Managing Complexity [Ch. 15]:

Problem:

- Demodulating K_b bits generally requires $\mathcal{O}(2^{K_b})$ complexity.
- For send a fixed bit rate, we need $\mathcal{O}(K_b)$ complexity.

Insights:

- MPSK only needed one filter for K_b bits.
 → linear modulation.
- Gray-coded QPSK demodulated each bit in parallel.
 → orthogonal modulation.

Linear Modulation:

$$\underline{I} = i \implies x_i(t) = d_i \sqrt{E_b} u(t)$$

Normalization so that average energy per bit $= E_b$:

•
$$\int_{-\infty}^{\infty} |u(t)|^2 dt = 1$$

• $\sum_{i=0}^{M-1} |d_i|^2 \pi_i = K_b$ (so that avg word energy $= K_b E_b$)

Example constellations:

Phil Schniter

MLWD for linear modulation (under equal priors):

$$E_{i} = |d_{i}|^{2} E_{b}$$

$$V_{i}(T_{p}) = \int_{0}^{T_{p}} Y_{z}(t) x_{i}^{*}(t) dt = d_{i}^{*} \sqrt{E_{b}} \int_{0}^{T_{p}} Y_{z}(t) u^{*}(t) dt$$

$$\hat{I} = \arg \max_{i} \operatorname{Re}\{V_{i}(T_{p})\} - E_{i}/2$$

$$= \arg \max_{i} \sqrt{E_{b}} \operatorname{Re}\{d_{i}^{*}Q\} - |d_{i}|^{2} E_{b}/2$$

$$= \arg \max_{i} - |Q - d_{i}\sqrt{E_{b}}|^{2}$$

$$= \arg \min_{i} |Q - d_{i}\sqrt{E_{b}}|^{2} \quad (\text{``minimum distance decoder''}$$

$$Y_{z}(t) \rightarrow u^{*}(T_{p} - t) \xrightarrow{\swarrow} Q_{p} \quad (\operatorname{decision}_{device}) \rightarrow \hat{I}$$

Example decision regions:

4

Phil Schniter

Properties of MLWD with linear modulation:

- Only a single filter required.
- Decision $\underline{\hat{I}} = i$ inferred when $Q \in \text{decision region } A_i$.

•
$$\Pr(\hat{\underline{I}} \neq i | \underline{I} = i) = \Pr(Q \notin A_i | \underline{I} = i)$$

Notice that

$$\begin{aligned} Q\big|_{\underline{I}=i} &= \int_0^{T_p} \Big(d_i \sqrt{E_b} u(t) + W_z(t) \Big) u^*(t) dt \\ &= d_i \sqrt{E_b} + N_z(T_p) \\ \sigma_{N_z(T_p)}^2 &= \int_{-\infty}^{\infty} N_0 |U(f)|^2 df = N_0 \int_{-\infty}^{\infty} |u(t)|^2 dt = N_0, \\ \text{and so } Q\big|_{\underline{I}=i} \sim \mathcal{CN}(d_i \sqrt{E_b}, N_0). \end{aligned}$$

Phil Schniter

Exact WEP analysis:

WEP =
$$\frac{1}{M} \sum_{i=0}^{M-1} \Pr(Q \notin A_i | \underline{I} = i),$$

where

$$\Pr(Q \notin A_i | \underline{I} = i) = 1 - \Pr(Q \in A_i | \underline{I} = i)$$
$$= 1 - \int_{A_i} f_{Q | \underline{I}}(q | i) \, dq,$$

so we need to integrate the pdf of $Q|_{\underline{I}=i} \sim \mathcal{CN}(d_i \sqrt{E_b}, N_0)$ over the decision region A_i .

OSU ECE-702

-3

Exact WEP for QPSK: $\sum_{i=0}^{M-1} |d_i|^2 \pi_i = K_b \implies |d_i| = \sqrt{2} \implies d_{iQ}, d_{iI} = \pm 1.$

-3 -3

$$Pr(Q \notin A_{0} | \underline{I} = 0)$$

$$= 1 - \int_{A_{0}} f_{Q | \underline{I}}(q | 0) dq$$

$$= 1 - \int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{\pi N_{0}} e^{\left[-\frac{(q_{Q} - \sqrt{E_{b}})^{2} + (q_{I} - \sqrt{E_{b}})^{2}}{N_{0}}\right]} dq_{Q} dq_{I}.$$

Can decouple this double integral...

