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Image Recovery

In image recovery, we want to

recover a image x ∈ C
N

from corrupted measurements y ∈ C
M

of hidden linear transform outputs z = Φx ∈ C
M .

The measurement corruption mechanism might be

additive noise: yi = zi + wi

phase-less: yi = |zi + wi|
one-bit: yi = sgn(zi + wi)
photon-limited (Poisson), etc...

The image is structured in that Ωx ∈ C
D is . . .

sparse (sufficiently few nonzeros)
co-sparse (sufficiently many zeros),
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Statistical Approach to Image Recovery

In the statistical approach to image recovery. . .

measurements modeled via likelihood p(y|x) ∝ exp(−g(Φx))

image modeled via prior distribution p(x) ∝ exp(−f(Ωx))

The posterior
p(x|y) = p(y|x)p(x)/p(y),

tells all we can learn about x from y, but is expensive to compute.

Instead, one usually settles for point estimates like the

MAP estimate: x̂MAP = argmaxx p(x|y)
MMSE estimate: x̂MMSE = E{x|y} =

∫

CN x p(x|y)dx

and perhaps marginal uncertainty information like var{xj |y}.
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MAP Estimation

MAP estimation can be reformulated as

x̂MAP = argmax
x

p(x|y)

= argmin
x

{− ln p(x|y)} = argmin
x

{− ln p(y|x)− ln p(x)}

= argmin
x

g(Φx)
︸ ︷︷ ︸

data fidelity

+ f(Ωx)
︸ ︷︷ ︸

regularization

and thus viewed from a “non-statistical” perspective.

We often choose g and f that are convex and separable

g(z) =
∑

i gi(zi)

f(u) =
∑

d fd(ud)

to facilitate efficient algorithms (e.g., g(z)=‖y − z‖22, f(u)=‖u‖1).
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Prototypical Optimization Algorithms

Iterative soft thresholding (g(z) = 1
2σ2

w

‖y − z‖22,Ω = I):

for t = 1, 2, 3, . . .

vt= y −Φxt residual

xt+1= proxτf
(
xt +Φ

Hvt

)
component-wise thresholding

Forward-backward primal-dual1 (Ω = I):

for t = 1, 2, 3, . . .

s̃t+1= proxσg∗(st + σΦxn) proximal gradient ascent

ŝt+1= θs̃t+1 + (1− θ)st relaxation, θ > 0

x̃t+1= proxτf
(
xt − τΦHŝt+1

)
proximal gradient descent

[

xt+1
st+1

]

= βt

[

x̃t+1
s̃t+1

]

+ (1− βt)

[

xt

st

]

relaxation, βt > 0

[proxτf (r)]d , argminx fd(x) +
1
2τ |x− rd|

2 often in closed-form.

No matrix inversions. Can leverage fast Φ & Φ
H (e.g., FFT).

1Komodakis,Pesquet–arXiv:1406.5429
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Questions

How to choose stepsizes τ, σ and relaxation parameters like βt?

How to “tune” g and f to the data (e.g., noise variance, sparsity)?

Is there a sacrifice in restricting g and f to be convex?

Is there a sacrifice in pursuing MAP rather than MMSE?
If so, how do we efficiently solve the MMSE problem?

x̂MMSE =

∫

CN

x p(x|y)dx

How do we get marginal uncertainty information like var{xj |y}?

Next, I will describe a fast method that addresses all of these questions.
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The 21st Century Approach: Crowd-Source It!

1) Factor the posterior, exposing the statistical structure of the problem:

p(x|y) ∝
M∏

i=1

e−gi(φ
H
i
x)

D∏

d=1

e−fd(ω
H
d
x),

Can visualize using the factor graph
(drawn here for Ω = I, D=N):

(White circles are random variables
and black boxes are factors.)
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H
2
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e−gM (φH
M

x)

...
...

...

2) Inference algorithm: Pass messages (pdfs) between nodes until they
agree. In MMSE case, gives full marginal posteriors p(xj |y).

Next, suppose Ω = I (canonical sparsity) and rename Φ → A. . .
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The Blessings of Dimensionality

In general, loops in the factor graph are bad!

But in the large-system limit, if A is i.i.d. sub-Gaussian then . . .

messages can be approximated as Gaussian due to CLT,

differences between messages approximated via Taylor’s expansion,2

→ Approximate Message Passing (AMP) algorithm

per-iteration behavior characterized by a scalar state-evolution (SE),

if SE has unique fixed point, it is MMSE/MAP optimal.3

In fact, AMP’s SE can be used to characterize fundamental performance.

