Managing Complexity [Ch. 15]:

Problem:

- Demodulating K_{b} bits generally requires $\mathcal{O}\left(2^{K_{b}}\right)$ complexity.
- For send a fixed bit rate, we need $\mathcal{O}\left(K_{b}\right)$ complexity. Insights:
- MPSK only needed one filter for K_{b} bits.
\leadsto linear modulation.
- Gray-coded QPSK demodulated each bit in parallel.
\leadsto orthogonal modulation.

Linear Modulation:

$$
\underline{I}=i \Rightarrow x_{i}(t)=d_{i} \sqrt{E_{b}} u(t)
$$

Normalization so that average energy per bit $=E_{b}$:

- $\int_{-\infty}^{\infty}|u(t)|^{2} d t=1$
- $\sum_{i=0}^{M-1}\left|d_{i}\right|^{2} \pi_{i}=K_{b} \quad$ (so that avg word energy $=K_{b} E_{b}$)

Example constellations:

MLWD for linear modulation (under equal priors):

$$
\begin{aligned}
E_{i} & =\left|d_{i}\right|^{2} E_{b} \\
V_{i}\left(T_{p}\right) & =\int_{0}^{T_{p}} Y_{z}(t) x_{i}^{*}(t) d t=d_{i}^{*} \sqrt{E_{b}} \underbrace{\int_{0}^{T_{p}} Y_{z}(t) u^{*}(t) d t}_{Q} \\
\hat{\underline{I}} & =\arg \max _{i} \operatorname{Re}\left\{V_{i}\left(T_{p}\right)\right\}-E_{i} / 2 \\
& =\arg \max _{i} \sqrt{E_{b}} \operatorname{Re}\left\{d_{i}^{*} Q\right\}-\left|d_{i}\right|^{2} E_{b} / 2 \\
& =\arg \max _{i}-\left|Q-d_{i} \sqrt{E_{b}}\right|^{2} \\
& =\arg \min _{i}\left|Q-d_{i} \sqrt{E_{b}}\right|^{2} \quad \text { ("minimum distance decoder") } \\
Y_{z}(t) & \rightarrow u^{*}\left(T_{p}-t\right) \quad \underset{t=T_{p}}{\nrightarrow} \xrightarrow[\begin{array}{c}
\text { decision } \\
\text { device }
\end{array}]{ } \rightarrow \hat{I}
\end{aligned}
$$

Example decision regions:

Properties of MLWD with linear modulation:

- Only a single filter required.
- Decision $\underline{\hat{I}}=i$ inferred when $Q \in$ decision region A_{i}.
- $\operatorname{Pr}(\underline{\underline{I}} \neq i \mid \underline{I}=i)=\operatorname{Pr}\left(Q \notin A_{i} \mid \underline{I}=i\right)$

Notice that

$$
\begin{aligned}
&\left.Q\right|_{\underline{I=i}}=\int_{0}^{T_{p}}\left(d_{i} \sqrt{E_{b}} u(t)+W_{z}(t)\right) u^{*}(t) d t \\
&=d_{i} \sqrt{E_{b}}+N_{z}\left(T_{p}\right) \\
& \sigma_{N_{z}\left(T_{p}\right)}^{2}=\int_{-\infty}^{\infty} N_{0}|U(f)|^{2} d f=N_{0} \int_{-\infty}^{\infty}|u(t)|^{2} d t=N_{0}, \\
& \text { and so }\left.Q\right|_{\underline{I=i}} \sim \mathcal{C N}\left(d_{i} \sqrt{E_{b}}, N_{0}\right) .
\end{aligned}
$$

Exact WEP analysis:

$$
\mathrm{WEP}=\frac{1}{M} \sum_{i=0}^{M-1} \operatorname{Pr}\left(Q \notin A_{i} \mid \underline{I}=i\right)
$$

where

$$
\begin{aligned}
\operatorname{Pr}\left(Q \notin A_{i} \mid \underline{I}=i\right) & =1-\operatorname{Pr}\left(Q \in A_{i} \mid \underline{I}=i\right) \\
& =1-\int_{A_{i}} f_{Q \mid \underline{I}}(q \mid i) d q,
\end{aligned}
$$

so we need to integrate the pdf of $\left.Q\right|_{\underline{I}=i} \sim \mathcal{C N}\left(d_{i} \sqrt{E_{b}}, N_{0}\right)$ over the decision region A_{i}.

