR Window: Denoting the channel-aver-
aged SINR by SINR , it follows from (35)
that the window coefficients maximizing SINR are

(23)

where is real symmetric with elements
. Numerical results in Section V demonstrate

that and yield similar performance, even though re-
quires knowledge of only and .

C. Iterative MMSE Symbol Estimation

Here, we present several high-performance low-complexity
estimators of from that leverage the ICI-shortened
structure of . In one scheme, we estimate se-
quentially for , incorporating the
outcomes of previous estimates (and/or known pilots) as prior
information for subsequent estimates. In doing so, we hope to
avoid both the noise-enhancement of linear equalizers and the
error-propagation of decision feedback equalizers [27]. After
estimating , we re-estimate , and so on. In another

scheme, we estimate in parallel and then
use these estimates as prior information for the re-estimation
of . Decision-feedback versions of these
schemes are also derived.

1) MMSE Estimation: A common component of our iter-
ative estimation schemes is linear MMSE estimation incorpo-
rating priors. In the sequel, we use and omit
symbol-index superscripts for brevity, turning (15) into

(24)

The structure of (recall Fig. 4) implies that contributes
primarily to the observation elements

where all indexing in this section is taken modulo- . Lever-
aging the perfect ICI-shortening assumption2 in (25)

. . .
...

. . .

. . .
. . .

. . .
. . .

(25)

for , so that we can write

(26)

Note that as a consequence of modulo- indexing, the ele-
ments of from the top-right and bottom-left shaded triangles
in Fig. 4 are included in ; the perfect ICI-shortening assump-
tion neglects only the nonshaded regions in Fig. 4.

The MMSE linear estimate of given is [28]

Cov Cov

If we assume , , ,
and independence among , and if we define ,

Cov , , and
, then it is straightforward to show that

Cov

Cov

giving the MMSE linear estimate

(27)

(28)

We choose to use only extrinsic information, i.e., only the
priors from when estimating . This can be ac-
complished using (27) and (28) with , , and

(29)

(30)

2) Updating the Priors: The symbol estimate can be used
to update and . For simplicity, we consider only indepen-
dent and identically distributed (i.i.d.) binary phase shift keying

2Section V examines the implications of this assumption.
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(BPSK) symbols ; quadrature amplitude
modulation (QAM) extensions are straightforward. Assuming a
conditionally Gaussian model for the estimates:

where is the proper complex Gaussian
density, and defining and
Cov , it can be shown that

If we define the prior and posterior log-likelihood ratios (LLRs)
as and

, respectively, their differ-
ence can be expressed as

Re
(31)

The posterior LLR leads to an update of the priors:

(32)

(33)

(34)

which, in turn, can be used to estimate via (27)–(30).
3) Iterative Joint Estimators: To initialize the iterative algo-

rithms, we set and for indices that do not cor-
respond to pilots. For corresponding to pilots, are assigned
the pilot amplitudes and . Various methods of iterative
OFDM-symbol estimation are proposed below.

In block iterative estimation (BIE), we calculate the entire
batch of estimates via (27)–(30) before
updating the priors via (31)–(33). Using updated priors, a new

batch of estimates is computed via (27)–(30), and so on. The
algorithm terminates when the LLRs surpass a threshold, or a
specified number of iterations have elapsed.

In sequential iterative estimation (SIE), we calculate via
(27)–(30) and then immediately update the priors and via
(31)–(33). Next, we calculate and then immediately update

and . This continues until , , and
have been computed, then repeats again, starting with . The
algorithm terminates when the LLRs surpass a threshold or a
specified number of iterations have elapsed.

Block decision feedback (BDF) operates identically to BIE,
except that sgn and . Computation of
LLRs is not necessary, and the algorithm terminates when
converge or a specified number of iterations have elapsed.

Sequential decision feedback (SDF) [29] operates identically
to SIE, except that and . Here too,
computation of LLRs is not necessary, and the algorithm termi-
nates when converge or a specified number of iterations
have elapsed.

4) Incorporating the Decoder: After the symbol estimation
algorithm terminates, we have the choice of passing LLRs

, soft estimates , or hard estimates sgn
to the decoder. After decoding, updated LLRs could be passed
back to the estimator, forming an outer loop of iteration. This
latter scheme is a form of turbo equalization [30], which we
discuss further in Section V.