2Donoho,Maleki,Montanari–PNAS’09
3Bayati,Montanari–IT’11
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Example Application of AMP State-Evolution Analysis

AMP SE yields a closed-form expression4 for weak ℓ1/ℓ0 equivalence:

ρ(δ) = max
c>0

1− 2δ−1[(1 + c2)Φ(−c)− cφ(c)]

1 + c2 − 2[(1 + c2)Φ(−c)− cφ(c)]
,
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4Donoho,Maleki,Montanari–PNAS’09
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AMP for Quadratic data-fidelity (i.e., AWGN)

MAP version of AMP (g(z) = 1
2σ2

w

‖y − z‖22,Ω = I):

for t = 1, 2, 3, . . .

vt= y −Axt +
N
M

νx
t

τt−1
vt−1 Onsager-corrected residual

τt= σ2
w + N

M
νxt or 1

M
‖vt‖

2
2 error-variance of prox input

xt+1= proxτtf
(
xt +AHvt

)
component-wise thresholding

νxt+1= avg
{
τt prox

′
τtf

(
xt +AHvt

︸ ︷︷ ︸

)}
error-variance of prox output

→ var{xi|y} marginal uncertainty

Onsager correction ❀ prox input an AWGN-corrupted version of true x

(with error variance τt). Thus, prox becomes the scalar MAP denoiser!

For MMSE-AMP, simply replace prox with scalar MMSE denoiser.
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Generalized5 AMP: Possibly non-quadratic data fidelity

Damped MAP GAMP (Ω = I):

for t = 1, 2, 3, . . .

1/σt= νxt ‖A‖2F /M stepsize adaptation
s̃t+1= proxσtg∗(st + σtAxn) proximal gradient

νst+1= avg{σt prox
′
σtg∗

(st + σtAxn)} sensitivity

1/τt= νst+1‖A‖2F /N stepsize adaptation

x̃t+1= proxτtf
(
xt − τtA

Hs̃t+1

)
proximal gradient (θ = 1)

νxt+1= avg
{
τt prox

′
τtf

(
xt − τtA

Hŝt+1

)}
sensitivity

[

xt+1
st+1

]

= βt

[

x̃t+1
s̃t+1

]

+ (1− βt)

[

xt

st

]

damping, βt ∈ (0, 1]

Step-sizes σt and τt are adapted.

Onsager correction term now equals −st/σt.

For MMSE, replace prox with scalar MMSE denoiser.

5Rangan—arXiv:1010:5141
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How fast is (G)AMP?

Pretty fast, at least for i.i.d. Gaussian A:
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Above: LASSO recovery of a 40-sparse 1000-length Bernoulli-Gaussian
signal from 400 AWGN-corrupted measurements.
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What about generic matrices A?

Here is what we know about GAMP:

It may diverge! But...

MAP case: if it converges, then it converges to a local minimum of the
MAP cost function.6

MMSE case: if it converges, then it converges to a local minimum of
the large-system-limit Bethe free energy (LSL-BFE):6

J(bx, bz) = D(bx‖e
−f ) +D(bz‖e

−g) + h̄
(
var(x|bx), var(z|bz)

)

bx, bz : separable posteriors pdfs s.t. E{Ax|bx} = E{z|bz}

Gaussian case: convergence is determined by the peak-to-average ratio
of the squared singular-values in A. For any A, possible to find fixed
damping coefficient βt = β that guarantees global convergence.7

6Rangan,Schniter,Riegler,Fletcher,Cevher–arXiv:1301.6295
7Rangan,Schniter,Fletcher–arXiv:1402.3210
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Improving GAMP convergence under generic A

Heuristic approaches:

mean removal8

adaptive damping8

serial updating9

On right:
Recovery of a
200-sparse 1000-length
BG signal from 500
AWGN-corrupted
measurements.
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8Vila,Schniter,Rangan,Krzakala,Zdeborova–arXiv:1412.2005
9Manoel,Krzakala,Tramel,Zdeborova–arXiv:1406.4311
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ADMM-GAMP: A Provably Convergent Alternative

Idea: direct minimization of MMSE-GAMP cost function:

argmin
separable pdfs bx,bz

D(bx‖e
−f ) +D(bz‖e

−g) + h̄
(
var(x|bx), var(z|bz)

)

s.t. E{Ax|bx} = E{z|bz}

Challenge: h̄(var(b)) is neither convex nor concave in b , (bx, bz).

Solution: a double loop algorithm:10

Outer loop: linearize h̄ about current guess → convex + concave

D(bx‖e
−f ) +D(bz‖e

−g) + 1

2τ

T
var(x|bx) +

σ

2

T var(z|bz).

Inner loop: Minimize linearized LSL-BFE using ADMM under constraints

E(x|bx) = v, E(z|bz) = Av using penalty vectors 1

2τ
and σ

2
, respectively.

Result is basically GAMP plus one additional LS step for v.

Can prove global linear convergence under strongly convex f and g.

MAP case obtained as ”zero-temperature” limit of MMSE case.

10Rangan,Fletcher,Schniter,Kamilov–arXiv:1501.01797
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Example of ADMM-GAMP

Recovery of 200-sparse 1000-length BG signal from m = 600
AWGN-corrupted measurements, versus squared-singular-value ratio.

