Statistical Image Recovery: A Message-Passing Perspective

Phil Schniter

Collaborators: Sundeep Rangan (NYU) and Alyson Fletcher (UC Santa Cruz)

Supported in part by NSF grants CCF-1018368 and NSF grant CCF-1218754.

Duke University - April 10, 2015

Image Recovery

- In image recovery, we want to
 - recover a image $oldsymbol{x} \in \mathbb{C}^N$
 - from corrupted measurements $oldsymbol{y} \in \mathbb{C}^M$
 - of hidden linear transform outputs $oldsymbol{z} = oldsymbol{\Phi} oldsymbol{x} \in \mathbb{C}^M.$
- The measurement corruption mechanism might be
 - additive noise: $y_i = z_i + w_i$
 - phase-less: $y_i = |z_i + w_i|$
 - one-bit: $y_i = \operatorname{sgn}(z_i + w_i)$
 - photon-limited (Poisson), etc...
- The image is structured in that $\mathbf{\Omega} oldsymbol{x} \in \mathbb{C}^D$ is \dots
 - sparse (sufficiently few nonzeros)
 - co-sparse (sufficiently many zeros),

Statistical Approach to Image Recovery

In the statistical approach to image recovery...

- measurements modeled via likelihood $p(\boldsymbol{y}|\boldsymbol{x}) \propto \exp(-g(\boldsymbol{\Phi}\boldsymbol{x}))$
- image modeled via prior distribution $p({m x}) \propto \exp(-f({m \Omega} {m x}))$

The posterior

$$p(\boldsymbol{x}|\boldsymbol{y}) = p(\boldsymbol{y}|\boldsymbol{x})p(\boldsymbol{x})/p(\boldsymbol{y}),$$

tells all we can learn about x from y, but is expensive to compute.

Instead, one usually settles for point estimates like the

- MAP estimate: $\hat{\boldsymbol{x}}_{MAP} = \arg \max_{\boldsymbol{x}} p(\boldsymbol{x}|\boldsymbol{y})$
- MMSE estimate: $\hat{x}_{MMSE} = E\{x|y\} = \int_{\mathbb{C}^N} x p(x|y) dx$

and perhaps marginal uncertainty information like $var\{x_j | y\}$.

MAP Estimation

MAP estimation can be reformulated as

$$\hat{x}_{\mathsf{MAP}} = \arg \max_{\boldsymbol{x}} p(\boldsymbol{x}|\boldsymbol{y})$$

$$= \arg \min_{\boldsymbol{x}} \{-\ln p(\boldsymbol{x}|\boldsymbol{y})\} = \arg \min_{\boldsymbol{x}} \{-\ln p(\boldsymbol{y}|\boldsymbol{x}) - \ln p(\boldsymbol{x})\}$$

$$= \arg \min_{\boldsymbol{x}} \underbrace{g(\boldsymbol{\Phi}\boldsymbol{x})}_{\mathsf{data fidelity}} + \underbrace{f(\boldsymbol{\Omega}\boldsymbol{x})}_{\mathsf{regularization}}$$

and thus viewed from a "non-statistical" perspective.

• We often choose g and f that are convex and separable

$$g(\boldsymbol{z}) = \sum_{i} g_{i}(z_{i})$$

 $f(\boldsymbol{u}) = \sum_{d} f_{d}(u_{d})$

to facilitate efficient algorithms (e.g., $g(z) = ||y - z||_2^2$, $f(u) = ||u||_1$).

Prototypical Optimization Algorithms

Iterative soft thresholding
$$(g(z) = \frac{1}{2\sigma_w^2} \|y - z\|_2^2, \Omega = I)$$
:

$$\begin{array}{ll} \text{for } t=1,2,3,\ldots \\ \boldsymbol{v}_t=\boldsymbol{y}-\boldsymbol{\Phi}\boldsymbol{x}_t & \text{residual} \\ \boldsymbol{x}_{t+1}=\mathsf{prox}_{\tau f} \big(\boldsymbol{x}_t+\boldsymbol{\Phi}^\mathsf{H} \boldsymbol{v}_t \big) & \text{component-wise thresholding} \end{array}$$