Exact WEP for QPSK:

$$
\sum_{i=0}^{M-1}\left|d_{i}\right|^{2} \pi_{i}=K_{b} \quad \Rightarrow \quad\left|d_{i}\right|=\sqrt{2} \quad \Rightarrow \quad d_{i \mathrm{Q}}, d_{i \mid}= \pm 1
$$

$\operatorname{Pr}\left(Q \notin A_{0} \mid \underline{I}=0\right)$
$=1-\int_{A_{0}} f_{Q \mid \underline{I}}(q \mid 0) d q$
$=1-\int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{\pi N_{0}} e^{\left[-\frac{\left(q_{Q}-\sqrt{E_{b}}\right)^{2}+\left(q_{1}-\sqrt{E_{b}}\right)^{2}}{N_{0}}\right]} d q_{\mathrm{Q}} d q_{\mathrm{l}}$.
Can decouple this double integral...

$$
\begin{aligned}
& \operatorname{Pr}\left(Q \notin A_{0} \mid \underline{I}=0\right) \\
& \quad=1-\int_{0}^{\infty} \frac{1}{\sqrt{2 \pi\left(N_{0} / 2\right)}} e^{-\frac{\left(q_{Q}-\sqrt{E_{b}}\right)^{2}}{2\left(N_{0} / 2\right)}} d q_{\mathrm{Q}} \int_{0}^{\infty} \frac{1}{\sqrt{2 \pi\left(N_{0} / 2\right)}} e^{-\frac{\left(q_{1}-\sqrt{E_{b}}\right)^{2}}{2\left(N_{0} / 2\right)}} d q_{\mathrm{I}} \\
& \quad=1-\operatorname{Pr}\left\{Q_{\mathrm{Q}}>0\right\}^{2}=1-\left(1-F_{\left.Q_{\mathrm{Q}}(0)\right)^{2}}\right. \\
& \quad=1-\left[\frac{1}{2}-\frac{1}{2} \operatorname{erf}\left(\frac{0-\sqrt{E_{b}}}{\sqrt{2} \sqrt{N_{0} / 2}}\right)\right]^{2} \\
& \quad=1-\frac{1}{4}\left[1+\operatorname{erf}\left(\sqrt{\frac{E_{b}}{N_{0}}}\right)\right]^{2}=1-\frac{1}{4}\left[2-\operatorname{erfc}\left(\sqrt{\frac{E_{b}}{N_{0}}}\right)\right]^{2} \\
& \quad=\operatorname{erfc}\left(\sqrt{\frac{E_{b}}{N_{0}}}\right)-\frac{1}{4} \operatorname{erfc}^{2}\left(\sqrt{\frac{E_{b}}{N_{0}}}\right) \\
& \quad=\operatorname{WEP}(\text { by symmetry }) .
\end{aligned}
$$

Exact WEP for some simple linear modulations:

BPSK: $\frac{1}{2} \operatorname{erfc}\left(\sqrt{\frac{E_{b}}{N_{0}}}\right)$

QPSK: $\quad \operatorname{erfc}\left(\sqrt{\frac{E_{b}}{N_{0}}}\right)-\frac{1}{4} \operatorname{erfc}^{2}\left(\sqrt{\frac{E_{b}}{N_{0}}}\right)$

4-PAM: $\frac{3}{4} \operatorname{erfc}\left(\sqrt{\frac{2 E_{b}}{5 N_{0}}}\right)$

Exact WEP for some simple linear modulations:

Spectral characteristics of linear modulation:
Since $x_{i}(t)=d_{i} \sqrt{E_{b}} u(t)$, we find that

$$
G_{X_{i}}(f)=\left|d_{i}\right|^{2} E_{b} G_{U}(f)
$$

and hence

$$
\begin{aligned}
D_{X_{z}}(f) & =\frac{1}{K_{b}} \sum_{i=0}^{M-1} \pi_{i} G_{X_{i}}(f) \\
& =\frac{E_{b}}{K_{b}} G_{U}(f) \underbrace{\sum_{i=0}^{M-1}\left|d_{i}\right|^{2} \pi_{i}}_{K_{b}} \\
& =E_{b} G_{U}(f)
\end{aligned}
$$

Note: Energy spectrum depends only on pulse shape $u(t)$.