5) Computational Complexity: The implementation com-
plexity of the BIE, SIE, BDF, and SDF algorithms is dominated
by the Hermitian matrix inversion
in (27). As this requires only operations, a total of

operations is needed per iteration. It should be
noted that is fixed for all and equal to a subblock of

, the latter of which can be precomputed for
realization-independent .

6) Relation to Other Known Schemes: The iterative algo-
rithms proposed in Section IV-C are related to, yet distinct from,
a number of existing algorithms. SIE is perhaps closest to the
estimation stage in the “turbo equalization” scheme of Tüchler
et al. [31]. Unlike SIE, however, [31] assumes an LTI channel
in white noise and inserts a decoding iteration after each equal-
ization iteration. SDF is reminiscent of the “successive detec-
tion” scheme proposed for V-BLAST-coded signals in [32] and
OFDM reception in [15], although SDF does not require their
(computationally-expensive) symbol ordering procedure. In ad-
dition, SDF allows for multiple iterations so that hard decisions
are given an opportunity to converge. BIE bears some similarity
to the “partial interference cancellation” scheme proposed by
Divsalar et al. [33] for CDMA reception, although [33] is based
on matched-filtering rather than MMSE estimation (e.g., there
is no autocorrelation-matrix inverse in [33]). Finally, BDF is
reminiscent of hard parallel interference cancellation (HPIC)
schemes, like “multistage detection” [34], for CDMA reception.
HPIC schemes, however, also use matched filtering in place of
MMSE estimation. MMSE estimation is considered too compu-
tationally expensive for practical CDMA applications because
their system matrices do not have the sparse banded structure in
Fig. 4.
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Fig. 5. SINR versus f for N = 128, SNR = 25 dB, WSSUS Rayleigh
fading, and various D.

Fig. 6. SINR versus SNR forN = 128, WSSUS Rayleigh fading, and various
ff ;Dg.

V. NUMERICAL RESULTS AND DISCUSSION

Here, we discuss the proposed algorithms and study the
results of numerical simulations. All experiments employed

i.i.d., unit-variance BPSK symbols per OFDM
symbol, SNR -variance circular AWGN noise, and an
energy-preserving WSSUS Rayleigh-fading channel with

(for ) and . Perfect channel
knowledge was assumed, and no pilots were employed.

As a benchmark, consider symbol estimation given perfect
knowledge of interfering symbols. This generates the so-called
matched filter bound (MFB). The MFB does not use assume
perfect ICI-shortening; it makes use of the unwindowed
observation in (7). Consider also an approximate MFB
(AMFB) in which a masked version of
[akin to (25)] is used for estimation. This bound can be
calculated by the estimation (27), (28) with , ,

, and ,

Fig. 7. MSE versus SNR after ten iterations for N = 128, WSSUS Rayleigh
fading, and windowing with �bbb .

where denotes a vector of zeros with a one in the th
position. The AMFB lower bounds the MSE performance of
BIE, SIE, BDF, and SDF since they were designed around the
perfectly shortened ICI assumption.

Figs. 5 and 6 investigate the subcarrier-averaged SINR per-
formance of various windows averaged over 1000 channel re-
alizations. Recall that SINR for , and
defined in (17) and (18), respectively. Fig. 5 supports the rule

and verifies that although complexity increase
discourages larger , performance does not. Fig. 6 shows that
with max-SINR windowing and proper selection of , SINR
SNR over the expected operating region. This suggests that the
interference is dominated by channel noise and not residual ICI,
i.e., that max-SINR windowing does indeed suppress undesired
ICI.

Both Figs. 5 and 6 show that there is little difference between
the performance of the max-SINR window and the max-av-
erage-SINR window . In fact, for typical SNRs and a conser-
vative choice of , there is little difference between and
the Hamming window [25]. For high SNR or ,
however, the Hamming window is suboptimal. The rectangular
window (i.e., the absence of windowing) is clearly suboptimal
in all but the lowest SNR environments.

Figs. 7 and 8 compare the subcarrier-averaged MSE perfor-
mance of the SDF, BDF, BIE, and SIE iterative symbol estima-
tion algorithms proposed in Section IV-C3 to the MFB, AMFB,
and linear MMSE estimator (12). Each trace represents the av-
erage of 5000 channel/data realizations. The iterative algorithms
and AMFB employed the max-average-SINR window . Fig. 7
shows performance after ten iterations, whereas Fig. 8 shows
performance after two. Note that the pairs match those
in Fig. 6.