OSU ECE-702

$$\begin{aligned} &\Pr(Q \notin A_0 | \underline{I} = 0) \\ &= 1 - \int_0^\infty \frac{1}{\sqrt{2\pi(N_0/2)}} e^{-\frac{(q_Q - \sqrt{E_b})^2}{2(N_0/2)}} dq_Q \int_0^\infty \frac{1}{\sqrt{2\pi(N_0/2)}} e^{-\frac{(q_I - \sqrt{E_b})^2}{2(N_0/2)}} dq_I \\ &= 1 - \Pr\{Q_Q > 0\}^2 = 1 - \left(1 - F_{Q_Q}(0)\right)^2 \\ &= 1 - \left[\frac{1}{2} - \frac{1}{2} \operatorname{erf}\left(\frac{0 - \sqrt{E_b}}{\sqrt{2}\sqrt{N_0/2}}\right)\right]^2 \\ &= 1 - \frac{1}{4} \left[1 + \operatorname{erf}\left(\sqrt{\frac{E_b}{N_0}}\right)\right]^2 = 1 - \frac{1}{4} \left[2 - \operatorname{erfc}\left(\sqrt{\frac{E_b}{N_0}}\right)\right]^2 \\ &= \operatorname{erfc}\left(\sqrt{\frac{E_b}{N_0}}\right) - \frac{1}{4} \operatorname{erfc}^2\left(\sqrt{\frac{E_b}{N_0}}\right) \\ &= \operatorname{WEP} \text{ (by symmetry).} \end{aligned}$$

Phil Schniter

Exact WEP for some simple linear modulations:

BPSK:
$$\frac{1}{2} \operatorname{erfc}\left(\sqrt{\frac{E_b}{N_0}}\right)$$

QPSK:
$$\operatorname{erfc}\left(\sqrt{\frac{E_b}{N_0}}\right) - \frac{1}{4}\operatorname{erfc}^2\left(\sqrt{\frac{E_b}{N_0}}\right)$$

4-PAM:
$$\frac{3}{4} \operatorname{erfc}\left(\sqrt{\frac{2E_b}{5N_0}}\right)$$

Exact WEP for some simple linear modulations:

Phil Schniter

Spectral characteristics of linear modulation: Since $x_i(t) = d_i \sqrt{E_b} u(t)$, we find that $G_{X_i}(f) = |d_i|^2 E_b G_U(f)$,

and hence

Note: Energy spectrum depends only on pulse shape u(t).

Summary of linear modulation:

- MLWD: Match-filter via pulse shape u(t) and quantize output Q to nearest constellation point.
- Depending on the decision regions, could still be $\mathcal{O}(2^{K_b})$ complexity.
- Possible to derive exact WEP by integrating Gaussian pdfs over the decision regions.
- Energy spectrum depends only on pulse shape u(t).
 (Later, we discuss "good" choices for u(t).)

Orthogonal Modulation:

Decoupled ML Bit Decisions:

- Recall that this happened with Gray-coded QPSK.
- Motivation: gives $\mathcal{O}(K_b)$ complexity MLWD. (Recall that we need $\mathcal{O}(K_b)$ complexity demodulation to decode a constant-bit-rate stream.)
- Question: Exactly when can MLWD be implemented using decoupled decisions on each bit?

Say that
$$\underline{I} = [I^{(1)}, I^{(2)}, \dots, I^{(K_b)}]$$
. Furthermore, say that
 $\underline{I} = i \iff \underline{I} = [m_1, m_2, \dots, m_{K_b}].$

<u>Claim</u>: If the ML metrics $\{T_i\}$ can be written in the form $T_i = \sum_{k=1}^{K_b} T_{m_k}^{(k)},$ then MLWD is implementable with K_b decoupled decisions.