Forward-backward primal-dual¹ ($\Omega = I$):

$$\begin{split} & \text{for } t = 1, 2, 3, \dots \\ & \tilde{s}_{t+1} = \text{prox}_{\sigma g^*}(s_t + \sigma \Phi x_n) \\ & \hat{s}_{t+1} = \theta \tilde{s}_{t+1} + (1 - \theta) s_t \\ & \tilde{x}_{t+1} = \text{prox}_{\tau f} \left(x_t - \tau \Phi^{\mathsf{H}} \hat{s}_{t+1} \right) \\ & \left[\begin{matrix} x_{t+1} \\ s_{t+1} \end{matrix} \right] = \beta_t \begin{bmatrix} \tilde{x}_{t+1} \\ \tilde{s}_{t+1} \end{bmatrix} + (1 - \beta_t) \begin{bmatrix} x_t \\ s_t \end{bmatrix} \\ & \text{relaxation, } \beta_t > 0 \end{split}$$

• $[\operatorname{prox}_{\tau f}(\boldsymbol{r})]_d \triangleq \arg \min_x f_d(x) + \frac{1}{2\tau} |x - r_d|^2$ often in closed-form. • No matrix inversions. Can leverage fast $\boldsymbol{\Phi} \And \boldsymbol{\Phi}^{\mathsf{H}}$ (e.g., FFT).

¹Komodakis, Pesquet-arXiv:1406.5429

Phil Schniter (Ohio State)

Questions

- How to choose stepsizes τ, σ and relaxation parameters like β_t ?
- How to "tune" g and f to the data (e.g., noise variance, sparsity)?
- Is there a sacrifice in restricting g and f to be convex?
- Is there a sacrifice in pursuing MAP rather than MMSE? If so, how do we *efficiently* solve the MMSE problem?

$$\hat{oldsymbol{x}}_{\mathsf{MMSE}} = \int_{\mathbb{C}^N} oldsymbol{x} \, p(oldsymbol{x} | oldsymbol{y}) doldsymbol{x}$$

How do we get marginal uncertainty information like var{x_j|y}?

Next, I will describe a *fast* method that addresses *all* of these questions.

The 21st Century Approach: Crowd-Source It!

1) Factor the posterior, exposing the statistical structure of the problem:

$$p(\boldsymbol{x}|\boldsymbol{y}) \propto \prod_{i=1}^{M} e^{-g_i(\boldsymbol{\phi}_i^{\mathsf{H}}\boldsymbol{x})} \prod_{d=1}^{D} e^{-f_d(\boldsymbol{\omega}_d^{\mathsf{H}}\boldsymbol{x})},$$
Can visualize using the factor graph (drawn here for $\Omega = \boldsymbol{I}, D = N$):
(White circles are random variables and black boxes are factors.)

$$e^{-g_M(\boldsymbol{\phi}_M^{\mathsf{H}}\boldsymbol{x})} = e^{-f_M(x_N)} e^{-f_N(x_N)}$$

2) Inference algorithm: Pass messages (pdfs) between nodes until they agree. In MMSE case, gives full marginal posteriors $p(x_i|y)$.

Next, suppose $\Omega = I$ (canonical sparsity) and rename $\Phi \to A$...

Can visual (drawn he

and black

The Blessings of Dimensionality

In general, loops in the factor graph are bad!

But in the large-system limit, if A is i.i.d. sub-Gaussian then ...

messages can be approximated as Gaussian due to CLT,

- differences between messages approximated via Taylor's expansion,² → Approximate Message Passing (AMP) algorithm
- per-iteration behavior characterized by a scalar state-evolution (SE),
 if SE has unique fixed point, it is MMSE/MAP optimal.³

In fact, AMP's SE can be used to characterize fundamental performance.

Phil Schniter (Ohio State)

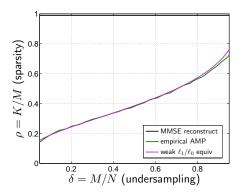
²Donoho, Maleki, Montanari–PNAS'09

³Bayati,Montanari–IT'11

Example Application of AMP State-Evolution Analysis

AMP SE yields a closed-form expression⁴ for weak ℓ_1/ℓ_0 equivalence:

$$\rho(\delta) = \max_{c>0} \frac{1 - 2\delta^{-1}[(1+c^2)\Phi(-c) - c\phi(c)]}{1 + c^2 - 2[(1+c^2)\Phi(-c) - c\phi(c)]},$$



⁴Donoho, Maleki, Montanari–PNAS'09

Phil Schniter (Ohio State)