Fig. 7 shows that when is small, all iterative algorithms
perform very close to the AMFB after convergence. For small

, the linear MMSE estimator is also close to the AMFB.
The difference between the AMFB and the true MFB can be
interpreted as the cost of rather than estimation
complexity. The MFB improvement with increasing can be
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Fig. 8. MSE versus SNR after two iterations for N = 128, WSSUS Rayleigh
fading, and windowing with �bbb .

attributed to the increase in diversity that comes with higher
Doppler spread [35], [36]. This implies that when used properly,
ICI can actually enhance symbol estimation performance.

For larger , we see performance differences between the
algorithms. For example, iterative estimation significantly out-
performs linear MMSE equalization. This is especially note-
worthy given that the complexity of iterative estimation is far
less than that of the linear MMSE estimation.3 Fig. 8 shows
that the SIE algorithm reaches, for all practical purposes, the
AMFB in only two iterations. While at this point BIE remains
2–3 dB away, it also reaches the AMFB after three iterations (as
observed in simulations not shown here). We surmise that SIE
converges faster than BIE because it makes immediate use of the
prior information on interfering symbols. The fact that equaliza-
tion alone reaches the AMFB implies that incorporating symbol
reliability information from a decoder (i.e., turbo equalization)
would not improve the estimates. A more sophisticated linear
preprocessing stage could, however, help close the gap between
the AMFB and MFB. While the simple SDF algorithm performs
nearly as well as SIE in the cases that we have examined, our
experience with other (i.e., non-OFDM) channels suggests that
this is generally not the case. Due to error propagation, BDF
performs the worst of the four iterative algorithms.

Fig. 9 shows the MSE attained by the SIE, BIE, and SDF al-
gorithms in comparison with the AMFB for various windows.
For reference, it also shows the MSE attained by the MFB and
linear MMSE estimator, neither of which employs windowing.
The approximately max-SINR window exhibits performance
close to the MFB, as expected from Fig. 7(c). The hamming
window suffers in performance, especially at high SNR, and
the rectangular window performs by far the worst. In all cases,
however, it is interesting to note that SIE reaches the AMFB:
the best performance that can be expected given the window
choice. Fig. 9 provides clear evidence that the “basis expansion
model” (BEM) constructed from a rectangularly-windowed si-

3Since the MSE of the O(N) (linear) equalizer in [14] is lower bounded by
that of the linear MMSE estimator (12), it is clear that theO(N) equalizers SIE,
BIE, and SDF significantly outperform the one in [14].

Fig. 9. MSE versus SNR after ten iterations for N = 128, WSSUS Rayleigh
fading with f = 0:03, and various windows.

nusoidal basis [16], [20] and truncated to include no more than
elements, where , is ineffective in its

description of doubly selective WSSUS Rayleigh channels; re-
ceivers designed around this BEM will perform poorly on true
(i.e., nonapproximate) channels.

VI. CONCLUSIONS

Equalization of OFDM in doubly selective channels is com-
plicated by the existence of ICI: The classical frequency-domain
equalizer—a simple scaling of each sub-carrier—is no longer
sufficient. Previously proposed doubly selective OFDM equal-
izers either approximate the linear MMSE estimator with an

scheme, resulting in relatively poor performance, or re-
quire at least operations per OFDM symbol, making
them infeasible for large symbol length . In response, we
proposed a low-complexity two-stage equalizer whose perfor-
mance far surpasses the linear MMSE estimator. The first stage,
requiring operations, applies SINR-optimal windowing
to squeeze ICI into a range of subcarrier intervals.
The second stage, requiring operations, uses iterative
soft ICI-cancellation to estimate the frequency-domain sym-
bols. Simulations indicate that our equalizer performs close to
the MFB after only two iterations.

APPENDIX

In this Appendix, we use the property and
the definitions , , and

Note that for defined in (22). For total
energy , we have

SINR
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Since and can be expressed as quadratic forms

diag

diag

diag

where the matrices and are defined in (20) and (21),
respectively, SINR becomes

diag

(35)
and the maximizing coefficients are given in (19) as the
solution to a generalized eigenvector problem [23].
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