I.e.,
$$T_i$$
 is maximized by maximizing each $T_{m_k}^{(k)}$ separately:
 $\underline{\hat{I}} = \arg\max_i T_i \iff \underline{\hat{I}} = \left[\arg\max_{m_1} T_{m_1}^{(1)}, \dots, \arg\max_{m_{K_b}} T_{m_{K_b}}^{(K_b)}\right]$

Example: Gray Coded QPSK:

Bit-to-symbol mapping $d_i = d_{m_1} + j d_{m_2}$

implies that

$$T_{i} = \sqrt{E_{b}} \operatorname{Re}\{d_{i}^{*}Q\} - E_{b} \qquad (\text{from p. 3})$$

$$= \sqrt{E_{b}} \operatorname{Re}\{(d_{m_{1}} - jd_{m_{2}})(Q_{I} + jQ_{Q})\} - E_{b}$$

$$= \sqrt{E_{b}} d_{m_{1}}Q_{I} - \frac{E_{b}}{2} + \sqrt{E_{b}} d_{m_{2}}Q_{Q} - \frac{E_{b}}{2}.$$

$$T_{m_{1}}^{(1)} \qquad T_{m_{2}}^{(2)}$$

Generic Orthogonal Modulation:

The k^{th} bit chooses between the waveforms in $\{x_0^{(k)}(t), x_1^{(k)}(t)\}$, where $\{x_0^{(k)}(t), x_1^{(k)}(t)\} \perp \{x_0^{(l)}(t), x_1^{(l)}(t)\}$ for $k \neq l$, and then the sum of waveforms for bits $k \in \{1, \ldots, K_b\}$ is transmitted.

In other words, if $\underline{I} = i = [m_1, m_2, \dots, m_{K_b}]$, then

$$x_{i}(t) = \sum_{k=1}^{K_{b}} x_{m_{k}}^{(k)}(t), \text{ where}$$

$$0 = \operatorname{Re} \int_{-\infty}^{\infty} x_{m_{k}}^{(k)}(t) x_{m_{l}}^{(l)*}(t) dt \quad \forall m_{k}, m_{l}, k \neq l.$$

Can show that this guarantees decoupled ML metrics...

OSU ECE-702

$$T_{i} = \operatorname{Re} \int_{0}^{T_{p}} Y_{z}(t) x_{i}^{*}(t) dt - \frac{1}{2} \int_{0}^{T_{p}} |x_{i}(t)|^{2} dt$$

$$= \operatorname{Re} \int_{0}^{T_{p}} Y_{z}(t) \left(\sum_{k=1}^{K_{b}} x_{m_{k}}^{(k)*}(t) \right) dt - \frac{1}{2} \int_{0}^{T_{p}} \left| \sum_{k=1}^{K_{b}} x_{m_{k}}^{(k)}(t) \right|^{2} dt$$

$$= \sum_{k=1}^{K_{b}} \operatorname{Re} \int_{0}^{T_{p}} Y_{z}(t) x_{m_{k}}^{(k)*}(t) dt - \frac{1}{2} \sum_{k=1}^{K_{b}} \sum_{l=1}^{K_{b}} \int_{0}^{T_{p}} x_{m_{k}}^{(k)}(t) x_{m_{l}}^{(l)*}(t) dt$$

$$= \sum_{k=1}^{K_{b}} \underbrace{\left[\operatorname{Re} \int_{0}^{T_{p}} Y_{z}(t) x_{m_{k}}^{(k)*}(t) dt - \frac{1}{2} \int_{0}^{T_{p}} |x_{m_{k}}^{(k)}(t)|^{2} dt \right]}_{T_{m_{k}}^{(k)}}$$

Note: This specifies exactly how to generate $\{T_{m_k}^{(k)}\}\$ for orthogonal modulations.

WEP for orthogonal modulation:

We just saw that M-ary MLWD decouples into K_b MLBDs. For the k^{th} MLBD, we know that

$$\mathsf{BEP}^{(k)} = \frac{1}{2} \operatorname{erfc}\left(\sqrt{\frac{\Delta_E^{(k)}(1,0)}{4N_0}}\right) \geq \frac{1}{2} \operatorname{erfc}\left(\sqrt{\frac{E_b}{N_o}}\right),$$

where $\Delta_E^{(k)}(1,0) = \int_0^{T_p} |x_1^{(k)} - x_0^{(k)}|^2 dt$.