Summary of linear modulation:

- MLWD: Match-filter via pulse shape $u(t)$ and quantize output Q to nearest constellation point.
- Depending on the decision regions, could still be $\mathcal{O}\left(2^{K_{b}}\right)$ complexity.
- Possible to derive exact WEP by integrating Gaussian pdfs over the decision regions.
- Energy spectrum depends only on pulse shape $u(t)$. (Later, we discuss "good" choices for $u(t)$.)

Orthogonal Modulation:

Decoupled ML Bit Decisions:

- Recall that this happened with Gray-coded QPSK.
- Motivation: gives $\mathcal{O}\left(K_{b}\right)$ complexity MLWD. (Recall that we need $\mathcal{O}\left(K_{b}\right)$ complexity demodulation to decode a constant-bit-rate stream.)
- Question: Exactly when can MLWD be implemented using decoupled decisions on each bit?

Say that $\underline{I}=\left[I^{(1)}, I^{(2)}, \ldots, I^{\left(K_{b}\right)}\right]$. Furthermore, say that

$$
\underline{I}=i \quad \Leftrightarrow \quad \underline{I}=\left[m_{1}, m_{2}, \ldots, m_{K_{b}}\right]
$$

Claim: If the ML metrics $\left\{T_{i}\right\}$ can be written in the form

$$
T_{i}=\sum_{k=1}^{K_{b}} T_{m_{k}}^{(k)}
$$

then MLWD is implementable with K_{b} decoupled decisions.
I.e., T_{i} is maximized by maximizing each $T_{m_{k}}^{(k)}$ separately:
$\underline{\hat{I}}=\arg \max _{i} T_{i} \Leftrightarrow \hat{\underline{I}}=\left[\arg \max _{m_{1}} T_{m_{1}}^{(1)}, \ldots, \arg \max _{m_{K_{b}}} T_{m_{K_{b}}}^{\left(K_{b}\right)}\right]$

Example: Gray Coded QPSK:

Bit-to-symbol mapping
$d_{i}=d_{m_{1}}+j d_{m_{2}}$

implies that

$$
\begin{aligned}
T_{i} & =\sqrt{E_{b}} \operatorname{Re}\left\{d_{i}^{*} Q\right\}-E_{b} \quad \text { (from p. 3) } \\
& =\sqrt{E_{b}} \operatorname{Re}\left\{\left(d_{m_{1}}-j d_{m_{2}}\right)\left(Q_{\mathbf{1}}+j Q_{\mathrm{Q}}\right)\right\}-E_{b} \\
& =\underbrace{\sqrt{E_{b}} d_{m_{1}} Q_{\mathbf{l}}-\frac{E_{b}}{2}}_{T_{m_{1}}^{(1)}}+\underbrace{\sqrt{E_{b}} d_{m_{2}} Q_{\mathrm{Q}}-\frac{E_{b}}{2}}_{T_{m_{2}}^{(2)}}
\end{aligned}
$$

Generic Orthogonal Modulation:

The $k^{\text {th }}$ bit chooses between the waveforms in $\left\{x_{0}^{(k)}(t), x_{1}^{(k)}(t)\right\}$, where $\left\{x_{0}^{(k)}(t), x_{1}^{(k)}(t)\right\} \perp\left\{x_{0}^{(l)}(t), x_{1}^{(l)}(t)\right\}$ for $k \neq l$, and then the sum of waveforms for bits $k \in\left\{1, \ldots, K_{b}\right\}$ is transmitted.

