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Phase Retrieval

Goal: Recover signal x0 ∈ C
n from m magnitude-only measurements

y = |Ax0 +w|,

where A ∈ C
m×n is a known linear transform and w ∈ C

m is noise.

Motivation: In many applications, it feasible to measure the intensity,
but not the phase, of the Fourier transform of the signal-of-interest:

X-ray crystallography,
transmission electron microscopy,
coherent diffractive imaging,
astronomical imaging, etc.

Feasibility: To make the solution to y = |Ax| unique (up to a global
phase) w.p.1, m=4n−o(n) i.i.d Gaussian measurements are
necessary [Heinosaari/Mazzarella/Wolf’11] and m=4n−2 are sufficient
[Balan/Casazza/Edidin’06].

Philip Schniter (OSU) Compressive Phase Retrieval via GAMP FFT Workshop – 2/23/2013 2 / 26



Phase Retrieval: Classical Approaches

Most classical approaches are iterative in nature. For example,

Alternate between...

– projecting Ax̂ onto the magnitude constraint y, yielding ẑ,
– projecting A+ẑ onto an apriori known support set, yielding x̂.

However, due to the non-convexity of the first projection, it is easy for
such algorithms to get trapped in local minima.
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Phase Retrieval: Convex Approaches

Recently, some convex relaxations have been proposed.

– Noting that y2i = |aH
i x|

2 = tr(aia
H
i X) for X = xxH, pose as

“minX�0 rank(X) s.t. tr(aia
H
i X) = y2i for i = 1...m.” (NP hard!)

Relax to “min tr(X) s.t. tr(aia
H
i X) = y2i for i = 1...m,” (convex!)

known as PhaseLift [Candes/Strohmer/Voroninski’11].

– Another semidefinite program (with similar performance) known as
PhaseCut was proposed in [Waldspurger/D’Aspremont/Mallat’12].

It was recently shown [Candes/Li’12] that

with very high probability, PhaseLift perfectly recovers an arbitrary x

from m ≥ c0n noiseless measurements, where c0 is a constant,

and also that PhaseLift can be made robust to noise.
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Compressive Phase Retrieval

Recall that m ≥ 4n− o(n) magnitude measurements are needed for
y = |Ax| to have a unique (up to a phase) solution for x ∈ C

n.

Sometimes we can only afford m ≪ 4n magnitude measurements, in
which case the problem becomes one of compressive phase retrieval.

For successful compressive phase retrieval (CPR), one needs to
leverage additional structure in x, such as sparsity.
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Compressive Phase Retrieval: Prior Work

Assuming knowledge of ‖x0‖1, [Moravec/Romberg/Baraniuk’07]

appended this constraint onto the classical RAAR algorithm, and
used RIP-based arguments to establish that m & k2 log(n/k2)
magnitude measurements suffice for recovery.

However, the algorithm was prone to local minima and slow
convergence. Also, knowledge of ‖x0‖1 is rarely available in practice.

Taking a convex approach, [Ohlsson/Yang/Dong/Sastry’12] proposed
the following generalization of PhaseLift, which they call CPRL:

minX�0 tr(X)+λ‖X‖1 + µ
∑m

i=1

∣
∣ tr(aia

H
i X)− y2i

∣
∣
2
,

and performed both RIP and mutual coherence analyses. Seems
promising. . .
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Bring out the GAMP

Zed: Bring out the Gimp.

Maynard: Gimp’s sleeping.

Zed: Well, I guess you’re gonna have to go wake him up now, won’t you?

—Pulp Fiction, 1994.

We propose a new approach to CPR based on generalized approximate
message passing (GAMP).

Numerical results show

excellent phase transitions,

excellent NMSE & robustness to noise,

excellent runtime,

enabling, e.g., practical compressive image retrieval.
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Preliminary Numerical Results ... as Motivation

For these numerical results we generated random. . .

signals x0 as k-sparse, n=512-length, Bernoulli-circular-Gaussian,

matrices A = ΦF , where Φ ∈ C
m×n is i.i.d circular Gaussian and F

is the n× n DFT matrix,

noise w as circular white Gaussian (added prior to taking magnitude),

and we monitored the phase-corrected normalized reconstruction MSE

NMSE , min
θ

‖x̂− ejθx0‖
2
2

‖x0‖22
.
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Phase transition

PR-GAMP’s empirical success rate, averaged over 500 realizations, was
prGAMP success@−40dB, rdft, N=512, snr=100dB, avg=500
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where success , {NMSE < 10−4}.
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Comparison to phase-oracle GAMP

Comparing the 50%-success contours of PR- and phase-oracle GAMP:
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we see that PR-GAMP requires about 4× the number of measurements as
phase-oracle GAMP. (Very interesting!)
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NMSE versus Measurements & Sparsity

PR-GAMP’s median NMSE, measured over the same 500 realizations, was
prGAMP 50%−NMSE, rdft, N=512, snr=100dB, avg=500
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showing that recovery is very accurate above the phase transition.
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Noise Robustness of PR-GAMP

The median NMSE, measured over 2000 realizations:
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shows that PR-GAMP loses about 3 dB at medium-to-high SNR.