Since the probability of a correct word decision equals the probability of K_b simultaneously correct bit decisions,

$$\mathsf{WEP} = 1 - \prod_{k=1}^{K_b} \left(1 - \mathsf{BEP}^{(k)}\right) \ge 1 - \left[1 - \frac{1}{2}\operatorname{erfc}\left(\sqrt{\frac{E_b}{N_o}}\right)\right]^{K_b}$$

Summary of M-ary orthogonal modulation:

- MLWD decouples into K_b MLBDs.
- MLWD implementable with $\mathcal{O}(K_b)$ complexity.
- WEP analysis reduces to BEP analysis.
- Performance is, at best, equal to binary antipodal signaling, which was far from Shannon's bound!

Can construct orthogonal waveforms by time-division, frequency-division, or "code-division"...

Example 1: Orthogonal Frequency Division Multiplexing:

For the case of one bit per subcarrier,

$$s^{(l)}(t) = \begin{cases} \sqrt{\frac{1}{T_p}} \exp(j2\pi f_d(2l - K_b - 1)t) & t \in [0, T_p] \\ 0 & t \notin [0, T_p] \end{cases}$$
$$X_z(t) = \sum_{l=1}^{K_b} \underbrace{D_z^{(l)} \sqrt{E_b} s^{(l)}(t)}_{x_{I^{(l)}}^{(l)}(t)}$$

using BPSK: $D_z^{(l)} = a(I^{(l)})$, i.e., a(0) = 1, a(1) = -1. For orthogonality (i.e., $\operatorname{Re} \int_{-\infty}^{\infty} x_{m_l}^{(l)}(t) x_{m_k}^{(k)*}(t) = 0$), generally need $f_d = \frac{1}{2T_p}$, though $f_d = \frac{1}{4T_p}$ suffices for real-valued constellations. Still, we focus on $f_d = \frac{1}{2T_p}$.

OSU ECE-702

Binary OFDM demodulator:

BEP identical to that of BPSK. Spectral efficiency is

$$\begin{cases} W_b = \frac{K_b}{T_p} \text{ bits/sec,} \\ B_T \approx 2f_d K_b, \ f_d = \frac{1}{2T_p} \text{Hz} \end{cases} \Rightarrow \eta_B \approx 1 \text{ bit/sec/Hz}$$

Example 2: Orthogonal Code Division Multiplexing:

For the case of one bit per spreading waveform,

$$X_z(t) = \sum_{l=1}^{K_b} D_z^{(l)} \sqrt{E_b} \, s^{(l)}(t)$$

using BPSK $D_z^{(l)} = a(I^{(l)})$, i.e., a(0) = 1, a(1) = -1. The spreading waveforms $\{s^{(l)}(t)\}_{l=1}^{K_b}$ are orthonormal on $[0, T_p]$:

OSU ECE-702

Binary OCDM demodulator:

BEP identical to that of BPSK. Spectral efficiency is

$$\left. \begin{array}{l} W_b = \frac{K_b}{T_p} \text{ bits/sec,} \\ B_T \geq \frac{K_b}{T_p} \text{ Hz} \end{array} \right\} \Rightarrow \eta_B \leq 1 \text{ bit/sec/Hz} \end{array}$$

Example 3: Binary Stream Modulation:

Could be called "orthogonal time-division multiplexing."

$$X_{z}(t) = \sum_{l=1}^{K_{b}} D_{z}^{(l)} \sqrt{E_{b}} u \left(t - (l-1)T \right)$$

using BPSK $D_z^{(l)}$ as before. (Note: $T_p = T_u + (K_b - 1)T$.) The pulse waveform u(t) is orthogonal to its T-shifts.

Binary stream demodulator:

$$Y_z(t) \longrightarrow u^*(T_u - t) \xrightarrow{t = T_u + (k-1)T} Q^{(k)} \xrightarrow{Re(\cdot) \stackrel{i=0}{>} 0}_{\substack{i=1 \\ i=1}} \xrightarrow{\hat{I}^{(k)}} \hat{I}^{(k)}$$

for $k \in \{1, ..., K_b\}$.

BEP identical to that of BPSK. Spectral efficiency is

$$\left. \begin{array}{l} W_b = \frac{1}{T} \; \mathsf{bits/sec}, \\ B_T \ge \frac{1}{T} \; \mathsf{Hz} \end{array} \right\} \Rightarrow \eta_B = \frac{W_b}{B_T} \le 1 \; \mathsf{bit/sec/Hz} \end{array}$$

Note: In practice, Linear/OFDM/OCDM modulations are combined with stream modulation.

