Review:

1. Complex baseband representations.
2. Random variables and random processes.
3. Additive noise model.

Complex Baseband Representations [Ch. 4]:

Many systems transmit real-valued passband signals:

but modem processing is done at baseband. Hence, a complex baseband signal representation is very useful.

Baseband signal ("complex envelope"):

$$
x_{z}(t)=x_{1}(t)+j x_{\mathrm{Q}}(t) \quad \begin{cases}x_{\mathbf{l}}(t) \in \mathbb{R} & \text { "in phase" } \\ x_{\mathrm{Q}}(t) \in \mathbb{R} & \text { "quadrature" }\end{cases}
$$

Conversion to passband signal $x_{c}(t)$:

$$
\begin{aligned}
x_{c}(t) & =\sqrt{2} \mathbb{R}\left[x_{z}(t) e^{j 2 \pi f_{c} t}\right] \\
& =\sqrt{2}\left[x_{1}(t) \cos \left(2 \pi f_{c} t\right)-x_{\mathrm{Q}}(t) \sin \left(2 \pi f_{c} t\right)\right]
\end{aligned}
$$

"quadrature modulator"
"I/Q upconverter"

Conversion from passband to baseband:

$$
\begin{aligned}
x_{c}(t) \sqrt{2} \cos \left(2 \pi f_{c} t\right)= & x_{\mathbf{l}}(t)+x_{\mathbf{l}}(t) \cos \left(4 \pi f_{c} t\right) \\
& -x_{\mathbf{Q}}(t) \sin \left(4 \pi f_{c} t\right) \\
-x_{c}(t) \sqrt{2} \sin \left(2 \pi f_{c} t\right)= & x_{\mathbf{Q}}(t)-x_{\mathbf{Q}}(t) \cos \left(4 \pi f_{c} t\right) \\
& -x_{\mathbf{l}}(t) \sin \left(4 \pi f_{c} t\right)
\end{aligned}
$$

LPF to remove double-frequency terms:

Signal spectra:

$$
\begin{aligned}
X_{z}(f) & :=\mathcal{F}\left\{x_{z}(t)\right\} \quad \text { Fourier transform } \\
G_{X_{z}}(f) & :=\left|X_{z}(f)\right|^{2} \quad \text { "Energy spectrum" }
\end{aligned}
$$

Note that

$$
G_{X_{c}}(f)=\frac{1}{2} G_{X_{z}}\left(f-f_{c}\right)+\frac{1}{2} G_{X_{z}}\left(-f-f_{c}\right)
$$

Filtering of bandpass $X_{c}(f)$:

$$
\begin{aligned}
& Y_{c}(f)=H(f) X_{c}(f) \\
& \Rightarrow Y_{c}(f)=H_{c}(f) X_{c}(f)
\end{aligned}
$$

via "bandpass equivalent" $H_{c}(f)$.

Translate filter to baseband:

$$
\begin{aligned}
h_{c}(t) & =2 \mathbb{R}\left[h_{z}(t) e^{j 2 \pi f_{c} t}\right] \\
h_{z}(t) & =h_{\mathbf{l}}(t)+j h_{\mathrm{Q}}(t)
\end{aligned}
$$

to get "baseband equivalent" $H_{z}(f)$.

Applying the baseband filter to a baseband signal is equivalent to applying the passband filter to a passband signal:

$$
Y_{c}(f)=H_{c}(f) X_{c}(f) \quad \Leftrightarrow \quad Y_{z}(f)=H_{z}(f) X_{z}(f)
$$

In other words, these are all equivalent:

Random Variables [Ch. 3]:

A RV $X(\omega)$ maps the sample space Ω to a real number:

Usually we use the shorthand notation X for the RV.

The value taken by a RV in a particular experiment is called a "sample" or "realization."

The cumulative distribution function (CDF) of RV $X(\omega)$ is

$$
F_{X}(x)=\operatorname{Pr}\{\omega: X(\omega) \leq x\}
$$

or, in shorthand notation,

$$
F_{X}(x)=\operatorname{Pr}\{X \leq x\}
$$

Note:

$$
\begin{aligned}
F_{X}(-\infty) & =0 \\
F_{X}(\infty) & =1 \\
F_{X}(x) & =\text { increasing in } x .
\end{aligned}
$$

The probability density function (PDF) of $X(\omega)$

$$
f_{X}(x)=\frac{d}{d x} F_{X}(x)
$$

Discrete RVs don't have PDFs, but rather probability mass functions (PMFs)

$$
p_{X}(x)=\operatorname{Pr}\{X=x\} .
$$

We will use $p_{X}(x)$ for both PDFs and PMFs (unless there is a possibility of confusion).