Philip Schniter (OSU) Compressive Phase Retrieval via GAMP FFT Workshop – 2/23/2013 12 / 26



Comparison to CPRL [Ohlsson/Yang/Dong/Sastry’12]

Empirical success rate (and median runtime) over 100 realizations:

k = 1:

(m,n) = (20, 32) (m,n) = (30, 48) (m,n) = (40, 64)

CPRL 0.96 (4.9 sec) 0.97 (51 sec) 0.99 (291 sec)
PR-GAMP 0.83 (0.4 sec) 0.94 (0.3 sec) 0.99 (0.3 sec)

k = 2:

(m,n) = (20, 32) (m,n) = (30, 48) (m,n) = (40, 64)

CPRL 0.55 (5.8 sec) 0.55 (58 sec) 0.58 (316 sec)
PR-GAMP 0.72 (0.4 sec) 0.92 (0.3 sec) 1.0 (0.3 sec)

Note:

CPRL runtime limited us to these toy problems.

CPRL succeeds when sparsity k=1, but not when k≥2.
GAMP instead suffers when problem dimensions are very small.

CPRL’s runtime grows very quickly with problem dimensions!
GAMP’s runtime is invariant to the dimension of these toy problems.
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Compressive Image Recovery

65536 image pixels, 32768 measurements, 30dB SNR:
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PR-GAMP runtime: only 11.1 sec.
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Compressive Image Recovery: Details

Measurements were collected using

A =

[
B1

B2

] [
F

F

] [
M1

M2

]

with banded i.i.d-Gaussian Bi (10 nonzero entries per column),
Fourier F , and binary masks M i.

Over 100 random measurement & noise realizations, we observed

89% success rate, where “success” meant NMSE<-27 dB, and
median runtime of 13.4 sec.
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Phase-Retrieval GAMP [Schniter/Rangan’12]

So what’s the approach?

1 Formulate as a Bayesian inference problem by assuming

yi =
∣
∣ [Ax]i
︸ ︷︷ ︸

zi

+wi

∣
∣ ∀i

wi ∼ CN (0, νw) i.i.d

p(x) =
∏

j pX(xj) for
sparsity promoting pX

pX(x1)

pX(x2)

pX(xn)

x1

x2

xn

pY |Z(y1|[Ax]1)

pY |Z(y2|[Ax]2)

pY |Z(ym|[Ax]m)

...
...

...

2 Use GAMP, a state-of-the-art loopy belief propagation method, to
approximate the marginal posterior pdfs {pXj |Y (·|y)}nj=1.
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Generalized Approximate Message Passing (GAMP)

The evolution of GAMP:

The original AMP [Donoho/Maleki/Montanari’09] solves the LASSO
problem minx ‖y−Ax‖22 + λ‖x‖1 popular in compressive sensing, i.e.,
MAP estimation of i.i.d Laplacian signal, thru dense A, in AWGN.

The Bayesian AMP [Donoho/Maleki/Montanari’10] extended the
above to a generic i.i.d signal prior and MMSE estimation.

The generalized AMP [Rangan’10] extended the above to generic i.i.d
likelihoods pY |Z(yi|a

H
i x), for both MAP and MMSE inference.

In the end, GAMP produces a sophisticated iterative thresholding alg,
whose complexity is dominated by one application of A and AH per
iteration with relatively few iterations (e.g., tens). Very fast!

Rigorous large-system analyses (under i.i.d sub-Gaussian A) have
established that GAMP follows a state-evolution trajectory whose
fixed-points have nice properties [Rangan’10], [Javanmard/Montanari’12].
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GAMP Heuristics (Sum-Product)
pX(x1)

pX(x2)

pX(xn)

x1

x2

xn

p1→1(x1)

pm←n(xn)

pY |Z(y1|[Ax]1)

pY |Z(y2|[Ax]2)

pY |Z(ym|[Ax]m)

...
...

...

1 Message from yi node to xj node:

pi→j(xj) ∝

∫

{xr}r 6=j

pY |Z
(
yi;

≈ CN via CLT
︷ ︸︸ ︷∑

r
airxr

)∏

r 6=j
pi←r(xr)

≈

∫

zi

pY |Z(yi; zi) CN
(
zi; ẑi(xj), ν

z
i (xj)

)
≈ CN

To compute ẑi(xj), ν
z
i (xj), the means and variances of {pi←r}r 6=j suffice,

thus Gaussian message passing!

Remaining problem: we have 2mn messages to compute (too many!).

2 Exploiting similarity among the messages
{pi←j}

m
i=1, GAMP employs a Taylor-series

approximation of their difference, whose
error vanishes as m→∞ for dense A

(and similar for {pi→j}nj=1 as n→∞).
Finally, need to compute only O(m+n)
messages!

pX(x1)

pX(x2)

pX(xn)

x1

x2

xn

p1→1(x1)

pm←n(xn)

pY |Z(y1; [Ax]1)

pY |Z(y2; [Ax]2)

pY |Z(ym; [Ax]m)

...
...