Combined Orthogonal & Linear Modulation:

Say we have K_b bits to send over L orthogonal waveforms:

$$X_{z}(t) = \sum_{l=1}^{L} D_{z}^{(l)} \sqrt{E_{b}} s^{(l)}(t)$$

where $\{s^{(l)}(t)\}_{l=1}^{L}$ are orthonormal and $D_{z}^{(l)}$ is $2^{\frac{K_{b}}{L}}$ -ary for each l. We will assume that

$$\mathbb{E}\left\{D_z^{(l)}D_z^{(k)*}\right\} = \begin{cases} \frac{K_b}{L} & k=l\\ 0 & k\neq l \end{cases}$$

which means that the symbols used on different waveforms are uncorrelated. It also guarantees an energy-per-bit of E_b .

Spectral Characteristics:

$$D_{X_{z}}(f) = \frac{1}{K_{b}} \operatorname{E}\left\{\left|\int_{-\infty}^{\infty} X_{z}(t)e^{-j2\pi ft}dt\right|^{2}\right\}$$

$$= \frac{1}{K_{b}} \operatorname{E}\left\{\left|\int_{-\infty}^{\infty} \sum_{l=1}^{L} D_{z}^{(l)}\sqrt{E_{b}}s^{(l)}(t)e^{-j2\pi ft}dt\right|^{2}\right\}$$

$$= \frac{E_{b}}{K_{b}} \operatorname{E}\left\{\left|\sum_{l=1}^{L} D_{z}^{(l)}S^{(l)}(f)\right|^{2}\right\}$$

$$= \frac{E_{b}}{K_{b}} \sum_{l=1}^{L} \sum_{k=1}^{L} \operatorname{E}\left\{D_{z}^{(l)}D_{z}^{(k)*}\right\}S^{(l)}(f)S^{(k)*}(f)$$

$$= \frac{E_{b}}{L} \sum_{l=1}^{L} G_{S^{(l)}}(f)$$

WEP Analysis:

Since we assume an identical constellation on each waveform,

$$\mathsf{WEP} = 1 - \left(1 - \mathsf{WEP}^{(l)}\right)^L$$

where $WEP^{(l)}$ denotes the per-waveform WEP.

Example 1: $2^{\frac{K_b}{L}}$ -ary Stream Modulation

Time-multiplexing of L symbols with K_b/L bits per symbol:

$$X_{z}(t) = \sum_{l=1}^{L} D_{z}^{(l)} \sqrt{E_{b}} u (t - (l - 1)T).$$

As before, the pulse waveform u(t) is orthogonal to its T-shifts. But now $T_p = T_u + (L-1)T$ and $D_z^{(l)}$ is a symbol from a generic $2^{\frac{K_b}{L}}$ -ary constellation (e.g., QAM, PAM, PSK).

Phil Schniter

OSU ECE-702

Example 2: $2^{\frac{K_b}{L}}$ -ary OFDM

L subcarriers with K_b/L bits per subcarrier:

$$s^{(l)}(t) = \begin{cases} \sqrt{\frac{1}{T_p}} \exp(j2\pi f_d(2l - L - 1)t) & t \in [0, T_p] \\ 0 & t \notin [0, T_p] \end{cases}$$
$$X_z(t) = \sum_{l=1}^L \underbrace{D_z^{(l)} \sqrt{E_b} s^{(l)}(t)}_{X_{I^{(l)}}^{(l)}(t)}$$

Here, $D_z^{(l)}$ is a symbol from a generic $2^{\frac{K_b}{L}}$ -ary constellation (e.g., QAM, PAM, PSK).

For example, there are several ways to transmit 6 bits using OFDM:

- 6 sub-carriers with BPSK and $f_d = \frac{1}{4T_p}$
- 3 sub-carriers with QPSK and $f_d = \frac{1}{2T_p}$
- 2 sub-carriers with 8-PSK and $f_d = \frac{1}{2T_p}$

What do you expect for the spectral efficiencies? What about the relative WEP performance?

Example 3: Streamed *M*-ary OFDM

In modern practical systems, the concepts of time multiplexing (i.e., streaming), frequency multiplexing, and linear modulation are often combined.

For example, a 1 Mbit block could be transmitted using 1024 consecutive OFDM frames of 256 subcarriers with 16-QAM (i.e., 4 bits) on each subcarrier.