In other words, if $\underline{I}=i=\left[m_{1}, m_{2}, \ldots, m_{K_{b}}\right]$, then

$$
\begin{aligned}
x_{i}(t) & =\sum_{k=1}^{K_{b}} x_{m_{k}}^{(k)}(t), \text { where } \\
0 & =\operatorname{Re} \int_{-\infty}^{\infty} x_{m_{k}}^{(k)}(t) x_{m_{l}}^{(l) *}(t) d t \quad \forall m_{k}, m_{l}, k \neq l .
\end{aligned}
$$

Can show that this guarantees decoupled ML metrics...

$$
\begin{aligned}
T_{i} & =\operatorname{Re} \int_{0}^{T_{p}} Y_{z}(t) x_{i}^{*}(t) d t-\frac{1}{2} \int_{0}^{T_{p}}\left|x_{i}(t)\right|^{2} d t \\
& =\operatorname{Re} \int_{0}^{T_{p}} Y_{z}(t)\left(\sum_{k=1}^{K_{b}} x_{m_{k}}^{(k) *}(t)\right) d t-\frac{1}{2} \int_{0}^{T_{p}}\left|\sum_{k=1}^{K_{b}} x_{m_{k}}^{(k)}(t)\right|^{2} d t \\
& =\sum_{k=1}^{K_{b}} \operatorname{Re} \int_{0}^{T_{p}} Y_{z}(t) x_{m_{k}}^{(k) *}(t) d t-\frac{1}{2} \sum_{k=1}^{K_{b}} \sum_{l=1}^{K_{b}} \int_{0}^{T_{p}} x_{m_{k}}^{(k)}(t) x_{m_{l}}^{(l) *}(t) d t \\
& =\sum_{k=1}^{K_{b}} \underbrace{\left[\operatorname{Re} \int_{0}^{T_{p}} Y_{z}(t) x_{m_{k}}^{(k) *}(t) d t-\frac{1}{2} \int_{0}^{T_{p}}\left|x_{m_{k}}^{(k)}(t)\right|^{2} d t\right]}_{T_{m_{k}}^{(k)}}
\end{aligned}
$$

Note: This specifies exactly how to generate $\left\{T_{m_{k}}^{(k)}\right\}$ for orthogonal modulations.

WEP for orthogonal modulation:
We just saw that M-ary MLWD decouples into K_{b} MLBDs.
For the $k^{\text {th }}$ MLBD, we know that

$$
\operatorname{BEP}^{(k)}=\frac{1}{2} \operatorname{erfc}\left(\sqrt{\frac{\Delta_{E}^{(k)}(1,0)}{4 N_{0}}}\right) \geq \frac{1}{2} \operatorname{erfc}\left(\sqrt{\frac{E_{b}}{N_{o}}}\right)
$$

where $\Delta_{E}^{(k)}(1,0)=\int_{0}^{T_{p}}\left|x_{1}^{(k)}-x_{0}^{(k)}\right|^{2} d t$.
Since the probability of a correct word decision equals the probability of K_{b} simultaneously correct bit decisions,
$\mathrm{WEP}=1-\prod_{k=1}^{K_{b}}\left(1-\operatorname{BEP}^{(k)}\right) \geq 1-\left[1-\frac{1}{2} \operatorname{erfc}\left(\sqrt{\frac{E_{b}}{N_{o}}}\right)\right]^{K_{b}}$

Summary of M-ary orthogonal modulation:

- MLWD decouples into K_{b} MLBDs.
- MLWD implementable with $\mathcal{O}\left(K_{b}\right)$ complexity.
- WEP analysis reduces to BEP analysis.
- Performance is, at best, equal to binary antipodal signaling, which was far from Shannon's bound!

Can construct orthogonal waveforms by time-division, frequency-division, or "code-division"...

Example 1: Orthogonal Frequency Division Multiplexing:

For the case of one bit per subcarrier,

$$
\begin{aligned}
& s^{(l)}(t)= \begin{cases}\sqrt{\frac{1}{T_{p}}} \exp \left(j 2 \pi f_{d}\left(2 l-K_{b}-1\right) t\right) & t \in\left[0, T_{p}\right] \\
0 & t \notin\left[0, T_{p}\right]\end{cases} \\
& X_{z}(t)=\sum_{l=1}^{K_{z}} \underbrace{D_{z}^{(l)} \sqrt{E_{b}} s^{(l)}(t)}_{x_{I^{(l)}}^{(l)}(t)}
\end{aligned}
$$

using BPSK: $D_{z}^{(l)}=a\left(I^{(l)}\right)$, i.e., $a(0)=1, a(1)=-1$.
For orthogonality (i.e., $\operatorname{Re} \int_{-\infty}^{\infty} x_{m_{l}}^{(l)}(t) x_{m_{k}}^{(k) *}(t)=0$), generally need $f_{d}=\frac{1}{2 T_{p}}$, though $f_{d}=\frac{1}{4 T_{p}}$ suffices for real-valued constellations. Still, we focus on $f_{d}=\frac{1}{2 T_{p}}$.