...
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The GAMP Algorithm

Require: Matrix A, sum-prod ∈ {true,false}, initializations x̂0, ν0
x

t = 0, ŝ−1 = 0, ∀ij : Sij = |Aij |
2

repeat

νt
p = Sνt

x, p̂t = Ax̂t − ŝt−1.νt
p (gradient step)

if sum-prod then

∀i : νt
zi

= var(Zi|yi), ẑti = E(Zi|yi) for pZi|Yi
(z|y) ∝ pY |Z(y|z)CN (z; p̂ti, ν

t
pi
)

else

∀i : νt
zi

= νt
pi
prox′−νt

pi
log pY |Z(yi,.)

(p̂ti) ẑti = prox−νt
pi

log pY |Z(yi,.)
(p̂ti),

end if

νt
s = (1− νt

z./ν
t
p)./ν

t
p, ŝt = (ẑt − p̂t)./νt

p (dual update)
νt
r = 1./(STνt

s), r̂t = x̂t + νt
r.A

T ŝt (gradient step)
if sum-prod then

∀j : νt
xj

= var(Xj |r̂
t
j), ẑtj = E(Xj |r̂

t
j) for pXj |Rj

(x|r) ∝ pX(x)CN (x; r, νt
rj
)

else

∀j : νt+1
xj

= νt
rj
prox′−νt

rj
log pX (.)(r̂

t
j) x̂t+1

j = prox−νt
rj

log pX (.)(r̂
t
j),

end if

t← t+1
until Terminated

Note connections to Arrow-Hurwicz, primal-dual, ADMM, proximal FB splitting,. . .
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GAMP for Phase Retrieval: Likelihood

To apply GAMP to phase retrieval, we need a likelihood function pY |Z(·|·)
relating the noisy magnitude measurements {yi}

m
i=1 to the corresponding

noiseless transform outputs {zi}
m
i=1 (recalling that zi , [Ax]i).

When Z and W are both circular, one can show that

Y = |Z +W | ⇔ Y = ejΘ(Z +W )
∣
∣
Θ∼U [0,2π)

in the sense that both models yield the same pZ|Y (·|·).

Assuming W ∼ CN (0, νw), we then margin out Θ to obtain

pY |Z(y|z) =
1

πνw
e−

(|y|−|z|)2

νw I0(ρ)e
−ρ for ρ ,

2|y| |z|

νw
,

where I0(·) is the 0th-order modified Bessel function of the first kind.

Other models are also possible, e.g., Y = |Z|+W or Y = |Z|2 +W .
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GAMP for Phase Retrieval: Signal Prior

For compressive phase retrieval, we need a structured signal prior pX(·).

Separable priors constrain pX(x) =
∏n

j=1 pX(xj) with, e.g.,

sparsity promotion: pX(xj) = λfX(xj) + (1−λ)δ(xj)
real-valuedness: pX(xj) supported on xj ∈ R

non-negativity: pX(xj) supported on xj ∈ R
+ ∪ {0}

and are directly supported by GAMP.

Non-separable priors model structure across {xj}, e.g.,

structured sparsity:

{

pX(x) =
∑

s∈{0,1}n pS(s)
∏n

j=1
pX|S(xj |sj)

pS(s) = block, Markov field/chain/tree,...

but are not directly supported by GAMP.

In any case, we want the assumed pX(·) to match the empirical
distribution of the true {xj}nj=1, which is apriori unknown.
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Making GAMP Practical: EM & turbo Extensions

The basic GAMP algorithm is limited by two major assumptions:
1 separable p(y|z) =

∏

i pYi|Zi
(yi|zi) and p(x) =

∏

j pXj
(xj)

2 that are well matched to the data.

The EM-turbo-GAMP framework circumvents these limitations by
learning [Vila/Schniter’12] possibly non-separable [Schniter’10] priors:

GAMP

EM

turbo

it
er
at
io
n
s

local {pYi|Zi
(yi|zi)}∀i

local {pXj
(xj)}∀j

linear transform A

global p(y|z;θY |Z)

global p(x;θX)

parameters θY |Z

parameters θX
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PR-GAMP: Ongoing Work

PR-GAMP is a work-in-progress. Things we are working on include:

Derivation of the state evolution.

Automatic learning of signal prior pX(·) via the EM-GM approach
from [Vila/Schniter’12].

Exploitation of the hidden-Markov-tree support structure of natural
images via the turbo approach from [Som/Schniter’10].

MAP formulation of PR-GAMP.

Connections to optimization algorithms.
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Conclusions

(Compressive) phase retrieval is a longstanding problem that is
experiencing a rebirth through compressive sensing and convex
relaxation.

We proposed a new approach to CPR based on generalized
approximate message passing (GAMP).

Empirical results show an excellent phase transition (4×meas of
phase-oracle), excellent noise robustness (∼ 3 dB worse than
phase-oracle), and excellent runtime (many orders of magnitude faster
than convex relaxation).

As a practical demonstration, we accurately recovered a 64k-pixel
image from 32k noisy measurements in only 11 seconds.
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All of these methods are integrated into GAMPmatlab:
http://sourceforge.net/projects/gampmatlab/

Thanks!
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