Some properties of the PDF:

$$
\begin{aligned}
f_{X}(x) & \geq 0 \\
\int_{-\infty}^{\infty} f_{X}(\beta) d \beta & =1 \\
\int_{-\infty}^{x} f_{X}(\beta) d \beta & =F_{X}(x) \\
\int_{x_{1}}^{x_{2}} f_{X}(\beta) d \beta & =\operatorname{Pr}\left\{x_{1}<X \leq x_{2}\right\}
\end{aligned}
$$

Statistics of a RV:
Mean:

$$
E(X)=\int_{-\infty}^{\infty} x p_{X}(x) d x=m_{X}
$$

Variance:

$$
E\left(\left(X-m_{X}\right)^{2}\right)=\int_{-\infty}^{\infty}\left(x-m_{X}\right)^{2} p_{X}(x) d x=\sigma_{X}^{2}
$$

In general:

$$
E(g(X))=\int_{-\infty}^{\infty} g(x) p_{X}(x) d x
$$

Gaussian (or "normal") RV:

$$
\begin{aligned}
f_{X}(x) & =\frac{1}{\sqrt{2 \pi \sigma_{X}^{2}}} \exp \left[-\frac{\left(x-m_{X}\right)^{2}}{2 \sigma_{X}^{2}}\right] \\
X & \sim \mathcal{N}\left(m_{X}, \sigma_{X}^{2}\right)
\end{aligned}
$$

Though the Gaussian CDF has no closed-form expression, the erf function is frequently tabulated.

$$
\begin{aligned}
\operatorname{erf}(z) & =\frac{2}{\sqrt{\pi}} \int_{0}^{z} e^{-t^{2}} d t=1-\operatorname{erfc}(z) \\
F_{X}(x) & =\frac{1}{2}+\frac{1}{2} \operatorname{erf}\left(\frac{x-m_{X}}{\sqrt{2} \sigma_{X}}\right)
\end{aligned}
$$

Joint CDF:

$$
F_{X Y}(x, y)=\operatorname{Pr}\{X \leq x, Y \leq y\}
$$

Joint PDF:

$$
f_{X Y}(x, y)=\frac{\partial^{2}}{\partial x \partial y} F_{X Y}(x, y)
$$

Joint PMF:

$$
p_{X Y}(x, y)=\operatorname{Pr}\{X=x, Y=y\}
$$

Conditional PDF of Y given that $X=x$:

$$
p_{Y \mid X}(y \mid X=x)=\frac{p_{X Y}(x, y)}{p_{X}(x)}
$$

Total probability:

$$
p_{Y}(y)=\int_{-\infty}^{\infty} p_{X Y}(x, y) d x
$$

Bayes rule:

$$
p_{Y \mid X}(y \mid X=x)=\frac{p_{X \mid Y}(x \mid Y=y) p_{Y}(y)}{p_{X}(x)}
$$

RVs X and Y are independent (i.e., $X \Perp Y$) when

$$
\begin{aligned}
p_{X Y}(x, y) & =p_{X}(x) p_{Y}(y) \\
\Leftrightarrow p_{Y \mid X}(y \mid X=x) & =p_{Y}(y)
\end{aligned}
$$

Joint Statistics of Two RVs:
cross-correlation:

$$
\mathrm{E}[X Y]=\iint x y p_{X Y}(x, y) d x d y
$$

cross-covariance:

$$
\mathrm{E}\left[\left(X-m_{X}\right)\left(Y-m_{Y}\right)\right]=\iint\left(x-m_{X}\right)\left(y-m_{Y}\right) p_{X Y}(x, y) d x d y
$$