Binary OFDM demodulator:

BEP identical to that of BPSK. Spectral efficiency is

$$
\left.\begin{array}{l}
W_{b}=\frac{K_{b}}{T_{p}} \mathrm{bits} / \mathrm{sec}, \\
B_{T} \approx 2 f_{d} K_{b}, f_{d}=\frac{1}{2 T_{p}} \mathrm{~Hz}
\end{array}\right\} \Rightarrow \eta_{B} \approx 1 \mathrm{bit} / \mathrm{sec} / \mathrm{Hz}
$$

Example 2: Orthogonal Code Division Multiplexing:
For the case of one bit per spreading waveform,

$$
X_{z}(t)=\sum_{l=1}^{K_{b}} D_{z}^{(l)} \sqrt{E_{b}} s^{(l)}(t)
$$

using BPSK $D_{z}^{(l)}=a\left(I^{(l)}\right)$, i.e., $a(0)=1, a(1)=-1$. The spreading waveforms $\left\{s^{(l)}(t)\right\}_{l=1}^{K_{b}}$ are orthonormal on $\left[0, T_{p}\right]$:

Binary OCDM demodulator:

$$
\begin{aligned}
& Y_{z}(t) \longrightarrow \rightarrow s^{s^{(2) *}\left(T_{p}-t\right)} \underset{t=T_{p}}{\substack{Q^{(2)}}} \operatorname{Re(\cdot)\stackrel {\substack {\hat {I}=0\\
\stackrel {1}{⿺}=0}}{<}0} \rightarrow \hat{I}^{(2)}
\end{aligned}
$$

BEP identical to that of BPSK. Spectral efficiency is

$$
\left.\begin{array}{l}
W_{b}=\frac{K_{b}}{T_{p}} \mathrm{bits} / \mathrm{sec}, \\
B_{T} \geq \frac{K_{b}}{T_{p}} \mathrm{~Hz}
\end{array}\right\} \Rightarrow \eta_{B} \leq 1 \mathrm{bit} / \mathrm{sec} / \mathrm{Hz}
$$

Example 3: Binary Stream Modulation:
Could be called "orthogonal time-division multiplexing."

$$
X_{z}(t)=\sum_{l=1}^{K_{b}} D_{z}^{(l)} \sqrt{E_{b}} u(t-(l-1) T)
$$

using BPSK $D_{z}^{(l)}$ as before. (Note: $T_{p}=T_{u}+\left(K_{b}-1\right) T$.)
The pulse waveform $u(t)$ is orthogonal to its T-shifts.

Binary stream demodulator:

$$
Y_{z}(t) \rightarrow u^{*}\left(T_{u}-t\right) \xrightarrow[t=T_{u}+(k-1) T]{\nrightarrow} \underset{\operatorname{Re}(\cdot)^{i} \begin{array}{c}
i=0 \\
i=1 \\
i
\end{array}}{Q^{(k)}} \rightarrow \hat{I}^{(k)}
$$

for $k \in\left\{1, \ldots, K_{b}\right\}$.
BEP identical to that of BPSK. Spectral efficiency is

$$
\left.\begin{array}{l}
W_{b}=\frac{1}{T} \mathrm{bits} / \mathrm{sec}, \\
B_{T} \geq \frac{1}{T} \mathrm{~Hz}
\end{array}\right\} \Rightarrow \eta_{B}=\frac{W_{b}}{B_{T}} \leq 1 \mathrm{bit} / \mathrm{sec} / \mathrm{Hz}
$$

Note: In practice, Linear/OFDM/OCDM modulations are combined with stream modulation.