AMP for Quadratic data-fidelity (i.e., AWGN)

$$\begin{array}{l} \text{MAP version of AMP } (g(\boldsymbol{z}) = \frac{1}{2\sigma_w^2} \| \boldsymbol{y} - \boldsymbol{z} \|_2^2, \boldsymbol{\Omega} = \boldsymbol{I}): \\ \hline \text{for } t = 1, 2, 3, \dots \\ \boldsymbol{v}_t = \boldsymbol{y} - \boldsymbol{A} \boldsymbol{x}_t + \frac{N}{M} \frac{\nu_t^x}{\tau_{t-1}} \boldsymbol{v}_{t-1} & \text{Onsager-corrected residual} \\ \boldsymbol{\tau}_t = \sigma_w^2 + \frac{N}{M} \nu_t^x \text{ or } \frac{1}{M} \| \boldsymbol{v}_t \|_2^2 & \text{error-variance of prox input} \\ \boldsymbol{x}_{t+1} = \operatorname{prox}_{\tau_t f} (\boldsymbol{x}_t + \boldsymbol{A}^{\mathsf{H}} \boldsymbol{v}_t) & \text{component-wise thresholding} \\ \boldsymbol{\nu}_{t+1}^x = \operatorname{avg} \{\underbrace{\boldsymbol{\tau}_t \operatorname{prox}'_{\tau_t f} (\boldsymbol{x}_t + \boldsymbol{A}^{\mathsf{H}} \boldsymbol{v}_t)}_{\rightarrow \operatorname{var} \{ \boldsymbol{x}_i | \boldsymbol{y} \}} & \text{error-variance of prox output} \\ \end{array} \right. \end{array}$$

Onsager correction → prox input an AWGN-corrupted version of true x (with error variance τ_t). Thus, prox becomes the scalar MAP denoiser!
 For MMSE-AMP, simply replace prox with scalar MMSE denoiser.

Generalized⁵ AMP: Possibly non-quadratic data fidelity

stepsize adaptation proximal gradient sensitivity stepsize adaptation proximal gradient ($\theta = 1$) sensitivity damping, $\beta_t \in (0, 1]$

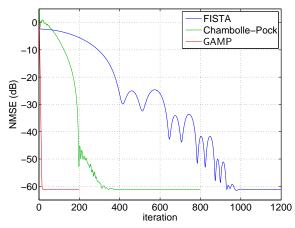
- Step-sizes σ_t and τ_t are adapted.
- Onsager correction term now equals $-s_t/\sigma_t$.
- For MMSE, replace prox with scalar MMSE denoiser.

Phil Schniter (Ohio State)

⁵Rangan—arXiv:1010:5141

How fast is (G)AMP?

Pretty fast, at least for i.i.d. Gaussian A:



Above: LASSO recovery of a 40-sparse 1000-length Bernoulli-Gaussian signal from 400 AWGN-corrupted measurements.

Phil Schniter (Ohio State)

Statistical Image Recovery

Duke — Apr'15 12 / 27

What about generic matrices A?

Here is what we know about GAMP:

- It may diverge! But...
- <u>MAP case</u>: if it converges, then it converges to a local minimum of the MAP cost function.⁶
- <u>MMSE case</u>: if it converges, then it converges to a local minimum of the large-system-limit Bethe free energy (LSL-BFE):⁶

$$J(b_x, b_z) = D(b_x \| e^{-f}) + D(b_z \| e^{-g}) + \bar{h} \big(\operatorname{var}(\boldsymbol{x} | b_x), \operatorname{var}(\boldsymbol{z} | b_z) \big)$$

 b_x, b_z : separable posteriors pdfs s.t. $\mathrm{E}\{ oldsymbol{A} oldsymbol{x} | b_x \} = \mathrm{E}\{ oldsymbol{z} | b_z \}$

• <u>Gaussian case</u>: convergence is determined by the peak-to-average ratio of the squared singular-values in A. For any A, possible to find fixed damping coefficient $\beta_t = \beta$ that guarantees global convergence.⁷

⁷Rangan,Schniter,Fletcher–arXiv:1402.3210

Phil Schniter (Ohio State)

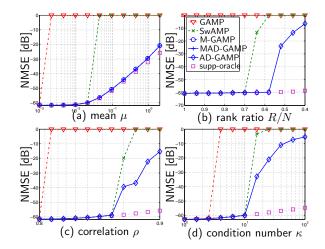
⁶Rangan,Schniter,Riegler,Fletcher,Cevher–arXiv:1301.6295

Improving GAMP convergence under generic \boldsymbol{A}

Heuristic approaches:

- mean removal⁸
- adaptive damping⁸
- serial updating⁹

On right: Recovery of a 200-sparse 1000-length BG signal from 500 AWGN-corrupted measurements.