In general:

$$
E[g(X, Y)]=\iint g(x, y) p_{X Y}(x, y) d x d y
$$

Gaussian random vector (i.e., jointly Gaussian RVs):

$$
\underline{N}=\left[N_{1}, \ldots, N_{L}\right]^{T}
$$

Joint pdf:
$f_{N}(\underline{n})=\frac{1}{\sqrt{(2 \pi)^{L} \operatorname{det} \boldsymbol{C}_{N}}} \exp \left[-\frac{1}{2}\left(\underline{n}-\underline{m}_{N}\right)^{T} \boldsymbol{C}_{N}^{-1}\left(\underline{n}-\underline{m}_{N}\right)\right]$
with mean vector

$$
\underline{m}_{N}=\mathrm{E}(\underline{N})
$$

and covariance matrix

$$
\boldsymbol{C}_{N}=\mathrm{E}\left[\left(\underline{N}-\underline{m}_{N}\right)\left(\underline{N}-\underline{m}_{N}\right)^{T}\right]
$$

Complex Gaussian RV:

$$
Z=N_{\mathrm{I}}+j N_{\mathrm{Q}} \quad \Leftrightarrow \quad\binom{N_{\mathrm{l}}}{N_{\mathrm{Q}}}=\underline{N}
$$

where

$$
\text { Circular } \quad \Leftrightarrow \quad \boldsymbol{C}_{N}=\left(\begin{array}{cc}
\frac{1}{2} \sigma_{Z}^{2} & 0 \\
0 & \frac{1}{2} \sigma_{Z}^{2}
\end{array}\right)
$$

Can write PDF as

$$
\begin{aligned}
f_{Z}(z) & =\frac{1}{\pi \sigma_{Z}^{2}} \exp \left[-\frac{\left|z-m_{Z}\right|^{2}}{\sigma_{Z}^{2}}\right] \\
Z & \sim \mathcal{C N}\left(m_{Z}, \sigma_{Z}^{2}\right)
\end{aligned}
$$

Random Processes [Ch. 9]:

A RP $X(\omega, t)$ maps the sample space Ω to a signal:

Usually we use the shorthand notation $X(t)$ for the RP.

The waveform taken by a RP in a particular experiment is called a "sample path" or "realization."

Properties:

A sample of a RP (e.g., $X(0)$) is a RV.
A RP is stationary if the joint PDF of any set of samples is invariant to bulk sampling-time shifts:

$$
\begin{aligned}
& f_{N\left(t_{0}\right), N\left(t_{1}\right), \ldots, N\left(t_{M}\right)}\left(n_{1}, n_{2}, \ldots, n_{M}\right) \\
& \quad=f_{N\left(t_{0}+\tau\right), N\left(t_{1}+\tau\right), \ldots, N\left(t_{M}+\tau\right)}\left(n_{1}, n_{2}, \ldots, n_{M}\right), \quad \forall t_{1}, \ldots, t_{M}, \tau
\end{aligned}
$$

A RP is wide-sense stationary (WSS) if at least the mean and autocorrelation are invariant to time shifts:

$$
\begin{aligned}
E\left[N\left(t_{1}\right)\right] & =E\left[N\left(t_{2}\right)\right], \quad \forall t_{1}, t_{2} \\
E\left[N\left(t_{1}\right) N\left(t_{1}-\tau\right)\right] & =E\left[N\left(t_{2}\right) N\left(t_{2}-\tau\right)\right], \quad \forall t_{1}, t_{2}, \tau
\end{aligned}
$$

For a WSS RP we have the (time-invariant) statistics

$$
\begin{aligned}
\text { mean: } \quad m_{N} & =E[N(t)] \\
\text { autocorrelation: } \quad R_{N}(\tau) & =E[N(t) N(t-\tau)]
\end{aligned}
$$

Note that $\sigma_{N}^{2}=R_{N}(0)-m_{N}^{2}$ and $R_{N}(\tau)=R_{N}(-\tau)$.

A Gaussian RP is one where any collection of samples is composed of jointly Gaussian RVs.

A stationary Gaussian RP is completely described by its mean m_{N} and autocorrelation $R_{N}(\tau)$.

From here on, we assume zero-mean processes!