ADMM-GAMP does not break down like other variants of GAMP.

ADMM-GAMP outperforms LASSO since MMSE is better than MAP.
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Generalized AMP for Analysis CS (GrAMPA)

Until now we’ve focused on the canonical sparsity basis Ω = I.

What about generic analysis operators Ω (e.g., TV, SARA)?

Can handle this in GAMP framework by11 . . .

stacking matrices: A =

[
Φ

Ω

]

setting penalties {gi}
M
i=1 to observation log-likelihoods

setting penalties {gi}
M+D
i=M+1

to co-sparsity log-priors.

For the co-sparsity penalties . . .

ℓ0-like works better when Ω is highly overcomplete.

we propose the “sparse non-informative parameter estimator (SNIPE)”
❀ MMSE denoiser for Bernoulli-∗ prior in the limit of infinite-variance ∗.

11Borgerding,Schniter,Rangan–arXiv:1312.3968
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GrAMPA meets the Phantom

Ω: total variation
(Hor,Vert,Diag)

Φ: radial Fourier

SNR = 80dB

Avg Runtime:

0.3s: GrAMPA
1.8s: L1
9.7s: RW-L112

30.1s: GAPn13

64× 64 Shepp-Logan phantom
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12Carrillo,McEwen,VanDeVille,Thiran,Wiaux–SPL’13
13Nam,Davies,Elad,Gribonval–CAMSAP’11
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GrAMPA meets Lena and SARA

Ω: Db1-8
(SARA)

Φ: spread
spectrum

SNR = 40dB

Avg Runtime:

220s: GrAMPA
225s: L1
2687s: RW-L1
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Tuning the Hyperparameters

The log-prior f often has tunable parameters (e.g., sparsity).
How to choose them?

The input to (G)AMP’s denoiser input is an AWGN corrupted version of the
truth with known noise variance. Thus,

1 learn prior via EM14 (deconvolution of blurred pdf), or
2 apply Stein’s Unbiased Risk Estimator.15

Can learn entire f by tuning a many-term Gaussian-mixture (GM).

The log-likelihood g also has tunable parameters (e.g., noise variance).
How to choose them?

The LSL-BFE gives an approximate upper bound on the −log-likelihood.
The AWGN case results in simple closed-form tuning.16 For the non-AWGN
case, we proposed a Newton-based algorithm.17

14Vila,Schniter–SAHD’11 & TSP’13
15Mousavi,Maleki,Baraniuk–arXiv:1311.0035 / Guo,Davies–arXiv:1409.0440
16Krzakala,Mezard,Sausset,Sun,Zdeborova–JSM’12
17Schniter,Rangan–arXiv:1405.5618

Phil Schniter (Ohio State) Statistical Image Recovery Duke — Apr’15 20 / 27



Compressive Phase Retrieval

Problem: Reconstruct a sparse signal from intensity-only measurements
of a complex measurement operator (e.g., Fourier transform).

Applications: X-ray imaging, optics, microscopy, acoustics, etc.

M ≈ 4K measurements are necessary & sufficient.

“Lifting” based convex algorithms work with M & O(K2 logN) and
complexity O(N3), which is not practical.

We proposed to use MMSE-GAMP with Rician likelihood

exp
(
− gi(zi; ν

w)
)
=

2yi
νw

exp
(

−
y2i + |zi|

2

νw

)

I0

(2yi|zi|

νw

)

1yi≥0

and Bernoulli-Gaussian signal prior.18

18Schniter,Rangan–arXiv:1405.5618
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Phase-transition curves

N = 512, BG

iid Gaussian A

SNR = 100 dB

NMSE < 10−6

above PTC
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For K ≪ N , PTC suggests M ≥ 2K log2(N/K) suffices.

Phase-retrieval GAMP requires ≈ 4× the number of measurements as
phase-oracle GAMP. (Very interesting!)
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Accuracy of Noise-Variance Learning

The estimated noise
variance, averaged
over 10 realizations,
at several
measurement lengths
M , for signal length
N = 512 and
sparsity K = 4:
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The LSL-BFE-based likelihood-tuning method is accurate across a wide
SNR range.
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Accuracy of Sparsity-Rate Learning

The average
estimated sparsity for
M = 512 over 10
realizations:
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The EM-based prior-tuning method is accurate across a wide sparsity
range.
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Compressive Image Recovery

65536 image pixels, 32768 measurements, 30dB SNR:
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NMSE = -37.5 dB, runtime = 1.8 sec.
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Conclusions

Approximate message passing . . .

is IST / primal-dual, but with carefully adapted stepsizes,

provides posterior uncertainty information (not just point estimates),

is Bayes-optimal in the large-system limit with i.i.d. sub-Gaussian A,

can diverge with generic A, but robustified by damping / direct-min,

can be used in synthesis-CS or analysis-CS settings,

leads to easy tuning of hyperparameters,

often leads to state-of-the-art accuracy and runtime.
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Thanks for listening!
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