⁸Vila,Schniter,Rangan,Krzakala,Zdeborova–arXiv:1412.2005
⁹Manoel,Krzakala,Tramel,Zdeborova–arXiv:1406.4311

Phil Schniter (Ohio State)

ADMM-GAMP: A Provably Convergent Alternative

Idea: direct minimization of MMSE-GAMP cost function:

 $\underset{\text{separable pdfs } b_x, b_z}{\operatorname{arg min}} \frac{D(b_x \| e^{-f}) + D(b_z \| e^{-g}) + \bar{h} \big(\operatorname{var}(\boldsymbol{x} | b_x), \operatorname{var}(\boldsymbol{z} | b_z) \big)}{\operatorname{s.t.} \mathbb{E} \{ \boldsymbol{A} \boldsymbol{x} | b_x \} = \mathbb{E} \{ \boldsymbol{z} | b_z \}}$

• Challenge: $\bar{h}(var(b))$ is neither convex nor concave in $b \triangleq (b_x, b_z)$.

- Solution: a double loop algorithm:¹⁰
 - Outer loop: linearize \bar{h} about current guess \rightarrow convex + concave

$$D(b_x \| e^{-f}) + D(b_z \| e^{-g}) + \frac{1}{2\tau}^{\mathsf{T}} \operatorname{var}(\boldsymbol{x} | b_x) + \frac{\sigma}{2}^{\mathsf{T}} \operatorname{var}(\boldsymbol{z} | b_z).$$

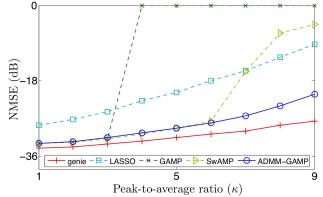
- Inner loop: Minimize linearized LSL-BFE using ADMM under constraints $\overline{E(\boldsymbol{x}|b_x)} = \boldsymbol{v}$, $\mathrm{E}(\boldsymbol{z}|b_z) = \boldsymbol{A}\boldsymbol{v}$ using penalty vectors $\frac{1}{2\tau}$ and $\frac{\boldsymbol{\sigma}}{2}$, respectively.
- Result is basically GAMP plus one additional LS step for v.
- Can prove global linear convergence under strongly convex f and g.
- MAP case obtained as "zero-temperature" limit of MMSE case.

Phil Schniter (Ohio State)

¹⁰Rangan, Fletcher, Schniter, Kamilov–arXiv:1501.01797

Example of ADMM-GAMP

Recovery of 200-sparse 1000-length BG signal from m = 600AWGN-corrupted measurements, versus squared-singular-value ratio.



ADMM-GAMP does not break down like other variants of GAMP.
 ADMM-GAMP outperforms LASSO since MMSE is better than MAP.

Phil Schniter (Ohio State)

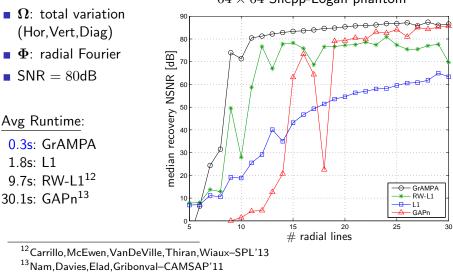
Statistical Image Recovery

Duke — Apr'15 16 / 27

Generalized AMP for Analysis CS (GrAMPA)

- Until now we've focused on the canonical sparsity basis $\Omega=I.$
 - What about generic analysis operators Ω (e.g., TV, SARA)?
 - Can handle this in GAMP framework by¹¹ ...
 - stacking matrices: $A = \begin{bmatrix} \Phi \\ \Omega \end{bmatrix}$
 - setting penalties $\{g_i\}_{i=1}^{M}$ to observation log-likelihoods
 - setting penalties $\{g_i\}_{i=M+1}^{M+D}$ to co-sparsity log-priors.
 - For the co-sparsity penalties ...
 - ${\ensuremath{\,\bullet\)}}\ \ell_0\mbox{-like}$ works better when Ω is highly overcomplete.
 - we propose the "sparse non-informative parameter estimator (SNIPE)"
 ~> MMSE denoiser for Bernoulli-* prior in the limit of infinite-variance *.