Power spectral density (PSD) of a WSS RP:

$$
S_{N}(f)=\lim _{T \rightarrow \infty} \frac{1}{2 T} \mathrm{E}\left[\left|\int_{-T}^{T} N(t) e^{-j 2 \pi f t} d t\right|^{2}\right]
$$

or

$$
S_{N}(f)=\int_{-\infty}^{\infty} R_{N}(\tau) e^{-j 2 \pi f \tau} d \tau
$$

Note that

$$
S_{N}(f) \in \mathbb{R}, \quad S_{N}(f) \geq 0, \quad \text { and } S_{N}(f)=S_{N}(-f)
$$

and also that

$$
\sigma_{N}^{2}=R_{N}(0)=\int_{-\infty}^{\infty} S_{N}(f) e^{j 2 \pi f 0} d f=\int_{-\infty}^{\infty} S_{N}(f) d f
$$

A white RP has a constant PSD. For example, we will model white noise $W(t)$ via the "two-sided PSD" (p. 9.20)

$$
S_{W}(f)=\frac{N_{0}}{2}
$$

implying

$$
\begin{aligned}
R_{W}(\tau) & =\frac{N_{0}}{2} \delta(\tau) \\
\sigma_{W}^{2} & =R_{W}(0)=\int_{-\infty}^{\infty} S_{N}(f) d f=\infty
\end{aligned}
$$

Note: thermal noise is approximately constant for $|f|<10^{12}$ Hz , so we often approximate it as white noise.

Linear filtering of RPs:

- A linear combination of Gaussian RVs is a Gaussian RV.
- Linear filtering of a Gaussian RP yields a Gaussian RP.
- LTI filtering of a stationary RP yields a stationary RP.

$$
\begin{gathered}
X(t) \rightarrow H(f) \rightarrow Y(t) \\
S_{Y}(f)=|H(f)|^{2} S_{X}(f)
\end{gathered}
$$

The Additive Noise Model [Ch. 10]:

We assume $W(t)$ is zero-mean stationary Gaussian with

$$
\begin{aligned}
R_{W}(\tau) & =\mathrm{E}\{W(t) W(t-\tau)\} \text { autocorrelation } \\
S_{W}(f) & =\mathcal{F}\left\{R_{W}(\tau)\right\} \text { power spectrum }
\end{aligned}
$$

We also assume a constant PSD (i.e., white noise):

$$
S_{W}(f)=N_{0} / 2
$$

Thus

$$
R_{W}(\tau)=\frac{N_{o}}{2} \delta(\tau), \quad \sigma_{W}^{2}=R_{W}(0)=\infty
$$

Received noise model:

Here $H_{R}(f)$ is the receive filter:

$$
S_{N_{c}}(f)=\frac{N_{o}}{2}\left|H_{R}(f)\right|^{2}
$$

Baseband equivalent noise model:

- Say $\left\{\begin{array}{l}N_{c}(t)=\sqrt{2} \mathbb{R}\left[N_{z}(t) e^{j 2 \pi f_{c} t}\right] \\ N_{z}(t)=N_{\mathbf{l}}(t)+j N_{\mathrm{Q}}(t)\end{array}\right.$

$$
S_{N_{c}}(f)=\frac{1}{2} S_{N_{z}}\left(f-f_{c}\right)+\frac{1}{2} S_{N_{z}}\left(-f-f_{c}\right)
$$

- Fitz shows that $N_{\mathrm{l}}(t)$ and $N_{\mathrm{Q}}(t)$ are zero-mean, jointly stationary and jointly Gaussian with

$$
R_{N_{\mathrm{I}}}(\tau)=R_{N_{Q}}(\tau) \quad \text { and } \quad R_{N_{\mathrm{l}} N_{Q}}(\tau)=-R_{N_{\mathrm{I}} N_{Q}}(-\tau)
$$

- Thus $\quad R_{N_{\mathrm{l}} N_{\mathrm{Q}}}(0)=0 \Rightarrow N_{\mathrm{l}}\left(t_{o}\right) \Perp N_{\mathrm{Q}}\left(t_{o}\right)$ for any t_{o} and $\quad S_{N_{z}}(f)=2 \underbrace{S_{N_{1}}(f)}_{\text {even }}-j 2 \underbrace{S_{N_{\mathrm{l}} N_{\mathrm{Q}}}(f)}_{\text {odd }}$.

Complex white noise model:

- With flat, unity-gain receive filter and $B_{R}>B_{T}$, we often approximate $N_{z}(t)$ by circular complex Gaussian noise $W_{z}(t)$ with statistics given by

$$
S_{W_{z}}(f)=N_{o} \quad \Leftrightarrow \quad R_{W_{z}}(\tau)=N_{o} \delta(\tau)
$$