Combined Orthogonal \& Linear Modulation:

Say we have K_{b} bits to send over L orthogonal waveforms:

$$
X_{z}(t)=\sum_{l=1}^{L} D_{z}^{(l)} \sqrt{E_{b}} s^{(l)}(t)
$$

where $\left\{s^{(l)}(t)\right\}_{l=1}^{L}$ are orthonormal and $D_{z}^{(l)}$ is $2^{\frac{K_{b}}{L}}$-ary for each l. We will assume that

$$
\mathrm{E}\left\{D_{z}^{(l)} D_{z}^{(k) *}\right\}= \begin{cases}\frac{K_{b}}{L} & k=l \\ 0 & k \neq l\end{cases}
$$

which means that the symbols used on different waveforms are uncorrelated. It also guarantees an energy-per-bit of E_{b}.

Spectral Characteristics:

$$
\begin{aligned}
D_{X_{z}}(f) & =\frac{1}{K_{b}} \mathrm{E}\left\{\left|\int_{-\infty}^{\infty} X_{z}(t) e^{-j 2 \pi f t} d t\right|^{2}\right\} \\
& =\frac{1}{K_{b}} \mathrm{E}\left\{\left|\int_{-\infty}^{\infty} \sum_{l=1}^{L} D_{z}^{(l)} \sqrt{E_{b}} s^{(l)}(t) e^{-j 2 \pi f t} d t\right|^{2}\right\} \\
& =\frac{E_{b}}{K_{b}} \mathrm{E}\left\{\left|\sum_{l=1}^{L} D_{z}^{(l)} S^{(l)}(f)\right|^{2}\right\} \\
& =\frac{E_{b}}{K_{b}} \sum_{l=1}^{L} \sum_{k=1}^{L} \mathrm{E}\left\{D_{z}^{(l)} D_{z}^{(k) *}\right\} S^{(l)}(f) S^{(k) *}(f) \\
& =\frac{E_{b}}{L} \sum_{l=1}^{L} G_{S^{(l)}}(f)
\end{aligned}
$$

WEP Analysis:

Since we assume an identical constellation on each waveform,

$$
\mathrm{WEP}=1-\left(1-\mathrm{WEP}^{(l)}\right)^{L}
$$

where $\mathrm{WEP}^{(l)}$ denotes the per-waveform WEP.

Example 1: $2^{\frac{K_{b}}{L}}$-ary Stream Modulation
Time-multiplexing of L symbols with K_{b} / L bits per symbol:

$$
X_{z}(t)=\sum_{l=1}^{L} D_{z}^{(l)} \sqrt{E_{b}} u(t-(l-1) T)
$$

As before, the pulse waveform $u(t)$ is orthogonal to its T-shifts. But now $T_{p}=T_{u}+(L-1) T$ and $D_{z}^{(l)}$ is a symbol from a generic $2^{\frac{K_{b}}{L}}$-ary constellation (e.g., QAM, PAM, PSK).

Example 2: $2^{\frac{K_{b}}{L}}$-ary OFDM
L subcarriers with K_{b} / L bits per subcarrier:

$$
\begin{aligned}
s^{(l)}(t) & = \begin{cases}\sqrt{\frac{1}{T_{p}}} \exp \left(j 2 \pi f_{d}(2 l-L-1) t\right) & t \in\left[0, T_{p}\right] \\
0 & t \notin\left[0, T_{p}\right]\end{cases} \\
X_{z}(t) & =\sum_{l=1}^{L} \underbrace{D_{z}^{(l)} \sqrt{E_{b}} s^{(l)}(t)}_{x_{I^{(l)}}^{(l)}(t)}
\end{aligned}
$$

Here, $D_{z}^{(l)}$ is a symbol from a generic $2^{\frac{K_{b}}{L} \text {-ary constellation }}$ (e.g., QAM, PAM, PSK).

For example, there are several ways to transmit 6 bits using OFDM:

- 6 sub-carriers with BPSK and $f_{d}=\frac{1}{4 T_{p}}$
- 3 sub-carriers with QPSK and $f_{d}=\frac{1}{2 T_{p}}$
- 2 sub-carriers with 8 -PSK and $f_{d}=\frac{1}{2 T_{p}}$

What do you expect for the spectral efficiencies?
What about the relative WEP performance?

Example 3: Streamed M-ary OFDM

In modern practical systems, the concepts of time multiplexing (i.e., streaming), frequency multiplexing, and linear modulation are often combined.

For example, a 1 Mbit block could be transmitted using 1024 consecutive OFDM frames of 256 subcarriers with 16-QAM (i.e., 4 bits) on each subcarrier.