¹¹Borgerding,Schniter,Rangan–arXiv:1312.3968



64×64 Shepp-Logan phantom

Phil Schniter (Ohio State)

 512×512 Lena

Ω: Db1-8 GrAMPA 42 (SARA) RW-L1 1.1 median recovery NSNR [dB] • Φ : spread spectrum \blacksquare SNR = 40dB Avg Runtime: 220s: GrAMPA 225s: 11 26 2687s: RW-I 1 24 · 0.1 0.2 0.3 04 0.5 06 0.7 0.8 0.9 sampling ratio M/N

Tuning the Hyperparameters

- The log-prior f often has tunable parameters (e.g., sparsity). How to choose them?
 - The input to (G)AMP's denoiser input is an AWGN corrupted version of the truth with known noise variance. Thus,
 - 1 learn prior via EM¹⁴ (deconvolution of blurred pdf), or
 - 2 apply Stein's Unbiased Risk Estimator.¹⁵
 - Can learn entire f by tuning a many-term Gaussian-mixture (GM).
- The log-likelihood g also has tunable parameters (e.g., noise variance). How to choose them?
 - The LSL-BFE gives an approximate upper bound on the -log-likelihood. The AWGN case results in simple closed-form tuning.¹⁶ For the non-AWGN case, we proposed a Newton-based algorithm.¹⁷

- ¹⁶Krzakala, Mezard, Sausset, Sun, Zdeborova–JSM'12
- ¹⁷Schniter,Rangan–arXiv:1405.5618

Phil Schniter (Ohio State)

¹⁴Vila,Schniter–SAHD'11 & TSP'13

¹⁵Mousavi,Maleki,Baraniuk–arXiv:1311.0035 / Guo,Davies–arXiv:1409.0440

Compressive Phase Retrieval

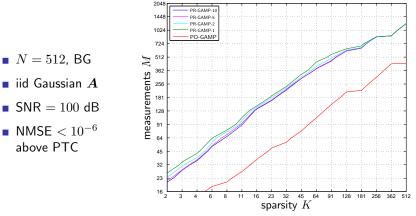
- Problem: Reconstruct a sparse signal from intensity-only measurements of a complex measurement operator (e.g., Fourier transform).
- Applications: X-ray imaging, optics, microscopy, acoustics, etc.
- $M \approx 4K$ measurements are necessary & sufficient.
- "Lifting" based convex algorithms work with $M \gtrsim O(K^2 \log N)$ and complexity $O(N^3)$, which is not practical.
- We proposed to use MMSE-GAMP with Rician likelihood

$$\exp\left(-g_i(z_i;\nu^w)\right) = \frac{2y_i}{\nu^w} \exp\left(-\frac{y_i^2 + |z_i|^2}{\nu^w}\right) I_0\left(\frac{2y_i|z_i|}{\nu^w}\right) 1_{y_i \ge 0}$$

and Bernoulli-Gaussian signal prior.¹⁸

¹⁸Schniter,Rangan–arXiv:1405.5618

Phase-transition curves

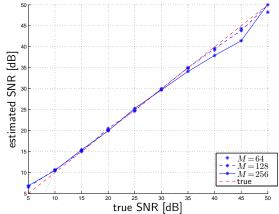


• For $K \ll N$, PTC suggests $M \ge 2K \log_2(N/K)$ suffices.

■ Phase-retrieval GAMP requires ≈ 4× the number of measurements as phase-oracle GAMP. (Very interesting!)

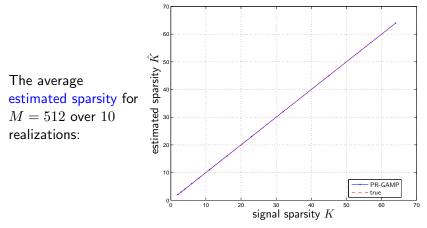
Accuracy of Noise-Variance Learning

The estimated noise variance, averaged over 10 realizations, at several measurement lengths M, for signal length N = 512 and sparsity K = 4:



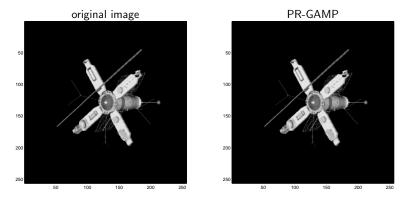
 The LSL-BFE-based likelihood-tuning method is accurate across a wide SNR range.

Accuracy of Sparsity-Rate Learning



 The EM-based prior-tuning method is accurate across a wide sparsity range. Compressive Image Recovery

65536 image pixels, 32768 measurements, 30dB SNR:



NMSE = -37.5 dB, runtime = 1.8 sec.

Phil Schniter (Ohio State)

Conclusions

Approximate message passing ...

- is IST / primal-dual, but with carefully adapted stepsizes,
- provides posterior uncertainty information (not just point estimates),
- is Bayes-optimal in the large-system limit with i.i.d. sub-Gaussian A,
- can diverge with generic A, but robustified by damping / direct-min,
- can be used in synthesis-CS or analysis-CS settings,
- leads to easy tuning of hyperparameters,
- often leads to state-of-the-art accuracy and runtime.

Thanks for listening!